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Abstract
In recent years, the Transformer achieved remarkable results in computer vision related tasks, matching, or even
surpassing those of convolutional neural networks (CNN). However, unlike CNNs, those vision transformers
lack strong inductive biases and, to achieve state-of-the-art results, rely on large architectures and extensive
pre-training on tens of millions of images. Introducing the appropriate inductive biases to vision transformers
can lead to better convergence and generalization on settings with fewer training data. This work presents
a novel way to introduce inductive biases to vision transformers: self-attention regularization. Two different
methods of self-attention regularization were devised. Furthermore, this work proposes ARViT, a novel vision
transformer architecture, where both self-attention regularization methods are deployed. The experimental
results demonstrated that self-attention regularization leads to better convergence and generalization, especially
on models pre-trained on mid-size datasets.
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1 Introduction

1.1 Motivation

In the context learning systems, inductive biases are the
set of assumptions made by a model in order to predict
outputs from unseen data [1]. In other words, a potentially
infinite number of hypotheses (combination of weight
parameters) can exist for a finite set of training examples,
and not all the hypotheses generalize well when tested
on unseen data [?]. Learning models inherently tend to
be biased toward a group of hypotheses encompassed in
their architecture, and those hypotheses can be called an
inductive bias.

In deep learning, the selection of models with appro-
priate inductive biases for the task at hand plays a crucial
role in the effort to obtain better generalization [?,?]. That
is particularly true for settings where a small amount of
training data is available. Accordingly, models with weak
inductive biases tend to converge to the local optima
when trained with limited data, therefore being unsta-
ble to changes in the initial states.

The success of Convolutional Neural Networks (CNN)
is often attributed to its inductive biases, such as local-
ity and translation equivariance. In recent years, stud-
ies with the Transformer [2] have also achieved remark-
able success in computer vision [3–8]. Nevertheless, state-
of-the-art performance is only attained with very large
architectures pre-trained on tens of millions of labeled
data [9]. For example, the Vision Transformer (ViT) by
Dosovitskiy et al. [10], when pre-trained on hundreds of
millions of images, was able to achieve excellent results
compared to CNNs on mid-sized or small image recog-
nition tasks. The data hunger of vision transformers is
precisely due to the fact that they have fewer inductive
biases than CNNs, allowing them to search the hypothesis

space more freely [11, 12]. Hence, when trained on small
or medium scale datasets, such vision transformers will
often converge to a local optima and generalize poorly on
unseen data. Therefore, such property of vision transform-
ers eventually hinders its training on environments with
low resources, due to the heavy computational cost for
training a model with hundreds of millions of parameters
on tens of millions of images.

Introducing appropriate inductive biases to vision
transformers can lead to better convergence and gener-
alization. One of the most common approaches is to in-
troduce inductive biases from CNNs to vision transform-
ers by combining convolution layers with self-attention
layers [12–17]. Distilling convolved knowledge [18] and
applying self-attention to local neighbors [3] also aim
to address this challenge. Another approach revolves
around adaptations to the vision transformer architecture.
The Pyramid Vision Transformer (PVT) [19] progressively
shrinks the transformer architecture incorporating the
pyramid structure of CNNs. The Swin Transformer [20]
has an hierarchical architecture and uses shifted windows
to compute representations from images. Nevertheless,
in order to match or surpass the performance of CNNs,
such vision transformers are still pre-trained on large
scale datasets, like the ImageNet-21K with 14.2 million
images [21], or the JFT-300M with 303 million images [22].

Therefore, the main motivation of this work is to tackle
the lack of inductive biases on vision transformers and
the high computational cost necessary to overcome it
(associated with the training of large-capacity models on
large-scale datasets).

1.2 Research Aims and Objectives

Based on the aforementioned motivations, the main ob-
jectives of the research presented in this dissertation are:
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1. To tackle the vision transformers’ lack of inductive
biases in or to improve its ability to generalize well
when pre-trained on smaller volumes of data.

2. To improve the ability of smaller capacity vision trans-
formers to generalize well.

3. To reduce the computational cost associated with
training high performance vision transformers.

4. To improve the ability of vision transformers when
pre-trained on unlabeled data.

2 Related Work

As demonstrated in Dosovitskiy et al. [10], overcoming
the lack of inductive biases on the ViT could be directly
achieved via large architectures trained on large-scale
datasets and with longer training schedules. The ViT have
three variants —ViT-Base, ViT-Large and ViT-Huge— that
can add to up to 632M parameters. The state-of-the-art re-
sults were attained pre-training the models on ImageNet-
21k (with 21k classes and 14M images) or the JFT (with
18k classes and 303M images). Hence, overcoming the
lack of inductive biases through this approach comes at
a high computational cost, which can be a limiting fac-
tor on environments with fewer resources. Different ap-
proaches were also proposed in order to overcome the
vision transformers’ lack of inductive biases. As is well
known, the most common approach is to combine self-
attention layers with convolution layer [12, 13, 15], with
a variety of models proposed in the literature [17, 20, 23].
Alternatively, instead of combining convolution and self-
attention layers, the work of Touvron et al. [18] proposed
to distill convolved knowledge from a CNN teacher net-
work to a vision transformer student network. Another
approach consists of applying self-attention only to lo-
cal neighbors [3, 5]. Inductive biases can also be intro-
duced in vision transformers through architecture design,
such as on the PVT [19] and the Twins [24]. The Swin
Transformer [20], for example, addressed this issue by
constructing an hierarchical representation starting from
small-sized patches that are gradually merged with their
neighboring patches in deeper transformer layers. Then,
self-attention is locally computed on non-overlapping
windows, thus introducing inductive biases of locality, hi-
erarchy and translation invariance [25, 26]. In this work,
the lack of inductive biases on vision transformers is ad-
dressed by two novel self-attention regularization meth-
ods, as well as a novel small capacity vision transformer
architecture.

3 Proposed Method

3.1 Basic concepts

3.1.1 Image Patches

An input image X ∈ R3×H×W is divided into N patches,
where (H , W ) are the height and width of a 3 channels
image. A patch is denoted as xn ∈ R3×C×C , and (C , C ) is
the resolution of each patch. Then, a linear embedding is
computed for each patch in order to obtain a 1D input for
the vision transformer.

3.1.2 Self-attention

The attention map is computed on the multi-head at-
tention (MHA) layer of each encoder block in the Trans-
former. We refer to the attention map produced by an
encoder block as A ∈ RN×N , where N is the number of
patches into which an image is divided. A row An ∈ RN

contains the pairwise self-attention between patch xn

and all other patches.

3.2 Spatial distance based self-attention regularization

The first self-attention regularization method proposed
in this work is based on the 2D spatial distance between
image patches. The Manhattan distance is adopted to
measure the 2D distance between patches. Firstly, a dis-
tance matrix D is computed by taking the pairwise dis-
tance between all image patches. Then, the penalty ma-
trix P is computed from D. Its function is to determine
a penalty over self-attention computation between each
pair of patches based on their distances.

The newly proposed distance loss LD , takes both the
attention map A and the penalty matrix P . The distance
loss over a single image can be computed through the
total sum of the pointwise product of the attention map
A and the penalty matrix P . Then, the distance loss LD is
added to the original task loss LT in the following fashion:

LL =LT +λLD , (1)

where λ> 0 is a hyperparameter assigned to control the
balance between L T and L D .

Therefore, without modifying the global self-attention
computation, the distance loss acts as a self-attention
regularizer in which the larger the distance between two
patches xn and xm (taken from image X ), the greater the
penalty attributed over self-attention computation. In
other words, the distance loss induces the attention map
A to present low values in positions where the penalty
matrix P presents high values. Hence, inductive bias is in-
duced on self-attention maps by minimizing the distance
loss.

3.3 Patch similarity based self-attention regularization

Our second self-attention regularization method is based
on the similarity between style representations of differ-
ent patches on a image. We follow the work of Gatys et
al. [27], adpting the gram matrix as a way to obtain a
style representation for each image patch. The first step
of our method is then to compute a similarity matrix S,
representing the pairwise distance between the style rep-
resentation of each image patch, as shown in Fig. 1.

Then, the newly proposed similarity loss LS takes
both the similarity matrix S and the attention map A. The
attention loss for a single image can be obtained from the
total sum of the pointwise product between the S and A.

Similarly to the distance loss expressed in Section
3.2, the similarity loss is added to the task loss, acting
as a self-attention regularizer. The intuition behind this
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Fig. 1: Overview of the distance matrix computation. We
split an image into fixed-size patches, compute the gram
matrix of each individual patch, then build a distance
matrix D containing the pairwise mean square errors be-
tween all gram matrices. D is a symmetric non-negative
hollow matrix.
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Fig. 2: ARViT architecture overview. We split an image
into C ×C patches, produce a linear embedding for each
of them through a CNN layer with both kernel size and
stride of C . We further supplement each linear embed-
ding with a position embedding before forwarding the
input sequence to the Transformer encoder. The Trans-
former encoder is composed of six encoder blocks, and
the output of the last block is fed to a model head that
addresses the self-supervised pretext-task.

method is that high self-attention values between two
image patches with a similar style representation should
result in a small loss; while high self-attention values be-
tween two patches whose style representation are distinct
should result in a high loss. Therefore, the attention loss
acts as a self-attention regularizer that induces the at-
tention map A to present low values in positions where
D presents high values, and vice-versa. Hence, without
changing the global self-attention computation, induc-
tive bias is induced through minimizing the attention loss.

3.4 ARViT Architecture

The backbone architecture of our Attention Regulated
Vision Transformer (ARViT) can be interpreted as a mod-
ified and reduced version of the ViT [10]. It utilizes im-
age patches embeddings, which are supplemented with a
fixed 2D sinusoid position embeddings in order to retain
positional information from each image patch. The ViT
has 3 variants, defined by their number of encoder blocks,
number of attention heads on each block and the dimen-

sion of the hidden layer. The smallest ViT variant, denoted
as ViT-Base, has 12 encoder blocks with 12 heads, and the
dimension of the hidden layer is 768. The first modifica-
tion of the ViT is to reduce the number of encoder blocks
from 12 to 6. We further reduce the dimension of the hid-
den layer to 516. Then, we replace the MLP with 2 layers
in each encoder block with a single fully connected layer.
Finally, we discard the classification token and allow the
model head to address its task by using the complete out-
put of the last encoder block. An overview of ARViT is
displayed in Fig. 2.

4 Experiments

4.1 Datasets and evaluation

All models were pre-trained on a self-supervised rotation
estimation task on the ILSVRC-2012 ImageNet dataset
[28]. Then, all models were finetuned on 5 different down-
stream classification tasks: CIFAR-10, CIFAR-100, Oxford
Flowers-102, Imagenette and Imagewoof, where the Top-1
accuracy was adopted as an evaluation metric.

4.2 Model performance

4.2.1 ARViT’s performance

The first experiment aimed to compare the performance
of ARVIT against a similar capacity vision transformer —
the ViT-Tiny — with substantial improvements observed.
On CIFAR-10, ARViT outperforms ViT-Tiny by roughly
10%, while on CIFAR-100 the improvement is greater than
23%. On the Flowers-102 dataset, ARViT surpasses ViT-
Tiny by approximately 8%, and on Imagenette and Image-
woof the improvement is roughly 6% and 11% respectively
(Table 1).

4.2.2 Spatial distance based self-attention regularization

When regularizing self-attention on ARViT using our 2D
spatial distance method, significant gains in performance
were observed. Namely, ARViT’s accuracy was improved
by further 1.63% on CIFAR-10, 0.36% on CIFAR-100, 1.47%
on Flowers-102, 0.87% on Imagenette and 2.89% on Im-
agewoof (Table 1).

4.2.3 Patch similarity based self-attention regularization

Deploying the patch similarity based self-attention reg-
ularization method on ARViT also resulted on marginal
improvements in the Top-1 accuracy on all 5 downstream
classification tasks. Namely, a 5% gain on the CIFAR-10
dataset, a 13% on the CIFAR-100, a 4% gain on Flowers-
102, a 5% gain on Imagenette and a 10% gain on Image-
woof (Table 1).

4.3 Computational cost

All models were trained with batch size of 80, distributed
on four NVIDIA GEFORCE GTX 2080 Ti GPUs, with a
capacity of 11 Gb each. Regarding the training time for
ARViT, without any regularization method, each epoch
was trained on an average of 16m44s. When deploying
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the 2D spatial distance based self-attention regulariza-
tion, each epoch was trained on an average of 18m20s.
When deploying the patch similarity based self-attention
regularization method to ARViT, the observed training
time was 18m44s per epoch. As a comparison, the average
training time for each epoch on ViT-Tiny and ViT-B [10]
were 22m45s and 1h49m12s, respectively.

5 Conclusion

In this work, we tackled the lack of inductive biases
in vision transformers, which is usually overcome by
pre-training large architectures on large-scale datesets.
We proposed two self-attention regularization methods
based on the two-dimensional distance between image
patches, and on the similarity between different patches
of an image obtained from the distance between their
gram matrices. We focused on experimenting with a low-
resources set-up, and deployed our method on our pro-
posed architecture, denoted ARViT [29]. Furthermore, all
our models were pre-trained on a self-supervised task
using the ILSVRC-2012 ImageNet dataset, with approxi-
mately 1.3 million images. Our experiments showed that
our proposed self-regularization methods improved the
performance of ARViT as far as up to 13% once finetuned
on benchmark classification tasks.
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Table 1: Comparison between the performance of ARViT on different downstream tasks when regularized
with different methods and set-ups. Furthermore, ViT-Tiny, a variant of the ViT [10], is included in the table
for comparison. It has the same number of encoder blocks and attention heads as ARViT. Values in bold
indicate the models with best performance on each downstream task.

Model
Regularization

Type
Regularized

Layer
Patch

resolution CIFAR-10 CIFAR-100 Flowers Imagenette Imagewoof

ViT-Tiny - - - 73.30% 53.55% 73.91% 84.72% 61.77%
ARViT-Base (ours) - - - 83.13% 76.27% 81.61% 91.18% 73.01%

ARViT-L1 (ours) 2D distance 1st layer 16 82.02% 75.89% 80.12% 90.58% 72.92%
ARViT-L2 (ours) 2D distance 2nd layer 16 83.63% 76.20% 81.27% 91.56% 74.81%
ARViT-L3 (ours) 2D distance 3rd layer 16 84.76% 76.63% 83.08% 92.05% 75.90%
ARViT-L4 (ours) 2D distance 4th layer 16 83.31% 76.52% 81.98% 91.88% 75.24%
ARViT-L5 (ours) 2D distance 5th layer 16 83.70% 76.01% 81.21% 91.30% 73.46%
ARViT-L6 (ours) 2D distance 6th layer 16 79.81% 74.84% 79.14% 88.77% 70.44%

ARViT-R1-1 (ours) Region similarity 1st layer 16 88.29% 88.63% 85.58% 95.48% 82.31%
ARViT-R1-2 (ours) Region similarity 2nd layer 16 86.99% 86.40% 85.15% 94.28% 79.61%
ARViT-R1-3 (ours) Region similarity 3rd layer 16 87.17% 84.91% 85.33% 95.36% 82.20%
ARViT-R1-4 (ours) Region similarity 4th layer 16 87.54% 86.13% 85.31% 95.48% 82.93%
ARViT-R1-5 (ours) Region similarity 5th layer 16 88.45% 89.65% 85.82% 95.40% 82.70%
ARViT-R1-6 (ours) Region similarity 6th layer 16 87.55% 87.31% 85.15% 95.78% 81.15%
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