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Learning does not make one learned: there are those who

have knowledge and those who have understanding. The

first requires memory and the second philosophy.
—Alexandre Dumas

(The Count of Monte Cristo)

To lead meaningful and fulfilling lives, it’s important that

we continually return to the basics and consider the

direction we should be heading. This means thinking about

such questions as ‘How do I best live my life?’ ‘What is

my life’s true purpose?’ ‘What are the key principles for

realizing peace?’ In other words, having the foundation of

a solid philosophy is crucial.
—Daisaku Ikeda

(President of Soka Gakkai International)



To my beloved parents, with all my heart.
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Abstract

In recent years, the Transformer achieved remarkable results in computer vision related tasks,

matching, or even surpassing those of convolutional neural networks (CNN). However, unlike

CNNs, those vision transformers lack strong inductive biases and, to achieve state-of-the-art results,

rely on large architectures and extensive pre-training on tens of millions of images. Approaches

like combining convolution layers or adapting the vision transformer architecture managed to

mitigate this limitation, however, large volumes of data are still demanded to attain state-of-the-art

performance. Therefore, introducing appropriate inductive biases to vision transformers can lead

to better convergence and generalization on settings with fewer training data. This work presents a

novel way to introduce inductive biases to vision transformers: self-attention regularization. Two

different methods of self-attention regularization were devised.

The first method proposed in this work is based on the two-dimensional spatial distance

between image patches. In it, a newly proposed distance loss imposes a penalty over self-attention

computation between each pair of patches based on their distance. When added to the task loss,

the distance loss acts as a self-attention regularizer, in which the larger the distance between two

patches, the greater the penalty attributed over self-attention computation.

Our second self-attention regularization method is based on the similarity between style

representations of different regions on a image, taken from their gram matrices. A newly proposed

similarity loss takes the pairwise distance between the style representation of all image regions

in order to impose a penalty over self-attention computation. Similarly to the distance loss, the

similarity loss is added to the task loss, acting as a self-attention regularizer. The intuition behind

this method is that high self-attention values between two image patches with a similar style

representation should result in a small loss; while high self-attention values between two patches

whose style representation are distinct should result in a high loss.

Hence, on both self-attention regularization methods, without changing the global self-attention

computation, inductive bias is introduced through minimizing their respective loss functions.

Furthermore, this work proposes ARViT, a novel vision transformer architecture, where both
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self-attention regularization methods are deployed. The experimental results demonstrated that

self-attention regularization leads to better convergence and generalization, especially on models pre-

trained on mid-size datasets, with performance gains as big as 26% when fine-tuned on benchmark

downstream classification tasks.
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Chapter 1

Introduction

I am a philosophical naturalist. I am committed to the

view that there’s nothing in our brains that violates the

laws of physics, there’s nothing that could not in principle

be reproduced in technology. It hasn’t been done yet, we’re

probably quite a long way away from it, but I see no reason

why in the future we shouldn’t reach the point where a

human made robot is capable of consciousness and of

feeling pain. We can feel pain, why shouldn’t they?

—Richard Dawkins

(Evolutionary biologist)

In this chapter, an overview of the of this PhD dissertation is presented, introducing the context,

the motivation, the objectives, the propositions and the contributions of this work. In Section 1.1,

a brief context of the research fields touched by this work is introduced. Section 1.2 presents the

motivation of this dissertation. The main objectives of this work are described in Section 1.3. In

Section 1.4, the contributions achieved by the work presented in this dissertation are listed. Lastly,

an outline of the structure of this dissertation is presented in Section 1.5.

1.1 Context

This dissertation presents a research work in the field of Artificial Intelligence (AI), with emphasis

on Deep Learning. This research investigation intersects the areas of computer vision, transformers,

self-supervised learning (SSL) and inductive bias.

Deep learning is a subfield of Machine Learning (ML), which by itself is a subfield of AI

concerned with comprehending and developing learning methods — methods that use data in order

to improve their performance on a task, or a set of tasks [1, 2]. In ML, a model can learn through

a supervised, semi-supervised, unsupervised or a reinforcement paradigm [3]. Within ML, Deep
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Learning is a subfield centered around the concept of neural networks, which were introduced in

1943 by McCulloch and Pitts [4], and revolutionized the ML field. The term "deep learning" refers

to the use of neural networks with numerous layers.

One of the areas most impacted by the advent of Deep Leaning was computer vision, a

multidisciplinary research field that examines how computers can be programmed to extract high-

level knowledge from digital pictures or videos. This area focuses on how computers can be taught

or learn how to comprehend what is being shown to them. The goal is to find ways to reproduce

tasks that can already be done by the human visual system. In other words, computer vision is

the process of automatically extracting, analyzing, and comprehending useful information from

a single image or a sequence of images. Computer vision has been revolutionized thanks to the

development of deep learning based algorithms, with results that marginally exceeded that of

earlier approaches on a variety of tasks, such as image classification [5–7], object detection [8–12],

image segmentation [13], face recognition [14–16], person re-Identification [17–19], motion tracking

[20–22], image colorization [23, 24] and image generation [25, 26].

Among deep neural networks architectures, when it comes to computer vision, Convolutional

Neural Networks (CNN) [27] achieved remarkable results across all tasks, dominating the field

for years. However, recently, other network architectures have been able to achieve results that

compete or even outperform those of CNNs [28, 29]. One of such architectures is the Transformer

[30]. Emerged from the natural language processing (NLP) field, at the core of the Transformer

architecture is its self-attention mechanism, which computes the relation between all elements in

a input sequence. The global characteristic of self-attention mechanism contrasts with the local

nature of the convolution operation responsible for the tremendous success of CNNs. However,

precisely due to global nature of self-attention, such "vision transformers" are deprived of the

inductive biases inherent in CNNs, such as locality and translation equivariance [31].

Inductive biases are the set of assumption made by a model that make certain solutions

(combination of parameter values) more preferable than others, and having the appropriate inductive

biases for the task at hand allows a model to converge to better performing solutions. To overcome

their lack of inductive biases, vision transformers often rely on very large architectures, pre-trained

on hundreds of millions of images and over extensive training schedules. Such approach is associated

with a high (and often prohibitive) computational cost.

The final disciplinary field touched by this research is self-supervised learning (SSL) [32],

a paradigm that incorporate techniques for processing unlabeled data in order to produce

representations that may be useful to subsequent learning tasks. The most important aspect

of SSL approaches is that they do not need human-annotated labels, eliminating that high cost

associated with manual annotation. Instead, in SSL the supervisory signals are obtained through
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labels generated automatically from the data itself. During training, these labels function similarly

to those of supervised learning tasks. Hence, SSL may be interpreted as a learning paradigm that

fits between unsupervised and supervised learning.

The work presented in this dissertation can be placed within Deep Learning, at the intersection

of computer vision, transformers, inductive bias, and self-supervised learning. The propositions of

this work are to conceive and implement new inductive biases to vision transformers and to deploy

and test those inductive biases on a newly proposed vision transformer architecture pre-trained

using a self-supervised approach.

1.2 Motivation

Occam’s razor, also known as the principle of parsimony, is the problem-solving principle in which,

when dealing with competing solutions, the simpler one is considered the better [33, 34]. The

Occam’s razor is often viewed as an elementary inductive bias, where the simplest consistent

hypothesis about the target function is to be preferred.

In the context learning systems, inductive biases, like the Occam’s razor, are the set of

assumptions made by a model in order to predict outputs from unseen data [35]. In other words, a

potentially infinite number of hypotheses (combination of weight parameters) can exist for a finite

set of training examples, and not all the hypotheses generalize well when tested on unseen data

[36]. Learning models inherently tend to be biased toward a group of hypotheses encompassed in

their architecture, and those hypotheses can be called an inductive bias.

In deep learning, the selection of models with appropriate inductive biases for the task at hand

plays a crucial role in the effort to obtain better generalization [37, 38]. That is particularly true

for settings where a small amount of training data is available. Accordingly, models with weak

inductive biases tend to converge to the local optima when trained with limited data, therefore

being unstable to changes in the initial states.

The success of Convolutional Neural Networks (CNN) is often attributed to its inductive biases,

such as locality and translation equivariance. In recent years, studies with the Transformer [30]

have also achieved remarkable success in computer vision [29, 39–43]. Nevertheless, state-of-the-art

performance is only attained with very large architectures pre-trained on tens of millions of labeled

data [44]. For example, the Vision Transformer (ViT) by Dosovitskiy et al. [45], when pre-trained

on hundreds of millions of images, was able to achieve excellent results compared to CNNs on

mid-sized or small image recognition tasks. The data hunger of vision transformers is precisely

due to the fact that they have fewer inductive biases than CNNs, allowing them to search the

hypothesis space more freely [46, 47]. Hence, when trained on small or medium scale datasets, such

vision transformers will often converge to a local optima and generalize poorly on unseen data.
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Therefore, such property of vision transformers eventually hinders its training on environments

with low resources, due to the heavy computational cost for training a model with hundreds of

millions of parameters on tens of millions of images.

Introducing appropriate inductive biases to vision transformers can lead to better convergence

and generalization. One of the most common approaches is to introduce inductive biases from CNNs

to vision transformers by combining convolution layers with self-attention layers [47–52]. Distilling

convolved knowledge [53] and applying self-attention to local neighbors [29] also aim to address this

challenge. Another approach revolves around adaptations to the vision transformer architecture.

The Pyramid Vision Transformer (PVT) [54] progressively shrinks the transformer architecture

incorporating the pyramid structure of CNNs. The Swin Transformer [55] has an hierarchical

architecture and uses shifted windows to compute representations from images. Nevertheless, in

order to match or surpass the performance of CNNs, such vision transformers are still pre-trained

on large scale datasets, like the ImageNet-21K with 14.2 million images [56], or the JFT-300M with

303 million images [57].

Therefore, the main motivation of this work is to tackle the lack of inductive biases on vision

transformers and the high computational cost necessary to overcome it (associated with the training

of large-capacity models on large-scale datasets).

1.3 Research Aims and Objectives

Based on the aforementioned motivations, the main objectives of the research presented in this

dissertation are:

1. To tackle the vision transformers’ lack of inductive biases and to improve its ability to

generalize well when pre-trained on smaller volumes of data.

2. To improve the ability of smaller capacity vision transformers to generalize well.

3. To reduce the computational cost associated with training high performance vision

transformers.

4. To improve the ability of vision transformers when pre-trained on unlabelled data.

In order to achieve the main objectives, the specific objectives of this research are:

1. To investigate the lack of inductive biases on vision transformers and the high computational

cost associated with overcoming it.

2. To explore the vision transformer architecture in order to investigate the viability of such

models to achieve high performance with smaller capacity architecture designs.
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3. To explore the possibilities of introducing new inductive biases to vision transformers, enabling

a better and faster convergence when trained on mid-sized datasets, such as ImageNet [56].

4. To investigate the possibility of introducing novel inductive biases to vision transformers

without modifying the self-attention operation, preserving its characteristic of being a

global operation, and without introducing external components to its architectures, such as

convolution layers.

5. To investigate how explicit regularization can be used to restrict the hypothesis space of the

transformer towards solutions that generalize while demanding less training data.

6. To explore the possibility of introducing a regularization method to vision transformers

based on a symbolic approach where external assumptions are made in order to favor certain

distributions on model parameters.

7. To investigate the viability of combining a small capacity vision transformer architecture

and a new inductive bias in order to obtain better representations and generalization when

pre-trained on mid-sized datasets.

8. To explore pre-training vision transformers using self-supervised learning.

1.4 Contributions

The work presented in this dissertation tackles the lack of inductive biases on vision transformers,

which is typically overcame by pre-training large capacity models on hundreds of millions of labeled

data. To that end, this work, first, considered the trade-off between the connectionist and the

symbolic approaches to artificial intelligence, where the former is focused on model learning, and

the latter is based on knowledge derived from formal reasoning being passed down to an AI model.

The first two contributions of this research derived from this exercise are, two self-attention

regularization methods. Regularization in machine learning has been a long used tool to improve a

model’s generalization and reduce overfitting [3]. In practice, regularization can be seen as a method

to restrict the hypothesis space, favoring certain prior distributions on model parameters [58]. The

work presented in this dissertation proposes two regularization methods as means to restrict the

vision transformer’s hypothesis space based on assumptions about the problem’s solution. Hence,

though logic is used to constrain the space of possible solutions, it does not impose a solution per

se, and a network is still be able to learn within the available hypothesis space.

The first proposed self-attention regularization method is based on the pairwise two-dimensional

distance between image patches, measured using the the Manhattan distance. The assumption

made in this self-attention regularization method is that image patches that are spatially close
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to each other should present higher self-attention scores than patches that are spatially distant

to each other. In this method, a novel loss function, denoted distance loss, is introduced. The

distance loss acts as a regularization term added to the vision transformer’s training loss, and it

encapsulates the logic of the method to penalize solutions based on the pairwise two-dimensional

distance between image patches and the respective self-attention scores between them.

The second self-attention regularization method proposed in this research is based on the style

similarity between different regions of an image. The style representation of a region of an image is

obtained through its gram matrix, following the approach of Gatys et al. [59]. The assumption made

in this method is that, the more similar the style of two regions are, the higher the self-attention

scores between them should be. Contrarily, the least similar the style of two regions, the smaller

the self-attention scores between them should be. To measure the distance between region styles,

the pairwise mean squared error between their gram matrices is utilized. The core of our method

is the Similarity Loss, designed to express the logical assumption of this method. It, as well, is

added to the network training loss to act as a regularization term, penalizing solutions based on

the pairwise similarity between image region styles and their respective self-attention scores.

The two self-attention regularization methods are de facto introducing new inductive biases to

vision transformers, by restricting the hypothesis space and making certain solutions preferable.

Furthermore, this work introduces ARViT (which is short for Attention Regularized Vision

Transformer), an architecture based on the ViT [45] and with changes inspired by Chen et al. [44].

ARViT is significantly smaller than the ViT, and in it, the proposed self-attention regularization

methods are deployed.

Finally, all models developed in this researched were pre-trained on a self-supervised task using

the ImageNet dataset [56], with approximately 1.3 million images.

Experimental results revealed that ARViT, without any self-attention regularization, when

compared to a similar capacity vision transformer, already obtained performance gains as big as

23% on benchmark classification tasks. Moreover, the two proposed self-regularization methods

further improved the performance of ARViT as far as up to 13% on those tasks. Finally, the models

presented in this research also achieve competitive results with state-of-the-art visual transformers,

in spite of being a smaller-capacity model and trained on a mid-size dataset.

The scientific contributions derived from the work in this dissertation are summarized as follows:

1. A method to introduce a new inductive bias to vision transformers through self-attention

regularization based on the two-dimensional spatial distance between image patches, and a

new loss function, denoted distance loss.

2. A new inductive bias to vision transformers introduced via a self-attention regularization

method based on style similarity of distinct regions of an image, and a new loss function,
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denoted similarity loss.

3. ARViT, a reduced variant of the ViT [45], with changes inspired by the work of Chen et

al. [44]. ARViT has 6 encoder layers, 12 attention heads on each layer and 10M trainable

parameters, which is a considerably smaller capacity when compared with the original ViT.

4. ARViT is pre-trained using a self-supervised learning approach with rotation estimation as

a pretext-task [60], and evaluated on small benchmark downstream tasks, outperforming a

similar capacity variant of the ViT by large margins on all tasks (up to 23%).

5. The deployment of the two proposed self-attention regularization methods on ARViT resulted

in further marginal performance gains on all small benchmark downstream tasks (up to 13%).

1.5 Outline of the Dissertation

The work presented in this dissertation is divided into further 6 chapters. Chapter 2 describes

the necessary background of the work in this dissertation which includes deep learning, the

Transformer, inductive bias, model regularization and self-supervised learning. Furthermore, a

review of relevant related work in mitigating the vision transformers’ lack of inductive biases is

presented. Chapter 3 presents a comprehensive description of our two-dimensional distance based

self-attention regularization method, designed to introduce inductive biases to vision transformers.

Chapter 4 introduces the style similarity based self-attention regularization method, including the

intuition behind it, its algorithm and features. In Chapter 5, we introduce the newly proposed vision

transformer architecture, the Attention Regularized Vision Transformer (ARViT), in which our

self-attention regularization methods are deployed. Chapter 6 presents the experiments conducted

in this work, detailing the implementation details, the evaluation methods, and the results. Finally,

Chapter 7 provides the concluding remarks with suggestions for further work involving inductive

bias on vision transformers.
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Chapter 2

Background and Related Work

I think it’s much more interesting to live not knowing than

to have answers which might be wrong. I have approximate

answers and possible beliefs and different degrees of

uncertainty about different things, but I am not absolutely

sure of anything and there are many things I don’t know

anything about, such as whether it means anything to ask

why we’re here. I don’t have to know an answer. I don’t

feel frightened not knowing things, by being lost in a

mysterious universe...

— Richard Feynman

(Theoretical Physicist)

The work presented in this dissertation is contained within the field of deep learning, in the

intersection of the areas of computer vision, transformers, inductive bias and self-supervised

learning. In this chapter, basic concepts of the main areas of study relevant to this work are

introduced. In section 2.1, a basic background and fundamental concepts of deep learning are

presented. Section 2.2 briefly introduces the basic concepts of the transformer architecture, as well

as its application in computer vision tasks through vision transformers. Section 2.3 introduces

the fundamentals of inductive bias and its relevance in learning models. In section 2.4, the basic

concepts of regularization are also introduced, for they are a fundamental building block of the

method proposed in this research. Furthermore, in section 2.5, the self-supervised learning paradigm

and its main differences and similarities with other learning paradigms are described. Finally, in

section 2.6, relevant works related to the research presented in this dissertation are also briefly

introduced.
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2.1 Deep Learning

Deep Learning is a subfield of Machine Learning (ML), which by itself is a subfield of Artificial

Intelligence (AI). It concerns the study of computational models that employ multiple processing

layers to learn representations from data [1]. To create such computational models, these processing

layers are built on the fundamental principles of artificial neural networks (ANNs). Hence, their

denomination of Deep Neural Networks (DNNs) [2]. It has been more than 70 years since ANNs,

also known as neural networks, first appeared [3]. With little practical applications on the first

decades due to computational limitations, the research on neural networks gained new life with the

remarkable growth in the processing capacity of computers in the early 2000s, which enabled the

development of increasingly larger and more complex neural network architectures, giving birth to

the field of Deep Learning [4]. The applications of Deep Neural Networks achieved state-of-the-art

performance on a myriad of tasks across multiple areas, such as natural language processing (NLP)

[5–7], speech recognition [8–10] and computer vision [11–13]. In this section, a historical background

of Deep Learning and the basic concepts of DNNs are presented.

2.1.1 Historical background

In this section, a brief historical background of Artificial Intelligence, leading up to the advent

of Deep Learning is presented. The first part is focused on the historical background of artificial

intelligence, with emphasis on the aspects of philosophy, formal reasoning, logic and mathematics

that laid the foundations for the development of modern computation and artificial intelligence.

The second part of this section is focused on the two main approaches to AI — the symbolic

approach, and the connectionist approach.

2.1.1.1 Historical foundations

At the core of Artificial Intelligence is the belief that the process of human reasoning can be

reproduced by a machine. The study of mechanical reasoning, logic and the attempt to formalize

the human thought process dates back as nearly 2500 years [14], and methods to represent it have

been proposed and improved by philosophers over the years.

Philosophy and logic in China. The history of formal logic in China dates back to the Warring

States period (475-221 BCE), during which the Chinese philosopher Mozi founded the Mohist

school of thought and made significant contributions to the development of logic and reasoning

in China [15]. Mozi’s works emphasized the importance of impartial reasoning and argued for a

universal love for all beings. He also formulated the concept of reductio ad absurdum, a method of

proof by contradiction, which he used to criticize the claims of rival philosophers [16, 17].
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In the Han dynasty (206 BCE-220 CE), the philosopher Gongsun Long wrote the White Horse

Dialogue, which is considered one of the earliest examples of formal logic in China. The work explores

the concept of language and meaning and provides a systematic treatment of the relationship

between words and reality [18, 19].

During the Tang dynasty (618-907 CE), the development of formal logic in China reached new

heights with the works of logicians such as Zhang Zai, who wrote the Western Inscription and made

important contributions to the understanding of metaphysics and cosmology. Another notable

figure from this period was Wei Liaoweng, who wrote the Ten Problems, a collection of paradoxes

and logical puzzles that challenged the foundations of reasoning [18, 19].

In the Song dynasty (960-1279 CE), the development of formal logic in China continued with the

works of logicians such as Cheng Hao, who emphasized the importance of intuition and experience

in reasoning, and his brother Cheng Yi, who wrote the Greater Learning and developed a system

of moral reasoning based on the principles of Confucianism [16, 18, 19].

Philosophy and logic in India. Indian logic can be traced back to the early Upanishads, ancient

Hindu scriptures that contain philosophical discussions on knowledge and reality. The Nyāya school

of philosophy, which was established around the 2nd century BCE, made significant contributions

to the development of logic. Its founder, Aks.apāda Gautama, wrote the Nyāya Sutras, which lays

down the foundations of Nyāya philosophy and provides a systematic treatment of the nature of

knowledge, perception, inference, and fallacies [20, 21].

The Buddhist philosopher Dignaga, who lived in the 5th century CE, made important

contributions to the development of Indian logic and epistemology. He wrote several works,

including the Pramān. a-samuccaya, which is considered one of the earliest comprehensive treatments

of Indian logic [22]. Dignaga’s works emphasized the importance of perception and inference in

obtaining knowledge and introduced the concept of valid cognition, which refers to a cognitive state

that is free from error and establishes the nature of reality [22].

The development of Indian logic continued into the medieval period with the works of logicians

such as Bhartrhari and Uddyotakara, who wrote commentaries on the Nyāya Sutras and further

developed the Nyāya system of logic [20, 21].

Philosophy and logic in Greece. Ancient Greek philosophy and logic played a seminal role in the

development of Western philosophy and shaped the course of intellectual history for centuries to

come.

One of the most influential figures in ancient Greek philosophy and logic was Aristotle, who

was a student of Plato and a teacher of Alexander the Great. In his 350 BCE book Prior Analytics

[23], Aristotle formalized the definition of syllogism, which is a logical argument that reaches a
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conclusion by applying deductive reasoning over two presumably truth statements. A syllogism is

often presented in three arguments — two propositions and a conclusion — as follows:

All men are mortal,

All kings are men,

Therefore, all kings are mortal [24]

Fifty years after the publication of Prior Analytics, Euclid published the mathematical treatise

Elements [25], considered one of the most important works in the history of mathematics and one of

the earliest comprehensive treatises on the subject. Elements is organized into 13 books containing

mathematical and geometrical definitions, postulates, propositions, axioms and proofs, covering

a wide range of mathematical topics, including geometry, number theory, and incommensurable

magnitudes. It is considered one of the most influential models of formal reasoning in history [25].

al-Khwārizmı̄. al-Khwārizmı̄ was an Persian mathematician and astronomer who lived in the 9th

century CE. His works had a profound impact on the development of mathematics in the Islamic

world and beyond [17, 26].

One of al-Khwārizmı̄’s most famous works is the Book of Calculation, which introduced the

decimal system and the use of the Hindu-Arabic numeral system [27].

Another important work by al-Khwārizmı̄ is the Book of Algebra, which is considered one of

the earliest treatises on algebra. In this work, al-Khwārizmı̄ introduced the concept of algebra as

a branch of mathematics and provided solutions to a wide range of mathematical problems. He

also used algebra to solve practical problems, such as finding the value of unknown quantities and

solving equations [26, 28, 29].

William of Ockham. William of Ockham was a 14th-century English logician, Franciscan friar,

and theologian, being credited with the formulation of the principle of parsimony, also known as

Ockham’s Razor (commonly referred as Occam’s Razor), which states that, among competing

explanations, the simplest explanation is most likely the correct one [30–33].

In addition to his contributions to philosophy, William of Ockham made important contributions

to the development of logic, with his most famous work being Summa Logicae, a comprehensive

treatise on logic that covers a wide range of topics, including the nature of language, the theory of

meaning, and the rules of inference and syllogism. In this work, he provided a systematic account of

the principles of logic and the rules of reasoning, which had a profound impact on the development

of logic and the study of language [30–33].

Ramon Llull. Ramon Llull was a 13th-century Majorcan writer, logician, and Franciscan lay

brother who is considered one of the pioneers of computational theory. He is best known for his
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work in the field of logic and the development of a system of thought, known as the Ars Magna,

which aimed to provide a systematic method for combining ideas to generate new knowledge [34].

Llull’s Ars Magna was a form of combinatorial logic that used simple diagrams and symbols to

represent concepts and relationships between them. This system allowed for the manipulation of

these symbols to generate new combinations of ideas and, in theory, lead to new knowledge. The

Ars Magna was ahead of its time and paved the way for the development of modern computational

theory and artificial intelligence [34, 35].

Gottfried Wilhelm Leibniz. Gottfried Wilhelm Leibniz was a 17th-century German philosopher,

mathematician, and logician. He made significant contributions to a wide range of fields, including

mathematics, physics, metaphysics, and the history of philosophy [14, 36].

In mathematics, Leibniz is best known for his invention of calculus, which he developed

independently of Sir Isaac Newton. He also made important contributions to the development of

the binary system, which is the basis of modern computer science [14, 36].

In the field of logic, Leibniz was a proponent of the principle of non-contradiction, a central

tenet of classical logic, which states that, for any proposition, either it is true or its negation is

true, but not both. In other words, something cannot both be and not be at the same time and in

the same sense [14, 35–39] .

Leibniz saw the principle of non-contradiction as the foundation of all rational thinking, and

argued that it is necessary for making any meaningful statement or argument. Without the principle

of non-contradiction, it would not be possible to distinguish between truth and falsity, and all

reasoning and debate would be rendered meaningless [14, 40–43].

René Descartes. René Descartes was a 17th-century French philosopher, mathematician, and

scientist. Descartes attempted to rebuild knowledge from first principles by using the philosophical

method of systematic doubt. The aim of this method is to doubt all of one’s beliefs, including

one’s most basic assumptions about the world, until only indubitable truths remain. From these

indubitable truths, Descartes believed that all other knowledge could be deduced and built into a

complete system of knowledge [14, 44].

The method of systematic doubt is based on the idea that the only way to arrive at certain

knowledge is to begin by doubting everything, including one’s own senses and the beliefs handed

down by tradition. Descartes argued that this method of radical skepticism would allow him to

identify and eliminate false beliefs, and arrive at a foundation of indubitable truths [14, 44].

Descartes used his method of systematic doubt to challenge the foundations of traditional

Aristotelian philosophy, which he believed was based on uncertain and flawed foundations. He
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believed that by doubting everything, he could arrive at a new, more certain foundation for

knowledge that would not be based on uncritically accepted beliefs [14, 28, 44].

One of the most famous examples of Descartes’ method of systematic doubt is his argument

that he can be certain of his own existence, even though he may doubt everything else. He argued

that since he is able to doubt his beliefs, he must exist as a thinking being in order to do so. From

this indubitable truth, "Cogito, ergo sum" (I think, therefore I am), Descartes believed that he

could deduce all other knowledge and build a complete system of knowledge [14, 27, 44].

Thomas Bayes. Thomas Bayes was an 18th-century English statistician and theologian who

is best known for the proposition of the Bayes’ theorem [45], a mathematical formulation that

describes the relationship between the probability of an event and the prior probabilities of related

events.

The theorem is expressed mathematically as follows:

P (A|B) = (P (B|A) ∗ P (A))/P (B), (2.1)

where:

• P (A|B) is the probability of event A given that event B has occurred, known as the posterior

probability [45].

• P (B|A) is the probability of event B given that event A has occurred, known as the likelihood

[45].

• P (A) is the prior probability of event A, which represents our initial belief about the probability

of the event before taking into account any new information [45].

• P (B) is the marginal probability of event B, which represents the probability of event B,

regardless of whether event A has occurred or not [45].

Bayes’ theorem is particularly useful for dealing with problems where the information available

is limited and uncertain, as it provides a way to update one’s beliefs about the probability of an

event based on new information. It is currently applied in many different fields, including artificial

intelligence, computer science, economics and medicine [46–48].

More specifically, Bayesian methods are used extensively in machine learning, particularly in

Bayesian deep learning, which is a type of machine learning that incorporates Bayesian principles

into deep neural networks. In Bayesian deep learning, Bayes’ theorem is used to estimate the

probabilities of different model parameters given the data, and to make predictions about future

data based on these probabilities [46].
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Bayesian methods are also used in probabilistic graphical models [49], which are a type of

probabilistic model used in machine learning and artificial intelligence. In probabilistic graphical

models, Bayes’ theorem is used to calculate the probability of an event based on the relationships

between different events, which are represented as nodes in a graphical model.

Georg Cantor. Georg Cantor was a 19th-century German mathematician who is best known for

his work in the field of set theory and the foundations of mathematics [50].

One of Cantor’s most famous contributions was his development of the theory of infinite sets.

Prior to Cantor’s work, it was widely believed that there was only one kind of infinity, but Cantor

showed through his diagonalization proof that there are more real numbers than there are natural

numbers, and that therefore, there are different sizes of infinity and that some infinities were larger

than others [50]. This discovery had far-reaching implications for the foundations of mathematics,

causing controversy among mathematicians which were divided into formalists, who supported

Cantor’s proposition, and intuitionists, who opposed Cantor’s proposition.

George Boole. George Boole was an English mathematician and logician who lived from 1815 to

1864. He is best known for his work in developing a system of mathematical logic that would later

become known as Boolean algebra.

Boole’s work was motivated by the idea of using algebraic symbols and methods to represent

logical statements and to solve logical problems. He sought to create a system of symbolic logic

that would be similar to traditional algebra, but that would apply to logic instead of arithmetic

[51, 52].

In 1847, Boole published his first book, The Mathematical Analysis of Logic which introduced

the basic ideas of his system of symbolic logic. In this book, Boole used symbols to represent logical

concepts such as AND, OR, NOT, and IMPLIES, and he used algebraic operations to represent

the relationships between these concepts [52].

Boole’s work was widely influential, and his ideas formed the foundation for the modern field of

symbolic logic. In particular, his concept of a binary system, where logical values are represented

by either 1 or 0, has been fundamental to the development of digital computers, and it is still

applied to areas such as computer science, engineering, and artificial intelligence [51, 52].

Gottlob Frege. Gottlob Frege was a German philosopher and logician who lived from 1848 to

1925. He is considered one of the most important figures in the development of modern logic and is

often referred to as the "father of analytic philosophy."

Frege’s work was motivated by a desire to provide a foundation for mathematics that would be

based on logic. He saw that traditional logic was not well suited to this task, so he developed a new
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system of logic that came to be known as predicate logic, introduced in his book Begriffsschrift [53].

In this system, Frege introduced the concept of a function and a concept, which would later

become the basis for modern mathematical logic. He also introduced the idea of quantifiers, which

allow us to make general statements about all objects of a certain type [53–55].

Frege’s ideas had a profound impact on the development of modern logic and the foundations

of mathematics. In particular, his work provided a new way of looking at mathematical concepts

and paved the way for the development of modern set theory and model theory, still being widely

studied and applied in areas such as logic, mathematics, and computer science [54–56].

Bertrand Russell and Alfred North Whitehead. Bertrand Russell was a British philosopher, logician,

and mathematician who lived from 1872 to 1970. He is widely considered to be one of the most

important figures in the development of modern logic and analytic philosophy.

Russell’s work was motivated by a desire to provide a solid foundation for mathematics and to

understand the nature of knowledge and truth. He saw that traditional logic was not well suited to

this task, so he developed a new system of logic that was based on mathematical concepts and

methods [29].

Alfred North Whitehead was a British philosopher and mathematician who lived from 1861 to

1947. He is best known for his work in the foundations of mathematics, metaphysics, and process

philosophy.

Whitehead’s work in mathematics was inspired by his belief that mathematics was not just a

collection of symbols and formulas, but was a way of understanding the world. He was particularly

interested in the foundations of geometry and worked to provide a more intuitive and philosophical

understanding of mathematical concepts [57].

Together, Russell and Whitehead published their formal treatment of mathematical logic and

the foundations of mathematics, Principia Mathematica [58], consisting of three-volumes.

One of the key innovations of Principia Mathematica was the introduction of the concept of

a type theory, which separated mathematical concepts into different types based on their logical

properties. This idea was later adopted by computer scientists and is now a fundamental component

of modern type theory and programming languages [58].

The authors also introduced the idea of a logical atom, which is a basic proposition that cannot

be reduced to more fundamental propositions. The logical atoms were used to build more complex

propositions, and the authors showed how mathematical statements could be derived from these

basic propositions [58].

Furthermore, Russell also exposed the paradox of self-reference that arises in set theory and

logic, consisting of the assumption that a set of all sets that do not contain themselves can be

formed [58]. If this set is called R, then the following paradoxical situation arises:
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• If R contains itself, then by definition it is not a set that does not contain itself.

• If R does not contain itself, then by definition it is a set that does contain itself.

This paradox shows that basic assumptions about sets and their properties lead to a contradiction,

calling into question the foundations of set theory.

Russell’s paradox had a significant impact on the development of mathematical logic and set

theory, and led to the development of alternative foundations for mathematics, such as Zermelo-

Fraenkel set theory and type theory. These theories attempt to resolve the paradox by placing

restrictions on the formation of sets and introducing new concepts, such as "types" of sets, to avoid

the paradoxical situations that arise in traditional set theory.

David Hilbert. Following the impact of of Russell’s and Whitehead’s work, German mathematician

David Hilbert initiated an endeavour to prove whether all mathematical reasoning could be

formalized [38]. A formalist, Hilbert sought a more formal and rigorous system of mathematical

proof, based on set theory, and that could solve all the issues that had appeared in math over the

previous century.

Hilbert wanted to prove that the current mathematical system was complete, consistent and

decidable. By complete, Hilbert meant that every true statement could be proved. By consistent, he

meant that the mathematical system was free of contradictions. And by decidable, he meant that

there is an algorithm that can always determine whether a statement follows from the axioms [38].

Kurt Gödel. Kurt Friedrich Gödel was a logician, mathematician, and philosopher who proposed

two incompleteness theorems in the early 1930, demonstrating the inherent limitations of all formal

systems for mathematics, thus addressing the questions raised by Hilbert regarding completeness

and consistency [38, 59].

The first incompleteness theorem states that for any formal system powerful enough to describe

the basic properties of the natural numbers, there exist mathematical statements that can neither

be proven nor disproven within that system. In other words, any formal system that is powerful

enough to capture the essence of arithmetic will necessarily be incomplete in the sense that there will

always be some true mathematical statements that cannot be derived within the system [38, 60, 61].

The second incompleteness theorem states that if such a formal system is also consistent,

meaning that it does not allow for any contradictions, then it cannot prove its own consistency. In

other words, no formal system can prove its own consistency if it is indeed consistent. [38, 60, 61].

Alan Turing. Alan Turing was an English mathematician and computer scientist who is widely

regarded as one of the pioneers of theoretical computer science and artificial intelligence [57].

Turing’s most famous contribution to the field of computer science is his concept of the Universal

20



Deep Learning

Turing machine, a theoretical device that is considered to be the theoretical basis for modern

computers.

The Turing machine consists of an infinitely long tape, divided into cells, each of which can

contain a symbol from a finite alphabet. The machine also has a read/write head that can read

and write symbols on the tape, and a set of internal states that determine its behavior [62]. The

machine operates by following a set of rules, or a program, which specify what action it should

take based on the symbol it is currently reading and its current state [62].

The Turing machine is considered to be a universal model of computation, meaning that it can

perform any operation that is computable. This makes it a powerful tool for studying the limits of

what can and cannot be computed, and for understanding the nature of computation itself [62].

A system is considered Turing complete if it can perform any computation that can be performed

by a Turing machine. This is an important concept in computer science and the theory of

computation, as it provides a way of comparing and evaluating different computer systems and

programming languages [57, 62].

The connection between Turing machines and mathematical decidability lies in the idea that a

Turing machine can be used to determine whether or not a mathematical statement is true or false.

In other words, a Turing machine can be used to perform a proof of a mathematical statement by

following a set of rules to systematically determine whether the statement is true or false [57, 62]. If

the statement can be proven to be true or false by a Turing machine, then it is said to be decidable.

The concept of decidability is important in mathematical logic and the theory of computation,

because it provides a way of defining what is meant by a computable or solvable mathematical

problem. A problem is considered computable or solvable if there exists a Turing machine that can

determine its solution. It also has practical applications in the field of computer science, where it is

used to determine the limits of what can be computed and to design more efficient algorithms for

solving specific problems [38, 57].

Alan Turing is considered one of the most important founding figure in computer science. It

can be said that all modern computers descended from his designs. And, in part, Turing’s ideas

about computability came from Hilbert’s question on whether or not the systems of mathematics

were decidable.

2.1.1.2 The Symbolic and Connectionist approaches

The advancements in mathematical logic laid the foundations for artificial intelligence to be

developed, and the first modern computers emerged near the end of the first half of the 20th

century, with the colossal machines developed to perform code breaking during World War II [63–69].

Together with other discoveries made at the same time in neurobiology [70], Claude Shannon’s
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information theory [71, 72], and Alan Turing’s theory of computation [73, 74], researchers began to

contemplate the possibility of making an electronic brain [36, 75–78], with the first work recognized

as AI emerging with McCullouch and Pitts’ 1943 Turing-complete formal design of "artificial

neurons" [3].

Then, two approaches on how to develop AI begun to emerge from the 1950s — the Symbolic

approach, and the Connectionist approach. The main idea behind the Symbolic approach is to

develop a collection of high-level human-readable representations of problems, using tools such as

logic programming and production rules in order to automate a variety of tasks [79–81]. In other

words, the symbolic approach utilizes semantics and symbols to meaningfully model relationships

and create intelligent programs. The majority of the early progress attained in the AI field were

obtained through a symbolic approach [76, 82]. Nevertheless, the semantic nature of this approach

limited its use to tasks that could be modeled within that semantics [83]. In other words, only

tasks that could be addressed through human reasoning could be represented in a symbolic AI

program [75, 76, 84].

The connectionist approach, on the other hand, aimed to develop artificial intelligence through

learning [85]. Those who were adept to the connectionist approach were inspired by cognitive

science and the connection of human neurons [85], proposing a theory where signal processing occurs

simultaneously and distributively through numerical connections [86, 87]. In the connectionist

approach, learning happens by modifying the weights of the connections based on the data processed

by the model [88, 89]. Although is difficult to understand how they process information and to

obtain a high-level understanding, connectionist AI programs’ ability to be applied to a wide variety

of tasks, structural closeness to real neurons and minimal requirements for innate structure are

some of their main benefits [90–93]. Though the symbolic approach dominated the AI landscape for

a few decades after the 1950s, most of the recent AI systems are based on a connectionist approach,

such as deep learning based models [12, 13, 94–99] and a plethora of machine learning systems

[100–105].

Authors have compared the symbolic and connectionist approaches to the human mind and the

human brain, respectively [106]. Though there are inconsistencies in this comparison, it is capable

to underline the basic differences between both approaches. Mind is generally interpreted as an

expression of consciousness, intention, reasoning, logic and even emotion. Otherwise, the brain, in

this comparison, means the intricate network of neurons and electric impulses that sustains the

mind. Though the separation between mind and brain is still debated by diverse fields, such as

neuroscience, philosophy and religions [75, 76, 107, 108], such definition is out of the scope of this

research, and we adopted it merely from an allegorical perspective, indicating that the symbolic

approach, analog to the human mind, starts from high level concepts that are transferred to an AI
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program, whereas the connectionist approach, similarly to a human brain, starts from a low level

emulation of a brain that gradually learns to represent high level concepts.

In theory, by adopting a connectionist approach, with an immensely large network and huge

volumes of data, an AI functionality akin to human thinking can be attained [109–113]. However, in

spite of the tremendous success of connectionist models, especially with deep learning, some authors

argue that they lack in interpretability, pointing out to the potential consequences and dangers

that could arise from transferring decision making to AI systems that lack an understandable train

of logic [114–121].

Addressing such concerns are of immediate relevance, for AI systems are becoming increasingly

interlaced with the fabrics of society, by driving autonomous vehicles [122–125], making credit

decisions [126–130], tracking [131–133] and recognizing individuals [134–138], targeting personalized

marketing [139–141] and content [142–149], and impacting a myriad of areas, such as agriculture

[150–156], medicine and health-care [157–164], and the military industry [165–172]. Carl Sagan

stated that "One [danger] is... that we’ve arranged a society based on science and technology in

which nobody understands anything about science and technology, and this combustible mixture of

ignorance and power, sooner or later, is going to blow up in our faces" [173]. For a society reliant

on AI powered technologies, it is important to have a framework of logic, ethics and transparency

[174].

Recently, there has been an increase in researches that aim at combining both the power of the

connectionist approach and the logical framework of symbolism [175–179].

2.1.2 Basic concepts of Deep Neural Networks

Deep learning is a subfield of machine learning defined by the use of artificial neural networks

(ANNs) comprised by multiple layers. A neural network itself, is model in machine learning inspired

by the human brain and its biological network of neurons, and it is typically applied to address

tasks that are hard to be defined through a symbolic approach [3, 180, 181]. Neural networks are

considered to be universal approximators, meaning that they, depending on the amount of hidden

neurons and connections, are capable of approximating any function, no matter how complex

[182, 183]. The use of such "deep" neural networks was proven to be valuable on both regression

and classification problems, and being capable of extracting powerful features from inputs of diverse

natures, such as natural language, images, videos and sound. Usually, on a deep neural network

(DNN), the deeper the layer, the higher the level of the representation obtained [184]. In this section

we introduce the structure of an artificial neuron and some commonly used network architectures.
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Figure 2.1: Comparison between biological neuron and artificial neuron. Figure from
Karpathy et al. [186].

2.1.2.1 Artificial Neuron

Artificial neurons are the fundamental building block of artificial neural networks [185], and its

conception was inspired by the neurobiological understanding of human-brain neurons [3, 180, 181].

Figure 2.1 illustrates a comparison between a biological neuron and an artificial neuron. First,

in the biological neuron the dendrites are responsible for receiving signals from neighboring neurons.

At the artificial neuron, the signals from the neighboring neurons are mimicked by an input vector,

and the dendrites are represented by a weight vector that multiplies the inputs [187].

Secondly, the soma structure in a biological neuron has the function of adding the signals

received through the dendrites [187]. In the artificial neuron, the soma is represented as the

following summation function of all weighted inputs plus a bias:

n∑
i=1

(ωi, xi) + b, (2.2)

where n is the length of the input vector, ωi and xi are respectively the weight value and the input

value at position i, and b is a bias parameter.

Finally, at the right-most extremity of the biological neuron illustration, the region where the

synapses occur is depicted. The region between the soma and the synapses is denoted axon, and

it receives the signal from the summation occurred in the soma [187]. If the signal achieves an
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"activation potential", the axon will open and transmit it to other neighboring neurons via synapses.

In the artificial neuron, that "activation potential" is reproduced by an activation function (also

referred to as transfer function) that takes in the summed weighted input, and if activated, outputs

the value to be forwarded to the next hidden layer. It can be described as follows:

y = φ(
n∑
i=1

(ωi, xi) + b), (2.3)

where φ is the activation function and y is signal to be forwarded to the next hidden layer or as an

output.

Though originally the activation function was a linear threshold function, recently most ANNs

utilize nonlinear activation functions, such as the sigmoid function, the hyperbolic tangent function

and the rectified linear unit function (ReLU) [181, 188, 189].

2.1.2.2 Common network architectures

Over the years, several distinct DNN architectures have been developed, each one of them with

their respective set of inductive biases and preferred applications. Some notable DNN architectures

are:

• Multilayer perceptrons (MLP) [190]. Develop in 1958 by Frank Rosenblatt, it is pointed as

the oldest form of neural network;

• Convolutional neural networks (CNNs) [191]. A type of ANN that makes use of convolution

in at least one of their layers. They were originally designed to process image and video.

• Recurrent neural networks (RNNs). Based on 1986 Rumelhart et al. [192], they are a

category of ANNs characterized by its cycle like connections, where the output of certain

nodes influence subsequent inputs of the same node. RNNs are mostly used for sequential

data.

• Transformer [95]. A type o ANN that utilizes a self-attention mechanism in which the relation

between all elements in the input sequence is computed. Emerged from the natural language

processing context, it is now growing in popularity in the computer vision field as well.

2.2 The Transformer

The work of Vaswani et al., ‘Attention Is All You Need’ [95], describes the Transformer and and

its sequence-to-sequence architecture (or Seq2Seq), which transforms a given sequence of elements,

such as the sequence of words in a sentence, into another sequence.

Emerged from the context of Natural Language Processing (NLP), the transformer consist of

an Encoder and a Decoder. The former takes an input sequence and maps it into a n-dimensional
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space. The latter then takes the n-dimensional representation produced of the Encoder and turns

it into an output sequence. In the context o NLP, the input can, for example, be a sequence in a

given language, and the output can be the sequence translated to a different language.

At the core of transformer lies its self-attention module. Self-attention is an operation that

allows every element on the input sequence to interact with each other by computing their pairwise

attention scores. This allow the transformer to capture long range dependencies within the input

sequence, which is especially useful on NLP related tasks.

In this section, we describe the Transformer proposed by Vaswani et al. in his paper ‘Attention

Is All You Need’ [95], detailing its main components. We further introduce vision transformers,

which are variations of the transformer applied to computer vision tasks.

Figure 2.2: A basic diagram of the transformer [193].

2.2.1 The Transformer Architecture

The transformer is a DNN designed to take a sequence o feature vectors as an input, and to output

another sequence. Emerged from the natural language processing context, one simple application

example of the transformer would be machine translation, where a sentence in a given language is

forwarded as an input to the transformer, and a sentence in a different language is expected as an

output.

2.2.1.1 Encoder and Decoder

From a broader perspective, the transformer is composed of two distinct components connected

between themselves: an Encoder component, and a Decoder component. Between those two

components, information will only flow from the encoder to the decoder, as show in Figure 2.2.

The transformer encoder is composed of a stack of N encoder blocks (also referred to as encoder

layers). Similarly, the transformer decoder is composed of a stack of decoder blocks (or decoder

layers). The number of encoder blocks in the transformer encoder and the number of decoder

blocks in the transformer decoder should be the same. In the original Transformer proposed by

The work of Vaswani et al. [95], the number of encoder blocks and decoder blocks is of N = 6.
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Figure 2.3: The encoder-decoder architecture. Figure from Vaswani et al. [95].

Encoder blocks are typically identical in structure, with each of them being composed of at

least two basic components: a self-attention layer, and a position-wise fully connected feed forward

network [95]. In addition, a residual connection followed by layer normalization is placed around

both the self-attention layer and the feed forward layer. The structure inside an encoder layer

shown in Figure 2.3. In this basic setting, information coming to an encoder block would first be

processed by the self-attention layer, then forwarded to the feed forward layer.

A decoder block has a structure similar to that of the encoder block with only one extra layer to

computed self-attention over the output of the transformer encoder. This layer is inserted between

the self-attention layer and the feed forwards layer, and it also have a skip connection followed by

layer normalization around it, as displayed in Figure 2.3.

A complete view of the Transformer proposed by Vaswani et al. [95] is shown in Figure 2.4.

2.2.1.2 Self-attention

Self-attention (also denoted Scaled Dot-Product Attention) is at the core of the transformer,

being responsible for computing the pairwise relation between all elements in the input sequence.

According to Vaswani et al.[95], the role attention function introduced is to map a "query and set

of key-value pairs to an output." In this setting, Query, Keys, Values and output are all vectors.

Therefore, given an input sequence of length n, where xi is the i-th element on the input
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Figure 2.4: A diagram of the transformer displaying all the encoder layers and all the
decoder layers [193].

sequence (a feature vector), the first step in self-attention is to compute a Query vector, a Key

vector and a Value vector from each of the encoder’s input vectors. Namely, qi, ki and vi are Query

vector, a Key vector and a Value vector computed from xi.

In order to obtain qi, ki and vi, xi undergoes a matrix multiplication with three distinct weight

matrices — WQ, WK and WV , respectively — that are learned during training.

In the original paper, the length of xi is 512 and the dimensions of WQ, WK and WV are

512 × 64. The dimension of the query vector qi and the key vector ki is denoted dk, and the

dimension of the value vector vi is denoted dv. In the original paper, both dk and dv are equal to

64.

All query vectors, all key vectors and all values vectors for all elements in the input sequence are

respectively arranged into three distinct matrices, Q, K and V . Then, self attention is computed

as follows:

Attention(Q,K, V ) = softmax(QK
T

√
dk

)V. (2.4)

In practice, the dot product between Q and KT in Equation (2.4) is computing a score

representing the the pairwise relation between all elements in the input sequence. The division of

this dot product by
√
dk has the purpose of obtaining more stable gradients. The matrix resulting

from QKT /
√
dk then goes through a softmax layer to normalize all its values, so they are all

positive and add up to 1, to then finally undergo a dot product with the value matrix V . A
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visual representation of the self-attention computation is described in Figure 2.5, taken from the

Transformer original work [95].

Figure 2.5: Scaled Dot-Product Attention (Self-attention), where Q is the query matrix,
K is the key matrix and V is the values matrix. Figure from Vaswani et al. [95].

2.2.1.3 Multi-head attention

The Tranformer [95] further improved the self-attention mechanism by introducing the concept

of multi-headed attention. Multi-head self-attention means that, instead of performing a single

self-attention computation, the self-attention layer performs it h times in parallel, using different

queries, keys and values.

In other words, instead of containing a single set of parameter matrices (WQ, WK , WV ), the

self-attention layer is comprised of h sets (WQ
j , WK

j , WV
j ), where 1 ≤ j ≤ h. The output of each

attention head in then concatenated and projected through the dot product with with a parameter

matrix WO, as described in the following equation.

MultiHead(Q,K, V ) = Concat(head1, ...,headh)WO,

where headj = Attention(Qj ,Kj , Vj).
(2.5)

In this formulation, Qj , Kj and Vj are respectively the query, key and value matrices produced

by the dot product of the input sequence and WQ
j , WK

j and WV
j . In the original work h = 8. A
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illustrated representation of the multi-head self-attention computation is shown in Figure 2.6.

Figure 2.6: Multi-head self-attention computation. Figure from Vaswani et al. [95].

There are two main benefits from using a multi-head setup instead of a single self-attention

function. Firstly, it enhances the ability of the model to "focus" on different parts of the input

sequence. Secondly, it adds multiple representation subspaces to the model, thus improving the

overall model’s performance.

2.2.2 Vision Transformers

Over the course of the past decade, Convolutional Neural Networks (CNN) have dominated the

landscape of computer vision, introducing a new era in this domain of study [191]. Being specifically

designed for images, CNNs have strong inductive biases like translation invariance and locality

[194].

Still, in spite of its remarkable success, CNNs also have its shortcomings. For instance, its

design is domain-specific [195]. In other words, CNNs are not scalable to be domain agnostic.

Furthermore, due to the design of the convolution operation, though CNNs learn to represent image

features well, they lack a global understanding of the structural dependency between those features.

On top of that, CNNs are also computationally expensive models [196].

On recent years, the Transformer, which achieve remarkable results on the domain of NLP, has

also proven to be a reliable alternative to CNNs on computer vision related tasks [197, 198].
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The original Vision Transformer (ViT), by Dosovitskiy et al. [199], function by splitting an

input image into fixed-size patches, linearly embedding them, adding a positional encoding and

forwarding the resulting sequence to a Transformer Encoder.

Similarly to CNNs, the computational cost of the ViT is also high. More specifically, the cost of

self-attention is quadratic to the number of elements in the input sequence [199]. If each pixel of

an image were to be embedded as an individual element in the input sequence, then self-attention

would require each pixel to attend to every other pixel. Hence, the computational cost would

be very high and would not scale to realistic input size on environments with limited resources.

Thus, the input image is divided into patches and each patch is embedded as one element in the

input sequence, therefore reducing the computational cost at self-attention [199]. Hence, in the

self-attention layer, the pairwise attention score between each image patch is computed.

The ViT also adds an extra classification token to the patch embedding at the start of the

sequence [199]. This token is ultimately used to perform the classification task at the model head

(MLP with one hidden layer at pre-training time and a single linear layer for fine-tuning).

The Transformer Encoder itself consists of a set of encoder layers, each containing the following:

1. Multi-Head Self Attention Layer (MHSA) that concatenates the multiple attention outputs.

The multiple attention heads enables the learning of both local and global dependencies in

the image.

2. Multi-Layer Perceptrons (MLP) with two layers and Gaussian Error Linear Unit (GELU).

3. Two steps of Layer Norm(LN), applied before the MHSA layer and the MLP, respectively.

The role of the layer norm is to improve both training time and generalization performance.

4. Residual connections subsequent to the MHSA layer and the MLP, enabling the gradients to

flow through the network directly without passing through non-linear activations.

With this design, global features are learned at the higher encoder layers of the ViT, whereas at

the lower layers, both global and local features are learned, allowing the ViT to learn more generic

patterns [199].

Following the success of the ViT, many variations of vision transformers were proposed in the

literature, tackling a myriad of tasks in the computer vision field.

2.2.2.1 Self-attention in Vision Transformers

Unlike the natural language processing domain, in the vision transformers, the input is not naturally

a one dimensional sequence. Instead, an image is typically divided into a set of N two dimensional

patches, and for each patch a linear encoding is produced. Those linear encodings are then arranged

into a one-dimensional sequence and supplemented with an addition positional encoding (either
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learned or fixed), with the goal of preserving the two-dimensional information between the patches

[199].

The multi-head self-attention layer computes the attention map A, a N ×N matrix containing

pairwise relation between all patches. It is worth noting that the attention map A is not the final

product of the self-attention layer, it is instead, a intermediate computation of that layer. More

precisely, it is the matrix resulting from the following computation:

AttentionMap(Q,K) = softmax(QK
T

√
dk

). (2.6)

where Q and V are the queries and keys matrices, respectively. In other words, it the matrix

obtained after the softmax computation and prior to the dot product with the with the values

matrix V described in Equation 2.5. A scheme of an attention map A is shown in Figure 2.7.

A1,1 A1,2 A1,3 A1,N

A2,1 A2,2 A2,3 A2,N

A3,1 A3,2 A3,3 A3,N...
...
...

..
.

..
.

..
. ... ..
.

AN,1 AN,2 AN,3 AN,N...

Attention map A

N

N

*N = number of image patches
Figure 2.7: The Attention map A. It expresses the pairwise self-attention between all
patches in a given input image. A row in A, for example A1, indicates the self-attention
between patch x1 and all other patches. Image by the author.

Any given row Ai ∈ A indicates the self-attention score between the i-th patch and all other

patches. To better visualize which patches are being attended by an specific patch, and to perform

a qualitative inspection of the attention map, each row in A can be individually reshaped to

two-dimensions, as shown in Figure 2.8.
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Figure 2.8: A real attention map A, computed from an input image X. On the right side,
a example of the attention map reshaped to 3 dimensions — meaning that individual
rows in A are being reshaped to 2 dimensions — in order to perform a qualitative analysis
of the attention map. Image by the author.

2.3 Inductive Bias

In machine learning problems — and by consequence, in deep learning problems — choosing a

model with the appropriate induction biases is crucial in the pursue for better generalization [200].

In short, inductive biases are the set of assumptions inherent to a model’s architecture that favors

certain solutions (combination of weight values) in detriment of others. In this section, we briefly

describe the basic concepts of inductive bias, from the logical perspective of inductive reasoning,

the role of inductive bias in machine learning, and finally the inductive biases of CNNs and vision

transformers.

2.3.1 Inductive reasoning

Humans can induce a number of hypothesis given a single observation. For example, on the

observation showed in Figure 2.9, if one would consider a scenario where the observer is travelling

Japan for the first time in his life, and the temple on the photo is the first temple he has seen

since arriving in Japan, he could draw a number of hypothesis based on that single observation.

For example, he may assume the hypothesis that all temples in Japan are golden, or that all are

located in the nature, or even that all are surrounded by a lake. This process of hypothesizing a

general rule from examples is denoted inductive reasoning (or inductive inference) [201], and it

starts with one observation (eg. a temple in Japan), and leads to a generalization hypothesis.

As showed by the example on Figure 2.9, it is possible to define a set of hypotheses based on a

single observation. Nevertheless, one of the main properties of inductive reasoning is that a valid

observation may lead to different hypothesis, which can be either true or false [202].

The biggest challenge of inductive reasoning is how to select a single hypothesis. Returning to
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Figure 2.9: Hypothesis describing an observation. Image by the author.

the example on Figure 2.9, one way to select an hypothesis would be to select the simplest one:

There are temples in Japan. This hypothesis is the simplest because it adds no extra constraints

based on properties of the observation, such as color, nature and lakes. In other words, it is a

simple generalization.

This method of selecting a hypothesis is denoted “Occam’s razor” [203, 204]. It derived from a

philosophical perspective and can be viewed as a basic inductive bias, for it determines that the

simplest hypothesis that describes an observation should be chosen.

These processes of inductive reasoning are a fundamental and ubiquitous component of intelligent

behavior. Formal studies of these processes raised a number of questions, which however are out of

the scope of this work [201].

2.3.2 Inductive biases in Machine Learning

In Machine Learning (ML) tasks — and Deep Learning tasks — a model is trained on a subset

of observations with the goal of creating a generalization rule from them [200]. Ideally, this

generalization rule has to be valid for both seen and unseen data. That is to say, the goal is to

obtain a rule that works for the whole population from a limited sample. In that scheme, the set of

observations is the training dataset, and the hypotheses are the ML algorithm and all parameters

that can be learned.

However, there is a infinite number of hypothesis for a finite number of examples, and choosing

one hypothesis over another without a set a assumption would be extremely difficult. The

prioritization of a set hypotheses (restriction of hypothesis space) is denoted inductive bias.

Choosing the model with the appropriate induction bias for the task at hand leads to better

generalization, especially in a low data setting. The less training data, the stronger inductive biases
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should be so the model can better generalize on unseen data. Contrarily, in a rich data setting, it

may be preferable to avoid strong induction biases to allow the model to be less constrained and

search through the hypothesis space freely [205, 206].

2.3.3 Inductive biases on CNNs

The remarkable success of CNNs on computer vision are often attributed to its inductive biases.

Inductive biases like locality and weight sharing are biases specific to CNNs architecture. Locality

implies that pixels spatially close to each other are related. Weight sharing implies that the search

for specific patterns should be processed the same way on different parts of an image. Furthermore,

the inductive biases of translation invariance and translation equivariance can be introduce by

either using pooling layers or not, respectively [207].

2.3.4 Inductive biases on vision transformers

Transformers lack strong inductive biases, on one hand allowing them to search the hypotheses

space more freely while on the other making them more data-hungry models [208, 209]. Therefore,

on a data rich setting, vision transformers can find a better optimum, outperforming CNNs on

several tasks [210–213]. Nevertheless, such vision transformers perform poorly on low data settings,

and the injection of inductive biases might provide advantages to these models [214].

2.4 Regularization

In machine learning, regularization can be defined as a method that aims to restrict the hypothesis

space, thus changing the resulting solution. It is commonly used to prevent overfitting during

training and/or to improve the results on ill-posed problems [2, 215].

Regularization techniques can be roughly divided into two categories: explicit and implicit.

The former refers to the practice of adding a regularization term to the objective function of a

machine learning problem. The regularization term, also referred to as penalty term, has the

function of imposing a cost to objective function being optimized, constraining the hypothesis

space towards solutions that achieve an optimum trade-off between the objective function and

the regularization term [216]. It is mostly used to improve the optimization of ill-posed problems.

Implicit regularization, on the other hand, encompasses all the remaining forms of regularization. In

this section, we introduce the basic concepts of explicit regularization, as well as its most commonly

known techniques.
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2.4.1 Explicit regularization

In machine learning, the objective of a classifier C, for example, is to correctly classify any given x.

In order to do so, the classifier C attempts to approximate the function the best classifies any x by

reducing a loss function given a limited set of training examples, as described in Equation (2.7).

min
C

n∑
i=1

L(C(Xi), yi), (2.7)

where C is the classifier’s function, L is the loss function, and Xi and yi are the input data and its

corresponding label.

Commonly, the way explicit regularization works is by adding a regularization term P to the loss

function, with the purpose of imposing a penalty to the loss computation [215, 217], as described

in Equation (2.8).

min
C

n∑
i=1

L(C(Xi), yi) + λP (C), (2.8)

where P is the regularization term and λ is a hyperparameter assigned to control the trade-off

between the loss of predicting C(x) and the penalty imposed by P (C). The penalty is often

computed as a product of the complexity of the classifier’s weights and biases. In practice,

regularization terms that penalize a function based on the complexity of their parameters can be

interpreted as a method to enforce the Occam’s razor inductive bias, by making simpler solutions

more favorable through a smaller penalty [215, 218]. Nonetheless, from a Bayesian perspective,

depending on what definitions are specified at the regularization term, it can be interpreted as a

way of favoring certain prior distribution on model parameters [219]. Two regularization techniques

widely used are the Tikhonov regularization [218] and the Lasso regularization [217], in which the

former adopts the L2-norm of the model’s weights vector as a penalty term, and the latter takes

the L1-norm of the model’s weights vector as a regularizer.

Aside from the effect of imposing certain prior distributions on a model, another application

of regularization methods is reducing overfitting [219]. In other words, models can benefit from

regularization to generalize better on unseen data.

2.5 Learning paradigms

Deep learning is a large field whose core is a neural network algorithm. The size of the neural

network is determined by millions or even billions of trainable parameters [2]. Nevertheless, in spite

of the neurobiological inspiration of DNNs, the sample efficiency in deep learning is much smaller

than in humans or animal [220]. In other words, much more trials are necessary for a machine to
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learn something when compared to a human. One of the main reasons for that, is that humans are

able to draw background knowledge about the world, which allows them to learn new tasks much

quicker than machines [221].

In this section we present more information about the performance gap between learning in

humans and in machines, while briefly introducing the main learning paradigms of deep learning,

with a focus on the self-supervised learning paradigm, which is adopted in this research.

2.5.1 Supervised Learning

Though supervised-learning has notably been the most explored learning paradigm, it often require

large amounts of labeled data to train systems for specific use cases [215]. One could interpreted

supervised learning as analogous to a classroom where the model is a student which is "taught" by

a teacher through annotated examples.

In supervised learning, given a deep neural network E, an algorithm aims at finding a function

f (combination of weights parameters in E) in a given hypothesis space F , such that f : X 7→ Y ,

where X and Y are the input and the output space, respectively.

In a training set o N examples, a single data sample is a denoted (xi,yi), where xi and yi is are

respectively the input data (i.e., feature vector) of the i-th example and its corresponding label.

Then, the learning happens by updating the the weight values in f using a gradient-based

method in order to minimize a specified loss function L, as described in equation (refeq:supervised).

min
f

N∑
i=1

L(f(Xi), yi). (2.9)

Up to now, most of the practical success in machine learning were attained through supervised

learning. Its main applications in computer vision include image classification [13, 222, 223],

object detection [12, 224–227], image segmentation [228], face recognition [229–231], person re-

Identification [138, 232, 233], motion tracking [131–133], image colorization [234, 235] and image

generation [236, 237]. Nevertheless, one of the main drawbacks in supervised learning is that it

usually requires too many samples to predict a very small amount of information [220].

2.5.2 Reinforcement Learning

Reinforcement learning is a method used to train AI agents to learn environment behavior in

specific contexts using reward feedback policy [238]. In other words, in reinforcement learning,

unlike supervised learning, the feedback loop does not provide a correct answer to the model,

instead, it just provides a signal of how good or bad the model’s inference was.
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Though reinforcement learning has proven to be great to perform tasks that can be simulated,

such as games, the amount of trials necessary to achieve high levels of performance on those tasks

is very high. For instance, using reinforcement learning, a machine might need as much as 80 hours

to learn to play an Atari game to the same level a human would take only 15 minutes [239]. In

Tian et al. [240], 20 million self-play games (running on 2000 GPUs for 14 days) were necessary to

teach a machine to play the game Go at e world class level, which is in practice, many more games

than any human can perform within a lifetime. Another study showed that, through reinforcement

learning, a machine took an equivalent of 200 years of play time in order to learn how to play the

game Starcraft at a high level [241]. Furthermore, another research using reinforcement learning

took the equivalent of 10,000 years of simulation for a machine to learn how to solve the Rubik’s

cube [242].

The greatest drawback of reinforcement learning is that it requires too many trials, and in the

real world that might not be a feasible possibility, since it is not possible to run the real world

faster than real time [220]. Moreover, when applying reinforcement learning in the real world,

unlike simulated environments, the negative signal for bad assumptions made by a model is also

accompanied by real world consequences. For instance, a self driving car can cause an accident if

learning in the real world. Therefore, reinforcement learning for real-life tasks often require "real

world level" simulations.

2.5.3 Self-supervised learning

In 2019, Yann LeCun raised the question of how do humans and animals learn so quickly [238].

Infants are capable of learning a diverse spectrum of concepts, from language to intuitive physics,

just by observing the world around them [243, 244]. For instance, Figure 2.10 illustrates the time

line of the development of certain language skills on infants. At as early as 4 months of age, infants

are capable of distinguishing vowels and even proper names. With 6 months of age, babies can

perceive frequent words and typical consonants. And at 12 months they are already capable of

producing their first words.

Moreover, Figure 2.11 displays the same timeline view regarding the learning of intuitive physics

concepts. For instance, infants learn about object permanence by 3 months old, and are able to

understand how gravity works by 9 months old.

Studies indicate that infants are capable of learning how the world works by observation [221].

The concept of learning is often connected to the ability to predict [238]. Prediction is the essence

of intelligence, and humans learn models of the world by predicting [238]. In other words, humans

develop a model of the world that allows them to predict the consequences of their actions.

One example, is the fact that humans can are capable to learn how to drive reasonably well in
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Figure 2.10: Studies illustrating the timeline of language development on infants. Boxes
above the timeline indicate perception skills, and boxes bellow the timeline indicate
production skills. The left edge of each box is aligned to the earliest age at which the
result has been documented. Figure by Emmanuel Dupoux [243].

about 22 hours of practical training, mainly because of their background knowledge [245]. On the

other hand, autonomous vehicles can take hundreds of thousands of hours on simulators to achieve

a similar skill level [220].

In the context of deep learning, self-supervised learning can also be interpreted as learning by

prediction [220]. In other words, it is not focused on learning a task, like classifying objects or

segmenting a sentence. Self-supervised learning aims at learning the structure of the world just by

observing the world, or as LeCun stated, self-supervised leaning aims to "predict everything from

everything else" [238].

When compared to other learning paradigms, the main difference of self-supervised learning is

the amount of feedback information received by the model at every trial. As described by LeCun

(2019) [238], in reinforcement learning, the model is trained to predict a scalar reward amounting

for only a few bits of information. In supervised learning, the machine attempts to predict a piece

of human supplied data, such as categories or sequences. In this case, the amount of feedback

information is usually within the range of 10 to 10,000 bits per trial. Finally, on self-supervised

learning, the model is trained to predict any part of its input that has been omitted from it, such as

words in a sequence, a region of an image, or future frames in a video. Therefore, on self-supervised
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Figure 2.11: Landmark of intuitive physics acquisition in infants. Each box is an
experiment showing a particular ability at a given age. Figure by Ronan Riochet [244].

learning, the feedback information typically amounts to millions of bits per sample.

Therefore, self-supervised learning (SSL) can be defined as the paradigm where the model trains

itself to learn one part of the input — which is, by design, omitted during training — from another

part of the input [246, 247]. Hence, it is also commonly referred to as predictive or pretext learning.

From a practical point of view, in this process, an unsupervised problem is transformed into

a supervised problem through the labels that were generated from the input data. This method

is also useful to take advantage of large quantities of unlabeled data [246]. However, its success

is highly dependent on setting the right learning objectives in order to obtain strong supervised

signals from the input data itself [248].

SSL first became popular in natural language processing (NLP) [249–253] and recent studies

in computer vision tasks showed that it can be competitive with or even outperform supervised

methods that used fully manually annotated datasets [254–259].

The process of the SSL method is to identify an hidden part of the input from any unhidden

part of the input. The design of which information from the inputed data is omitted to be used as

a label, and which information is used for training denotes a pretext text.

Over the past few years, several pretext-tasks have already been proposed in computer vision,

such as image colorization [260–262], rotation estimation [263], inpainting (Figure 2.12) [264, 265],

exemplar [266] and relative patch position [267].

Currently, one of the most successful approaches in SSL is pre-training a model using pretext-tasks
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[268], then transferring the trained model to a supervised downstream task [269].

Figure 2.12: Semantic Inpainting results for context encoder trained jointly using
reconstruction and adversarial loss. First four rows contain examples from Paris
StreetView Dataset, and bottom row contains examples from ImageNet. Figure by
Pathak et al. [265].

2.6 Related work

Emerged from natural language processing (NLP), the Transformer [95] is capable of computing

the relationship between all elements in a given input sequence. Following the success in NLP, it

has also achieved remarkable results in the field of computer vision by addressing diverse tasks

such as recognition and classification [210, 211], detection [212] and segmentation [213].

When using the Transformer in NLP, a linear embedding, denoted as token, is generated

from each word in the input sentence. Then, as the Transformer processes a given token in the

sequence, self-attention takes information from all other tokens as well [95]. Hence, self-attention

is a global operation, and by directly applying it to an image, Transformers processes it as a one

dimensional sequence of embeddings of pixels. Therefore, in spite of its ability to capture long-range

dependencies, the Transformer inherently lacks some inductive biases that efficiently aggregate

contextual information, which is attributed to CNNs’ success through translation equivariance and

locality [208, 209].

By training on large-scale datasets and with longer training schedules, the vision transformer

(ViT) proposed in Dosovitskiy et al. [199] overcame the architecture’s lack of inductive biases,

achieving excellent results on benchmark image recognition tasks. Considering its 3 variants (ViT-
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Base, ViT-Large and ViT-Huge), the ViT ranges from 86M to 632M parameters, and state-of-the-art

results were obtained when pre-training on the ImageNet-21k with 21k classes and 14M images

[270], and the JFT-300 with 18k classes and 303M images [271]. Therefore, both the model capacity

and the amount of training data impose a high computational cost.

Other works with vision transformers have both directly and indirectly dealt with its lack

of inductive biases. Chu et al. [272] proposed a conditional positional encoding (CPE), which

is dynamically generated and conditioned on the local neighborhood of the input tokens, which

assisted in maintaining the desired translation-invariance in image classification tasks. In order to

introduce CNNs’ inductive biases into vision transformers, the combination of self-attention with

convolution layers was also proposed in several works [273–275]. The LocalViT [276] introduces

locality in vision transformer by adding a depth-wise convolution into the feed-forward network.

The Conformer [277] fuses local features and global representations under different resolutions. The

work of Touvron et al. [278] proposed to distill convolved knowledge by using a CNN model as a

teacher network. Other works explored adding inductive biases by applying self-attention to local

neighbors [211, 279]. In the work of Han et al. [280], self-attention is not only computed globally

between image patches, but also locally, between smaller sub-patches inside each image patch.

Inductive biases can also be introduced in vision transformers through adaptations and

modifications to its architecture. The LeViT, by Graham et al. [281], takes inspiration on

the success of CNNs to introduce convolutional components to the transformer, replacing the

column-like structure of the Transformer with a pyramid-like structure with pooling. The Pyramid

Vision Transformer (PVT) [282] is also a progressive shrinking pyramid style transformer which

reduces the computations of large feature maps. On the PVT, unlike regular vision transformers,

for each query, self-attention is computed only with a sampled version of the input tokens. The

Swin Transformer [283] uses a hierarchical representation that starts from small-sized patches

which are gradually merged with their neighboring patches in deeper transformer layers. Then,

self-attention is computed only on non-overlapping spatially grouped patches, in a approach that

helps to introduce the inductive biases of locality, hierarchy and translation invariance [284, 285].

The Twins, proposed by Chu et al. [286], brings on advantages of both CPE and PVT to devise

two novel spatial designs for vision transformers. Furthermore, the Vision Transformer Advanced

by Exploring intrinsic Inductive Bias (ViTAE) introduces intrinsic scale invariance through a series

of spatial pyramid reduction modules combined with multiple convolutions with different dilation

rates, thus obtaining robust feature representation for objects at various scales [209].
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Chapter 3

Two-dimensional distance based
Self-attention regularization

In opposition to the foolish ignorabimus our slogan shall be:

"We must know - we will know!"
—David Hilbert

(Mathematician)

A computer would deserve to be called intelligent if it could

deceive a human into believing that it was human.
—Alan Turing

(Mathematician and Computer Scientist)

This chapter presents a new self-attention regularization method designed with the purpose of

introducing a new inductive bias on vision transformers. This method is based on the pairwise two-

dimensional distance between image patches, which is measured through the Manhattan distance.

Section 3.1 introduces the conception of the method. Two basic concepts of vision transformers are

introduced in section 3.2. Section 3.3 details the assumption made by this method. Section 3.4

formally describes the two-dimensional distance based self-attention regularization method. And

finally, section 3.5 presents a summary of this method.

3.1 Conception of the method

Regularization is a technique in machine learning that has been utilized for decades with the purpose

of reducing overfitting and improving a model’s generalization [1]. In practice, regularization can

also be interpreted as a mean to restrict the hypothesis space by penalizing certain solutions, thus

favoring certain prior distributions on model parameters [2]. A typical approach to regularization

Parts of the content of this chapter were previously published in Mormille et al., 2022 (see Appendix C)

58



Basic concepts of vision transformers

is to add a regularization term (penalty term) to the objective function of a machine learning

problem, as shown in Equation (3.1).

min
C

n∑
i=1

L(C(Xi), yi) + λP (C), (3.1)

where and Xi and yi are the input data and its corresponding label, C is the objective function, L

is a loss function, P is the regularization term and λ is a hyperparameter assigned to control the

trade-off between the loss of predicting C(X) and the penalty imposed by P (C).

Therefore, the goal of the regularization term is to, based on a criteria, impose a cost (penalty)

to the objective function being optimized. By controlling the trade-off between the objective

function and the regularization term, solutions that would eventually result in a high penalty are

avoided, creating a inductive bias towards solutions that result in smaller penalties [3].

One common approach to regularization is that in which the regularization term P penalizes

solutions based on the complexity of their parameters, which can also be seen as a method to enforce

the Occam’s razor inductive bias [1, 4]. The Tikhonov regularization and the Lasso regularization

are two popular methods to penalize solutions based on the complexity of their parameters, with

the former taking the L2-norm of the model’s weights vector as a penalty term [4], and the latter

taking the L1-norm of the model’s weights vector as a penalty term [5].

Nevertheless, the regularization method presented in this chapter proposes not to restrict the

hypothesis space based on the complexity of the solution. Instead, it favors certain solutions in

detriment of others based on assumptions. In other words, an assumption (or set of assumptions)

about the problem’s solution is translated into a computer program encapsulated by a regularization

term to be added to machine learning’s objective function, as shown in Figure 3.1.

This method takes partial inspiration from the Symbolic approach to Artificial Intelligence (AI),

in which high level symbolic representations of formal reasoning are passed down to an AI system.

However, this method is not considered a combination of the symbolic and connectionist approaches,

since a symbolic representation of an assumption is not forcibly imposed on a solution. Instead, it

is merely used to introduce a bias in a learning system that can still explore the hypothesis space

for the best possible solution, as shown in Figure 3.2.

3.2 Basic concepts of vision transformers

Before introducing the assumptions translated into a regularization term in this proposed method,

we introduce two fundamental concepts of vision transformers that are at the core of that assumption:

image patches and attention maps.
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Figure 3.1: Illustration of the method’s conception process. The left side shows a machine
learning problem, where a neural network is trained set of training data to optimize a
certain objective function (loss function). On the right side, an assumption over the
problem’s solution is made and formalized in the form of a regularization term to be
added to the objective function. In this scheme, L is the objective function; C is the
network; xi and yi are the i-th sample and its respective label; n is the size of the training
set; P is the regularization term; and λ is the hyperparameter used to control de trade-off
between loss function and penalty. Figure by the author.

Figure 3.2: On the left side: illustration of the hypothesis space of a machine learning
problem. On the right side: the hypothesis space limited by an inductive bias. The line
representing the inductive bias is dashed to indicate that, although the inductive bias
make certain solutions more preferable, it is still possible for a model to converge to a
minimum outside that space. Ideally, the optimal solution would be inside the hypothesis
space a model is biases towards, but that is not always the case.

3.2.1 Image Patches

Transformers are designed to receive a one-dimensional sequence of feature vectors as input.

Nevertheless, images are typically represented in a two-dimensional arrange of pixels with three

color channels. Though an intuitive approach to tackle this apparent "incompatibility" between
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images and transformers would be to flatten an image’s pixels into one dimension and to compute

a linear embedding for each pixel, two limitations arise from this approach.

Firstly, similarly to CNNs, the computational cost of the transformer is also high, and the cost

of self-attention, particularly, is quadratic to the number of elements in the input sequence [6].

Therefore, if each pixel were to be individually embedded, then every self-attention layer on the

transformer would require each pixel to attend to every other pixel. Hence, even in a low resolution

image, the computational cost of self-attention would be enormously high, impacting its usage on

environments with limited resources. The second limitation is that, by flatting two-dimensions into

a single one, the information of the 2D relation between each pixel is lost.

To deal with the first challenge, a common approach in vision transformers is to first, split an

input image into same-size two-dimensional patches; then to compute a linear embedding for each

patch; and finally to rearranged those patch embeddings into a one-dimensional input vector [6].

In this research work, we follow this approach and split an input image X ∈ R3×H×W into N

patches, where (H, W ) are the height and width of a 3 channels image. A patch is denoted as

xn ∈ R3×C×C , and (C, C) is the resolution of each patch, as shown in Figure 3.3.

Figure 3.3: Illustration of an image with three color channels being divided into a set
of patches with resolution (C,C). In this example, the total number of patches N = 64.
Figure by the author.

Afterwards, a linear embedding is computed from each patch. Those linear embeddings are

then arranged in a sequence compatible with the transformer. Furthermore, in order to deal with

the loss of information on the pairwise 2D relation between image patches, we adopt a standard

practice on vision transformers, which is to supplement each individual embedding with a positional

61



Method’s assumption

encoding [6]. 1

3.2.2 Attention maps

At the core of the Transformer [7] is its self-attention mechanism, which is also called Scaled Dot-

Product Attention. As describe in section 2.2.1.3, the multi-head self-attention (MHA) layer of an

encoder is responsible for computing the pairwise relation between all elements of the transformer’s

input sequence. The input of vision transformers is typically a sequence of linear embeddings of

images patches, as described in section 3.2.1. Therefore, the self-attention layer of the encoder layer

computes the pairwise self-attention score between all image patches [8].

To perform self-attention, three parameter matrices are learned per attention-head. They are

the denoted WQ, WK and WV and each of them produces a different representation from the

input sequence — the query matrix Q, key matrix K and the value matrix V , respectively [7].

Then, from these representations, self-attention is computed as described in Equation (2.4).

The attention map A is an intermediate output of the self-attention layer (Eq. 2.6), and in vision

transformers, they express the pairwise self-attention scores between all image patches. Therefore,

the attention map A is a N ×N matrix-like representation containing the pairwise relation between

all elements in a given input sequence.

As shown in Fig. 3.4, we refer to the attention map produced by an encoder layer as A ∈ RN×N ,

where N is the number of patches into which an image is divided. A row An ∈ RN contains the

pairwise self-attention between patch xn and all other patches [9].

3.3 Method’s assumption

In this self-attention regularization method, an assumption about the learning problem is derived

from a logical perspective and translated into a regularization term to be added to machine learning’s

objective function.

The assumption is that a pair image patches that, from a two-dimensional perspective, are

close to each other should typically present a higher self-attention score between them than a pair

patches that are spatially distant to each other.

Figure 3.5 exemplifies the simple idea behind this assumption. First, there is a small 2D distance

between the pair of patches highlighted near the top left corner of the image. Therefore, the

self-attention scores between them is expected to be high. In contrast, the 2D distance between the

other highlighted pair of patches is significantly large. Hence, the self-attention scores between

them is expected to be small.

1For more details on the linear embeddings and the positional encoding, please refer to Chapter 5.
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Figure 3.4: Overview of the attention map computation. First, an input image X is
divided into N patches (in this example N = 64); Then, a linear embedding is computed
for each patch; Then a sequence of embeddings is forwarded to the first of L encoder blocks
(layer), with the subsequent encoder blocks always receiving the output of the previous
one; at the MHA layer of each encoder block, an attention map A, with dimension N ×N ,
is computed. The attention map A expresses the pairwise self-attention between all
patches in a given input image. A row in A, for example A1, indicates the self-attention
between patch x1 and all other patches. Image by the author.

Figure 3.5: Example of the expected attention scores according to the assumption made
by this regularization method. Image by the author.

In this method, a novel regularization term in the form of a loss function is devised, and it

is denoted distance loss. The distance loss formalizes the logic of this assumption, and acts as a

regularization term added to the vision transformer’s loss function, where it penalizes solutions

based on the pairwise two-dimensional distance between image patches and the respective self-

attention scores between them. By penalizing a solution based on the attention-maps, the learning
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of weights in the WQ, WK and WV parameter matrices of a regularized layer is expected to be

biased towards solutions that reduce the penalty imposed by the distance loss.

3.4 Method

We describe our self-attention regularization method based on the 2D spatial distance between image

patches, and the regularization term denoted Distance Loss, designed for the vision transformer

encoder. The Distance Loss penalizes the self-attention computation between image patches based

on the Manhattan distance between them. The intuition behind it is that the more spatially distant

two image patches are, the greater the penalty attributed over self-attention computation. In this

section, we introduce the method and its specific elements.

3.4.1 Penalty Matrix

Firstly, we introduce the first two elements of this method: the distance matrix D, containing

the pairwise Manhattan distance between all image patches2; and the penalty matrix P , obtained

directly from D and whose role is to impose a penalty on self-attention computation between each

pair of patches based on their respective Manhattan distances.

The distance matrix D is computed as follows. First, the pairwise Manhattan distance between

all patches is computed and arranged on a distance matrix D. A row Dn ∈ D indicates the pairwise

Manhattan distance between a patch xn and all other patches. Therefore, D has dimensions N ×N ,

and it is a hollow and symmetric matrix, with all of its off-diagonal entries being positive. That is,

∀n ∈ N : Dn,n = 0, ∀n,m ∈ N : Dn,m = Dm,n, and ∀n,m ∈ N : Dn,m > 0 if n ̸= m. An overview

of the distance matrix computation is shown in Fig. 3.6, with the example of an input image

divided into 9 patches.

After computing the distance matrix D, the penalty matrix P can be obtained directly from it.

More specifically, each element Pn,m ∈ P is obtained through the following equation:

Pn,m =
Dn,m − maxDn

α√
(Dn,m − maxDn

α )2 + β
, (3.2)

where Dn,m ∈ D is the element in nth row and the mth column of the distance matrix and maxDn

is the maximum value in the row Dn. Moreover, Equation (3.2) is a function with two horizontal

asymptotes controllable through hyperparameters α ≥ 1 and β > 0.

An example of the computation of a single element P1,2 ∈ P through Equation (3.2) is shown

in Figure 3.7. In it, in prder to compute P1,2 ∈ P , equation (3.2) takes the element in D at
2The Manhattan distance is the distance between two points measured along axes at right angles.
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Figure 3.6: Overview of the computation of the distance matrix through the example of
an image divided into 9 patches. The pairwise Manhattan distance is computed between
all patches then arranged in a distance matrix D. A row in D, for example D1, indicates
the Manhattan distance between patch x1 and all other patches.

the corresponding position, which in this case in D1,2, as well as the maximum value at the

corresponding row in D, which in this case is D1.

Figure 3.7: Example of computation of a single element P1,2 ∈ P through Equation (3.2).
Image by the author.

The penalty matrix P maintains the same dimensions as D, which is N × N . Furthermore,

P is still symmetric, since ∀n,m ∈ N : Pn,m = Pm,n. However, it is neither hollow and it migh

present negative values. More specifically, when Dn,m, which is the manhattan distance between

patches xn and xm, is smaller than maxDn
α , the computed value for Pn,m is negative. Still, the fact

that Equation (3.2) is a function with two horizontal asymptotes defined through hyperparameters

allows for the control of the values contained in P .

When introduced to the distance loss, the penalty matrix P can be interpreted as a matrix

containing the pairwise penalty factor between all image patches, which are used to impose a cost

on self-attention computation. For instance, Pi,j ∈ P expresses the factor used to penalize the
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self-attention score between image patches xi and xj .

3.4.2 Loss Computation

The distance loss, that acts as a regularization term when added to the network objective function,

is computed over 2 elements: the attention map A, and the penalty matrix P .

For N image patches into which an input image X is divided, at the MHA layer of the encoder

layer, the attention map A ∈ RN×N , containing the pairwise self-attention between all patches is

computed, as described in section 3.4.2. Furthermore, as described in section 3.4.1, the penalty

matrix P ∈ RN×N is obtained.

Then, the distance penalty lX for a single image X can be computed through the following

total sum of the pointwise product of the attention map A and the penalty matrix P :

lX =
N∑
n=1

N∑
m=1

An,m × Pn,m, (3.3)

where N is the number of patches, A is the attention map and P is the penalty matrix. A visual

representation of this process is also shown in Figure 3.8. It is possible to notice that for any pair

n,m ∈ N , a position An,m ∈ A represents the self-attention score between patches xn and xm.

Similarly, a position Pn,m ∈ P represents the 2D-distance based penalty score between patches xn

and xm. Hence the pointwise product between A and P .

However, because there is the possibility of the penalty matrix P (computed in Equation (3.2)),

presenting negative values, when obtaining lX through the summatory of the pointwise product

between P and A described in Equation (3.3), there is also the possibility that lX can eventually

result in a negative value. Thus, to avoid the scenario where a negative penalty is obtained (which

would constitute a reward), lX undergoes the following conditional:

l∗X =


lX , if lX ≥ 0

0, otherwise.
(3.4)

Then, the distance loss — which is the regularization term — over a set of I training examples

can be computed as follows:

LD =
I∑
i=1

log (l∗Xi + 1). (3.5)

Finally, with the regularization term, the last step of the process is to add it to the vision

transformer’s objective function. Typically, a network like the vision transformer is trained to

address a given task by minimizing a loss function LT described as:
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Figure 3.8: Visual representation of the computation the distance penalty lX for a single
input image X through Equation (3.3). Image by the author.

LT =
I∑
i=1

Lt(E(Xi), yi), (3.6)

where Lt is any loss function suitable to the task, E is the network, I is the number of training

examples, and Xi and yi are the input and the label, respectively.

The distance loss LD defined in Equation (3.5) is added to LT where it acts as a self-attention

regularizer, and the total regularized loss is obtained from LT and LD as follows:

LR = LT + λLD, (3.7)

where λ > 0 is a hyperparameter assigned to control the balance between LT and LD. An overview

of the loss computation is shown in Figure 3.9. The penalty matrix P is pre-computed once before

training and can be used for all training examples, and the Attention map A is extracted from the

encoder layer being regularized.
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Figure 3.9: Overview of the regularization method on a vision transformer. The penalty
matrix P and the attention map A are used to computed the distance loss, which acts as
a regularization term when added to the vision transformer’s objective loss. The penalty
matrix P is pre-computed prior to training the model. The attention map A is extracted
from an encoder layer.

3.5 Summary

Without modifying the global self-attention computation, the proposed distance loss encompasses

the assumption made by this method, and acts as a self-attention regularizer when minimized

alongside the vision transformer’s objective function. The main assumption of the this method

is that, the larger the distance between two patches xn ∈ X and xm ∈ X, the smaller should be

their self-attention scores, and therefore, the greater the penalty attributed over self-attention

computation. In other words, minimizing the distance loss induces an attention map A to present

low values in positions where the penalty matrix P presents high values. Hence, inductive bias is

induced on self-attention maps by minimizing the distance loss.
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Chapter 4

Style similarity based Self-attention
regularization

You don’t have to be a mathematician to have a feel for

numbers.
—John Nash

(Mathematician)

Science is not only compatible with spirituality; it is a

profound source of spirituality.
—Carl Sagan

(Astronomer, astrophysicist, astrobiologist, author, and

science communicator)

This chapter, similarly to chapter 3, presents a novel self-attention regularization method with

the objective of introducing a new inductive bias on vision transformers. In this method, the

regularization is carried out based on the pairwise style similarity between image regions, which

are measured using the mean square error (MSE) between regions gram matrices. Section 4.1

briefly introduces the background of the method. Two newly introduced concept of image region

is described in section 4.2. Section 4.3 introduces the assumption made by this method. Section

4.4 formally describes the style similarity based self-attention regularization method. And finally,

section 4.5 presents a summary of this method.

4.1 Background

This self-attention regularization method shares the same conception as the method presented in

section 3.1. In this method as well, the goal of devising a regularization term is to, based on a

assumption, impose a penalty on the objective function being optimized. Then, by controlling

Parts of the content of this chapter were previously published in Mormille et al., 2023 (see Appendix D)
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the balance between the objective function and the regularizer, solutions whose combinations of

parameters result in a high penalties are avoided, thus creating a inductive bias towards solutions

that result in smaller penalties. In other words, in this method as well, a assumption is translated

into a computer program that acts as a regularization term to be added to a machine learning’s

objective function.

Furthermore, two basic concepts of vision transformers — image patches and attention maps

— are a central part of this method as well. A formal definition of image patches is presented in

section 3.2.1, and a description of attention maps and how they are obtained in presented in section

3.4.2.

4.2 Image regions

In this method, we introduce a the concept of image regions. In concept, image regions are akin to

image patches, and they can be defined as a two-dimensional slice of an image with three color

channels. Moreover, all image regions are set to have the same dimensions.

Regarding image patches, this method adopts the same definition presented in section 3.2.1,

where an image X ∈ R3×H×W is divided into Npatches, and (H, W ) are the height and width of a

3 channels image. Furthermore, an individual patch is denoted as xn ∈ R3×C×C , and (C, C) is the

resolution of each patch [1].

The definition of image regions is very similar, with an input image X ∈ R3×H×W being

divided into R regions, where an individual region xr ∈ R3×G×G is a 2D slice of the input image

with 3 channels and resolution (G, G).

A very important aspect of image regions, is that their resolution G has to be an integer multiple

of C (where C is the resolution of the image patches). An illustration of both image regions and

patches is shown on Figure 4.1.

4.3 Method’s assumption

In this region similarity based self-attention regularization method, an assumption about the learning

problem is made and translated into a regularization term to be added to vision transformer’s

objective function.

The assumption is that a pair image patches that have a similar style should typically present a

higher self-attention score between them than a pair patches that have seemingly different styles.

Therefore, the intuition behind this self-attention regularization method is that high self-attention

values between two image patches with a similar style representation should result in a small loss;
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Figure 4.1: Illustration of image regions and image patches on the same three color
channels image. Image regions are represented in blue color, and have resolution (G,G).
Image patches are represented in white, with resolution (C,C). In this example, G = 2×C,
and the total number of regions is R = 16, and the total number of patches is N = 64.
Figure by the author.

while high self-attention values between two patches whose style representation are very distinct

should result in a high loss.

There are two key aspects to this assumption. The first is about how to represent style on an

image. To address that, we take inspiration on Gatyl et al. [2] style representation of an image. In

this work, the gram matrix of an image’s representation is used to capture its style and subsequently

recreate it on a different image. Therefore, to represent the style of an image with three color

channels, this method also adopts the use of gram matrices.

The second key element of this method is the granularity in which the style representation is

obtained. A straightforward approach would be to compute the style of every image patch xn ∈ X

and then to compute the pairwise similarity between the styles of each patch. Nevertheless, in

order to experiment with different levels of granularity without having to alter the resolution of the

image patches, the concept of image region described in section 4.2 was introduced and henceforth,

a style representation is computed for each individual image region xr ∈ X.

The resolution of an image region G has to be equal to a multiple of the patches resolution C. So,

if for example, the patch resolution is C = 16, then the region resolution has to be G = 16, 32, 48...

We define this relation as G = ω ×C, where ω ∈ Z and ω ≥ 1. Therefore, because of the condition,
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it is guaranteed that each region will contain at least on image patch within itself and a patch will

always be part of one and only one region.

The assumption of this method is that, image patches contained in regions with similar style

representations are imposed a small penalty on their self-attention scores. Whereas image patches

contained in regions with very distinct style representations are imposed a high penalty on their

self-attention scores. Furthermore, patches contained within the same image region are not imposed

any penalty on their self-attention scores whatsoever. In other words, the assumption is that

patches contained in regions with similar style are expected to have high self-attention scores

between them, while patches contained in regions with seemingly different styles are expected to

present low self-attention scores between them. An illustration of this assumption through three

pair of image patches is shown in Figure 4.2.

Figure 4.2: Example of the expected penalties on self-attention scores through a
regularization term deploying the assumption of this method. In this example, three pair
of patches are compared based on the style of the image regions containing them. Image
by the author.

In this method, a novel regularization term in the form of a loss function is devised, and it is

denoted similarity loss. The similarity loss formalizes the logic of this assumption, and acts as a

regularization term added to the vision transformer’s loss function, where it penalizes solutions

based on the similarity of the style representation between image patches and the respective

self-attention scores between them. By penalizing a solution based on the self-attention scores

produced by the MHA layer, the learning of weights in the WQ, WK and WV parameter matrices

of a regularized layer is expected to be biased towards solutions that reduce the penalty imposed
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by the distance loss.

4.4 Method

We describe our self-attention regularization method based on style similarity, and the regularization

term denoted Similarity Loss, designed for the vision transformer encoder. The Similarity Loss

penalizes the self-attention score between image patches based on the Mean Square Error (MSE)

between the style representations of the image regions that contain them. The intuition behind this

method is that, the more similar the style of two regions are, the higher the self-attention scores

between patches contained in them should be. Contrarily, the least similar the style of two regions,

the smaller the self-attention scores between patches contained in them should be. In this section,

we introduce the method and its specific elements.

4.4.1 Similarity matrix

Firstly, we introduce the first element of this method: the similarity matrix S, containing the

pairwise similarity between regions in an input image. In order to compute the similarity between

two regions xr ∈ X and xs ∈ X, we propose a distance function based on the Gram matrix which

was introduced as an image style representation in Gatys et al. [2].

The correlation between the three color channels of each individual region is obtained by

computing its gram matrix. The gram matrix of an individual patch xr ∈ R3×G×G is denoted

7→ gr ∈ R3×3 and can be obtained through the following matrix multiplication:

gr = xr∗⊤xr∗, (4.1)

where xr∗ ∈ R3×G2 is obtained by flattening each color channel in a region xr. The gram matrix

gr is a style representation of the image region xr.

After the style representation (gram matrix) for all individual image regions is obtained, in order

to assemble the similarity matrix S, the pairwise mean square errors between all gram matrices are

taken, its values are then normalized and then arranged to create the similarity matrix S ∈ RR×R.

In short, S contains the pairwise style similarity between all image regions. An overview of the

computation of the similarity matrix is shown in Figure 4.3. It shows that, first, each individual

image region xr ∈ X is mapped to a style representation gr through the computation of their gram

matrix. Then, the MSE score between each pair of image regions is computed and arranged in

the similarity matrix S. The similarity matrix S has resolution (R,R), where R is the number of

image regions. Furthermore, ∀r, s ∈ R: leqSr,s = MSE(gr, gs). Also, since the MSE scores were

normalized, ∀r, s ∈ R: 0 ≤ Sr,s ≤ 1.
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Figure 4.3: Overview of the computation of the similarity matrix S. An image is divided
into fixed-size regions; the gram matrix of each individual region is computed; then a
similarity matrix S containing the pairwise mean square errors between all gram matrices
is built. S is a symmetric non-negative hollow matrix.

Since the similarity between the styles of any two regions xr and xs is taken using the mean

square error, it means that, the higher the MSE score between them, the less similar they are.

Furthermore, S is a hollow matrix and all the off-diagonal entries are positive, that is, ∀r ∈ R:

MSE(gr, gr) = 0, and ∀r, s ∈ R: (Sr,s > 0 if r ̸= s). Moreover, S is also symmetric, that is,

∀r, s ∈ R : Sr,s = DSs, r.

4.4.2 Self-attention matrix

The second element introduced in this method is the self-attention matrix Msa. The self-attention

matrix is obtained directly from the attention map A, which is accessed at the multi-had attention

(MHA) layer of each encoder layer. The process of obtaining the self-attention matrix Msa can be

interpreted as scaling the attention map A to match the dimensions of the similarity matrix S.

An attention map produced by the MHA layer of an encoder layer is denoted as A ∈ RN×N ,

where N is the number of patches into which an input image X is divided. The attention map is a

2-dimensional matrix-like representation of the self-attention scores between all possible pairs of

patches in the input sequence. A is non-negative, but unlike the similarity matrix S, it is neither

hollow nor symmetric.

An overview of the encoder layer and the attention map is shown in Figure 4.4. A row An ∈ RN

indicates the pairwise self-attention scores between patch xn and all other patches. For a better

visualization of the attention map, each row in A can be reshaped into 2 dimensions so that a set of

N two-dimensional attention maps {Ai : i = 1...N} is obtained, as further depicted in Figure 4.4.

The self-attention matrix Msa ∈ RG×G is computed by scaling-down the dimensions of an

attention map A ∈ RN×N to match the dimensions of the similarity matrix S ∈ RG×G.

The intuition behind this process is to aggregate the self-attention scores between pairs of
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Figure 4.4: In an encoder block (also referred to as encoder layer), the attention map A
for a given input image is generated by the multi-head attention (MHA) layer. It can be
interpreted as a matrix containing the pairwise self-attention value between all patches
from the input image. Every row in A can be further reshaped and visualized as an
individual 2D attention map.

patches contained in the same region through a average pooling operation. However, in order to

perform this operation, simply applying a single average pooling operation of kernel and stride

equal to ψ = ⌊G/P ⌋ would result in aggregations between pair of patches contained in different

regions.

Therefore, in order to obtain the self-attention matrix Msa, a 10-step process is required,

involving operations such as reshaping, permutation, normalization and two average pooling

operations with a kernel and stride size ψ = ⌊G/P ⌋.

The 10 steps to encode the self-attention matrix Msa for an input image X ∈ R3×H×H divided

in to N patches with resolution (C,C), and R regions of resolution (G,G), are as follows:

1. 1st step - to access the attention map A ∈ RN×N at the MHA layer of the encoder layer;

2. 2nd step - to reshape the attention map A from 2 dimensions (N ,N) to 3 dimensions,

obtaining A2 ∈ RN×
√
N×

√
N .

3. 3rd step - to perform an average pooling on A2 with kernel and stride of ψ = ⌊G/P ⌋,

resulting in A3 ∈ RN×
√
N
ψ ×

√
N
ψ .

4. 4th step - to reshape A3 from 3 dimensions (N,
√
N
ψ ,

√
N
ψ ) back to two dimensions, obtaining

A4 ∈ RN× N
ψ2 .

5. 5th step - to permute the two dimensions of A4, obtaining A5 ∈ R
N
ψ2 ×N .

6. 6th step - to reshape A5 from 2 dimensions ( Nψ2 , N) to 3 dimensions, obtaining A6 ∈

R
N
ψ2 ×

√
N×

√
N .
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7. 7th step - to perform an average pooling on A6 with kernel and stride of ψ = ⌊G/P ⌋,

resulting in A7 ∈ R
N
ψ2 ×

√
N
ψ ×

√
N
ψ .

8. 8th step - to reshape A7 from 3 dimensions ( Nψ2 ,
√
N
ψ ,

√
N
ψ ) back to two dimensions, obtaining

A8 ∈ R
N
ψ2 × N

ψ2 .

9. 9th step - to permute the two dimensions of A8, obtaining A9 ∈ R
N
ψ2 × N

ψ2 .

10. 10th step - to normalize all values in A9 to be between 0 and 1, thus obtainingMsa ∈ R
N
ψ2 × N

ψ2 ,

where N
ψ2 = R.

For a better comprehension on how to compute Msa from A, the 10 steps are depicted through

an example in Figure 4.5, with an input image with resolution (3x256x256), P = 16, G = 32, and

ψ = 32/16 = 2. In this example, the input image is divided in N = 256 patches and R = 64 regions,

resulting in A ∈ R256×256 and Msa ∈ R64×64.

Figure 4.5: Overview of the 10-step computation of the self-attention matrix Msa

demonstrated through an example; (0) input image X ∈ R3×256×256 is divided into
256 patches with resolution (16,16) and 64 regions with resolution (32,32); (1) the first
step is to compute the attention map A ∈ R256×256; (2) A is reshaped to 3 dimensions
of 256 × 16 × 16; (3) an average pooling with kernel and stride ψ = ⌊32/16⌋ = 2 is
performed, reducing the resolution of the representation on the latter two dimensions;
(4) the representation is again reshaped to two dimensions of 256 × 64; (5) and its two
dimensions are permuted; (6) again, the representations is reshape to three dimensions of
64 × 16 × 16; (7) and an average pooling operation reduces the resolutions of the latter
two dimensions; (8) the representation is again reshaped to two dimensions of 64 × 64;
(9 and 10) and finally, Msa ∈ R64×64 is obtained by permuting back the two dimensions
and normalizing the values of the representation. Image by the author.

In summary, the self-attention matrix Msa is a scaled-down version of the attention map A

to match the dimensions of the similarity matrix S. One important observation is that, in case

G = P , it is not necessary to scale-down A through the aforementioned 10-step, and Msa = A.
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4.4.3 Loss Computation

The similarity loss, that acts as a regularization term when added to the network objective function,

is computed over 2 elements. The self-attention matrix Msa ∈ RR×R, introduced in section 4.4.2,

and obtained from the attention map A ∈ RN×N . The second element and the similarity matrix

S ∈ RR×R, described in section 4.4.2, and containing the pairwise style similarity between image

regions.

The similarity penalty for a single training example X is computed from the total sum of the

pointwise product between the similarity matrix S and the self-attention matrix Msa. It is denoted

lSX and is expressed as follows:

lSX =
R∑
r=1

R∑
s=1

Msar,s × (Sr,s + ρ), (4.2)

where R is the number of regions an image is divided into, and ρ ≥ 0 is a distance bias

hyperparameter, whose purpose is to control the learning process. A visual representation of

this process is also shown in Figure 4.6. It is possible to notice that for any pair r, s ∈ R, a position

Msar,s ∈ Msa represents an aggregation of self-attention scores. Similarly, a position Sr,s ∈ S

represents the style-similarity penalty weight between regions xr and xs. Hence the pointwise

product between Msa and S.

Figure 4.6: Visual representation of the computation the similarity penalty lSX for a
single input image X through Equation (4.2). Image by the author.
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Then, the Similarity Loss over a set of I training examples can be computed as follows:

LS =
I∑
i=1

log (lSXi + 1), (4.3)

Finally, with the similarity loss LS — which is the regularization term — defined, the last step

of the process is to add it to the vision transformer’s objective function. Commonly, a network

such as the vision transformer is trained to address a task by minimizing a loss function, which we

denote LT , and describe as:

LT =
I∑
i=1

Lt(E(Xi), yi), (4.4)

where Lt is any loss function suitable to the task, E is the network, I is the number of training

examples, and Xi and yi are the input and the label, respectively.

Finally, the similarity loss LS (Eq. 4.3) is added to the task loss LT (Eq. 4.4), acting as a

self-attention regularizer restricting the hypothesis space by penalizing solutions that produce high

self-attention values between patches within regions whose gram matrices’ distance is large. Hence,

the total loss:

LR = LT + λLS , (4.5)

where the hyperparameter λ > 0 is used to control the trade-off between the task loss LT and the

similarity loss LS .

An overview of method is displayed in Figure 4.7. Unlike the penalty matrix P used at the

two-dimensional distanced based regularization, that can be pre-computed once before training

and used for all training examples (Section 3.4), a similarity matrix Si has to be computed for each

individual training example xi during the forward pass. Furthermore, the self-attention matrix

Msa is computed from the attention map A extracted from the encoder layer being regularized.

4.5 Summary

To summarize, without altering self-attention, which remains a global operation, the proposed

similarity loss captures the assumption made in this method, acting as a self-attention regularizer

when minimized together with the vision transformer’s objective function. The logic behind this

method is that, the more distant the style of two regions xr and xs), represented by their gram

matrices gr and gs, the greater the penalty attributed on the similarity loss over the self-attention

scores between two patches xn and xm, located in xr and xs respectively. Therefore, the similarity

loss acts as a self-attention regularizer that induces the self-attention matrix Msa to present low

values in positions where S presents high values, and vice-versa. Hence, an inductive bias derived
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Figure 4.7: Overview of the style-similarity based self-attention regularization method
with the Similarity Loss.

from an assumption is induced on the vision transformer through minimizing the similarity loss.
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Chapter 5

ARViT: Attention Regularized Vision
Transformer

If you wish to make an apple pie from scratch, you must
first invent the universe.

— Carl Sagan
(Astronomer, astrophysicist and science communicator)

The first principle is that you must not fool yourself and
you are the easiest person to fool.

— Richard Feynman
(Theoretical Physicist)

In order to achieve state-of-the-art performance, vision transformers often tend to be composed by
large scale architectures, with hundreds of millions of trainable parameters. Such characteristic
derives mainly from their inherent lack of inductive biases. However, training such large models
might hinder their use on environments with limited resources. Therefore, adapting the vision
transformer to be able to learn good representations with a smaller capacity architecture might open
new possibilities. In this chapter we introduce Attention Regulated Vision Transformer (ARViT), a
proposed variant of the ViT [1], with significantly less trainable parameters and changes inspired
by the work of Chen et al. [2]. In section 5.1 we introduce the ViT by Dosovitskiy et al. and in
section 5.2 we describe ARViT’s architecture.

5.1 The ViT Architecture

On recent years, the Transformer [3] achieved remarkable results on the domain of natural language
processing and has also proven to be a reliable alternative to CNNs on computer vision related
tasks [4, 5].

The original Vision Transformer (ViT) was introduced by Dosovitskiy et al. [1] in the
groundbreaking work "An Image is Worth 16x16 Words: Transformers for Image Recognition
at Scale". As overview of the ViT architecture is shown in Figure 5.1.

The original Transformer [3] takes a one-dimensional sequence of token embeddings as input.
To encode two-dimensional images, the ViT first split the images into a set of N patches of equal
resolution (P ,P ). The number of patches N also indicates the length of the Transformer input
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Figure 5.1: The Vision Transformer architecture. Figure from Dosovitskiy et al. [1]

sequence. The sequence of N patches is flattened and embedded to D dimensions through a linear
projection. The output of the linear projection is denoted patch embeddings [1].

An additional learnable embedding is then attached to the patch embeddings. This extra
embedding is denoted class embedding and its output state is solely forwarded to the model’s head
to perform classification both during pre-trainig and fine-tuning [1].

Furthermore, the patch embeddings are supplemented by position embeddings to preserve
positional information. The ViT uses learnable position embeddings. Then, the sequence of
embeddings is forwarded to the transformer encoder as input [1].

The "backbone" of the ViT architecture consists solely of a transformer encoder with L layers.
Each encoder layer consists of: a Multi-Head Self Attention Layer (MHSA), that concatenates
the multiple attention outputs; a Multi-Layer Perceptron (MLP) with two layers and Gaussian
Error Linear Unit (GELU); two steps of Layer Norm, applied before the MHSA layer and the MLP,
respectively; and residual connections subsequent to the MHSA layer and the MLP [1].

Finally, the classification head is a MLP with one hidden layer during pre-training, and a single
linear layer during fine-tuning. The ViT head takes only the output state of the lass embedding to
perform classification [1].

In their work, Dosovitskiy et al. [1] proposed three variants of the ViT. The first one is the
ViT-Base, with 12 encoder layers, 12 attention heads per layer, hidden dimension D = 768 and 86
million trainable parameters. The second variant is denoted ViT-Large, with 24 encoder layers,
16 attention heads per layer, hidden dimension D = 1024 and 307 million trainable parameters.
Finally, the third variant is denoted ViT-Huge, with 32 encoder layers, 16 attention heads per layer,
hidden dimension D = 1280 and 632 million trainable parameters [1].

5.2 ARViT’s architecture

5.2.1 Motivation

In spite of the remarkable success of the ViT, its architectures and variants have some limitations.
Possibly the largest one regards the high computational cost associated with the large capacity
of the networks [1]. Since the cost of self-attention is quadratic to the number of elements in the
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input sequence, having a large number of MHA layers with, each with large number of attention
heads, scales to hundreds of millions of trainable parameters.

Another limitation pointed at by the work of Dosovitskiy et al. [1] is the lack of inductive biases
on the ViT. This allows the ViT to thrive once pre-trained with over tens of millions of images
with datasets like theImageNet-21k, with 21k classes and 14M images [6], and the JFT-300 [7],
with 18k classes and 303M images. However, due to the lack of inductive biases, the ViT struggles
when pre-trained on mid-size datasetes, like the ImageNet dataset with approximately 1.3 million
images [8].

Therefore, motivated by those two limitations of the ViT, this research work introduces ARViT
— the Attention Regularized Vision Transformer. The main objectives of ARViT are to, first, provide
a smaller capacity vision transformer which is still capable of performing well on classification
downstream tasks. And secondly, ARViT is developed to deploy the self-attention regularization
methods proposed in Chapter 3 and Chapter 4. Therefore, ARViT aims at both reducing the
computational cost associated with vision transformers and to tackle their inherent lack of inductive
biases.

5.2.2 Architecture

The backbone architecture of our Attention Regulated Vision Transformer (ARViT) can be
interpreted as a reduced version of the ViT [1] with changes inspired by the work of Chen
et al. [2]. An overview of ARViT’s architecture is displayed in Figure 5.2.

5.2.2.1 Modification 1

ARViT follows the approach of Dosovitskiy et al. [1] of splitting an input image X ∈ R3×H×W into
N patches with resolution (C, C), where (H, W ) are the height and width of a 3 channels image.
However, the first modification of ARViT in relation to the ViT comes both on the method used
split the image into patches, as well as the way to encode the patch embeddings.

Inspired by the work of Chen et al. [2], ARViT splits the input image into patches and encode
the patch embeddings in a single operation — a convolution with kernel size C × C, stride equals
to C and output channels equal to D. With this set up, the area of of each patch is convolved to
a spatial size of 1 × 1 with D dimensions. Then, the 3D output of the convolution operations is
flattened into a sequence of N patch embeddings.

5.2.2.2 Modification 2

The second modification in comparison to the ViT comes in regard to the position embeddings.
While the ViT uses learnable position emebddings [1], ARViT patch embeddings are supplemented
with fixed 2D sinusoid position embeddings.

5.2.2.3 Modification 3

The third modification of ARViT in relation to the ViT was also inspired by Chen et al. [2]. In its
architecture, the ViT attaches a class embedding to the input sequence, and the state of this class
embedding at the output of the encoder serves as the only image representation used by the model
head to perform classification. On ARViT, the class embedding is removed, and the model head
utilizes the representations encoded for all embeddings in the input sequence.
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Figure 5.2: ARViT architecture overview. ARViT splits the input image into N patches
and encode the patch embeddings with a convolution operation with kernel size C×C and
stride size C. ARViT flattens the patch embeddings into a sequence supplemented with
position embeddings before forwarding the input sequence to the Transformer encoder.
The Transformer encoder is composed of six encoder layers, and the output of the last
layer is fed to the model head. Image by the author.

5.2.2.4 Modification 4

The fourth modification is made inside the encoder layer. On the ViT, the encoder layer is formed
by a MHS layer, a MLP with one hidden layer, two steps of Layer Norm, and residual connections
subsequent to the MHSA layer and the MLP [1]. On ARViT, we replace the MLP with one hidden
layer with a single fully connected layer.

5.2.2.5 Modification 5

The fifth and final modification is directly related with the model’s capacity. ARViT scales down
the number of encoder layers, attention heads and hidden dimensions. The ViT variants can have
between: 12 and 32 encoder layers; 12 to 16 attention heads; and 768 to 1280 hidden dimensions.
ARViT, however, reduces the number of encoder layers to 6, maintains the number of attention
heads at the ViT lower limit of 12, and reduces the hidden dimensions to 516.
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5.2.3 Comparison between ARViT and ViT variants

A comparison between the variants of the ViT and ARViT is shown in Table 5.1. With the changes
proposed in section 5.2.2, ARViT has and architecture with 6 encoder blocks (layers), 12 attention
heads, and 516 hidden dimensions. Other modifications also provided a further reduction in in the
model capacity, and ARViT has a total of 10 million trainable parameters.

For effect of comparison, this work also introduces the ViT-Tiny, a ViT architecture also with
6 encoder layers, 12 attention heads and 516 hidden dimensions. The ViT-Tiny has 18 million
trainable parameters — 8 million more than ARViT. This gap between ARViT and the ViT-Tiny
can be explained by modifications 2 (section 5.2.2.2) and 4 (section 5.2.2.4) .

Table 5.1: Comparison between variants of the ViT and ARViT.

Model Layers Hidden-Dim Heads Params
ViT-B [1] 12 768 12 86M
ViT-L [1] 24 1024 16 304M
ViT-H [1] 32 1280 16 632M
ARViT 6 516 12 10M
ViT-Tiny 6 516 12 18M
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Chapter 6

Experiments

If it disagrees with experiment, it’s wrong. In that simple
statement is the key to science. It doesn’t make any
difference how beautiful your guess is, it doesn’t matter
how smart you are who made the guess, or what his name
is . . . If it disagrees with experiment, it’s wrong. That’s
all there is to it.

—Richard Feynman
(1918–1988)

This chapter describes the experiments and results with the two-dimensional distance based self-
attention regularization, the style similarity based self-attention regularization, and with ARViT,
the proposed vision transformer architecture. Section 6.1 describes the implementation details.
Section 6.2 introduces the evaluation methods. Section 6.3 presents the results of the experiments.
And finally, section 6.4 provides a discussion and analysis of the experiments and results.

6.1 Implementation details

In this section we introduce the implementation details of our experiments, all proposed ARViT
variants, hyperparameter definitions, pre-training details and hardware specifications.

6.1.1 ARViT variants

To evaluate the performance of ARViT and the effects of the self-attention regularization methods
on it, we pre-trained a total of 19 different variants. All variants, however, share the same input
specifications, which are the resolution of the input images, which is defined as (256,256), and the
image patches resolution, which is defined as C = 16.

The main distinction between each variant is which encoder layer had its self-attention regularized,
and with which regularization method. Furthermore, suffixes are utilized to identify each ARViT
variant.

The first variant introduced is ARViT-Base, which corresponds to the model trained without
regularizing self-attention on any layer whatsoever. ARViT-Base can be seen as the baseline model
used as a basis of comparison for all other models.

All other 18 variants trained with different permutations of layers regularized through the
self-attention regularization methods proposed in Chapters 3 and 4.
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6.1.1.1 ARViT variants regularized with the two-dimensional distance based method

Using the two-dimensional distance based self-attention regularization method, a total of 6 models
were experimented with. They are: ARViT-L1, ARViT-L2, ARViT-L3, ARViT-L4, ARViT-L5
and ARViT-L6. The suffix of these models can be described as follows: firstly, a capital letter "L"
is used to identify that the regularization method used was the two-dimensional distance based
one; then, the integer ranging between 1 and 6 is used to identify which encoder layer is being
regularized. Hence:

1. ARViT-L1 is the variant of ARViT where the first encoder layer is regularized using the
two-dimensional distance based method.

2. ARViT-L2 is the variant where the second encoder layer is regularized using this method.

3. ARViT-L3 is the variant where the third encoder layer is regularized using this method.

4. ARViT-L4 is the ARViT variant where the fourth encoder layer is regularized using this
method.

5. ARViT-L5 is the variant in which the fifth encoder layer is regularized using the two-
dimensional distance based method.

6. ARViT-L6 is the variant where the sixth encoder layer is regularized using this method.

A visual representation of the encoder of each of the ARViT variants utilizing the two-dimensional
distance based self-attention regularization method is shown in Figure 6.1.

Figure 6.1: Illustration of the encoders (each containing 6 encoder layers) of ARViT-L1,
ARViT-L2, ARViT-L3, ARViT-L4, ARViT-L5 and ARViT-L6. The encoder layers in pink
indicate the layer being regularized with the two-dimensional distance based self-attention
regularization method. Image by the author.

6.1.1.2 ARViT variants regularized with the style similarity based method

Using the style similarity based self-attention regularization method, a total of 12 models were
developed. They are: ARViT-R1-1, ARViT-R1-2, ARViT-R1-3, ARViT-R1-4, ARViT-R1-5, ARViT-
R1-6, ARViT-R2-1, ARViT-R2-2, ARViT-R2-3, ARViT-R2-4, ARViT-R2-5 and ARViT-R2-6. The
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suffix of these models have three elements, each representing one specification. The first element
of the suffix is the letter "R", which indicates that the regularization method used was the style
similarity based one.

The second element in the suffix is an integer number immediately after the letter "R". This
number represents the parameter ψ = G/P , where G is the image region resolution, and C is the
resolution of the image patches. Since the image patches of all ARViT variants have resolution
(16, 16), when the resolution of the image regions was defined as 16 then ψ = 16/16 = 1. Moreover,
when the resolution of the image regions was defined as 32 then ψ = 32/16 = 2.

Finally, the third element of this suffix is yet another integer, ranging between 1 and 6. This
integer is used to identify which encoder layer is being regularized and it immediately follows the
integer indicating the value of ψ, with a single hyphen dividing them. Hence:

1. ARViT-R1-1 is the variant of ARViT where the first encoder layer is regularized using the
style similarity based method with region size G = 16.

2. ARViT-R1-2 is the variant of ARViT where the second encoder layer is regularized using
the style similarity based method with region size G = 16.

3. ARViT-R1-3 is the variant of ARViT where the third encoder layer is regularized using the
style similarity based method with region size G = 16.

4. ARViT-R1-4 is the variant of ARViT where the fourth encoder layer is regularized using
the style similarity based method with region size G = 16.

5. ARViT-R1-5 is the variant of ARViT where the fifth encoder layer is regularized using the
style similarity based method with region size G = 16.

6. ARViT-R1-6 is the variant of ARViT where the sixth encoder layer is regularized using the
style similarity based method with region size G = 16.

7. ARViT-R2-1 is the variant of ARViT where the first encoder layer is regularized using the
style similarity based method with region size G = 32.

8. ARViT-R2-2 is the variant of ARViT where the second encoder layer is regularized using
the style similarity based method with region size G = 32.

9. ARViT-R2-3 is the variant of ARViT where the third encoder layer is regularized using the
style similarity based method with region size G = 32.

10. ARViT-R2-4 is the variant of ARViT where the fourth encoder layer is regularized using
the style similarity based method with region size G = 32.

11. ARViT-R2-5 is the variant of ARViT where the fifth encoder layer is regularized using the
style similarity based method with region size G = 32.

12. ARViT-R2-6 is the variant of ARViT where the sixth encoder layer is regularized using the
style similarity based method with region size G = 32.
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6.1.2 Hyperparameter choice

For the ARViT variants trained with self-attention regularized using the two-dimensional distance
based approach, in order to optimize the balance between the task loss LT and the distance loss
LD, we experimented with different values of λ in Equation (3.7), obtaining the best results with
λ = 1e−3. Furthermore, the hyperparameters in Equation (3.2) were set as α = 4 and β = 0.5.

In addition, on ARViT variants trained with the region style similarity based self-attention
regularization method, to optimize the trade off between LT and LS , distinct values of λ (Eq. 4.5)
were tested, with the best outcomes achieved when λ = 5e−3. We further experimented with a wide
range of values for the distance bias ρ (Eq. 4.2), with the best results obtained when ρ = 3e−1.

6.1.3 Pre-training

We pre-train all ARViT variants on the ImageNet dataset with approximately 1.3 million images
[1]. However, instead of utilizing the labels of the 1000 categories in the Imagenet Dataset, all
models were trained on a self-supervised learning pretext-task. The chosen pretext-task was the
rotation estimation [2]. In this task, an input image is rotated into one of four possible angles —
0o; 90o; 180o; and 270o — and the objective of the network is to correctly predict the angle of the
performed rotation.

Furthermore, all ARViT variants are pre-trained for 90 epochs, using the adam optimizer with a
base learning rate of 0.0001. The batch size was defined as 80 images and, following the approach of
Caron et al. [3], color jittering, Gaussian blur, solarization and multi-crop [4] data augmentations
were performed on all images of the training set.

Finally, all models are pre-trained distributed over four NVIDIA GEFORCE GTX 2080 Ti
GPUs, with a capacity of 11 Gb each.

6.2 Evaluation methods

To evaluate ARViT variants, we report the Top-1 accuracy after fine-tuning them on the following
benchmark classification downstream tasks:

1 - CIFAR-10 [5]. A dataset containing 60000 small resolution (32x32) color images, divided into
10 classes, with 6000 images per class. The classes are: airplane, automobile, bird, cat, deer, dog,
frog, horse, ship and truck.

2 - CIFAR-100 [5]. Similar to CIFAR-10, it contains 60000 small resolution (32x32) color images
of 100 classes with 600 images per class.

3 - Oxford 102 Flowers [6]. A dataset containing 6552 large-scale images, divided into 102
categories of flowers common to the United Kingdom. Each class consists of 40 to 258 images.

4 - IMAGENETTE. A subset of Imagenet [1] containing 10716 images and 10 easily classified
classes: tench, English springer, cassette player, chain saw, church, French horn, garbage truck, gas
pump, golf ball, parachute.1

1Available at: https://github.com/fastai/imagenette
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5 - IMAGEWOOF. A subset of Imagenet [1] containing 10364 images divided into 10 harder to
classify classes of dog breeds: Australian terrier, Border terrier, Samoyed, Beagle, Shih-Tzu, English
foxhound, Rhodesian ridgeback, Dingo, Golden retriever and Old English sheepdog.1

6.3 Results

In this section, the results of the conducted experiments are reported.

6.3.1 ARViT baseline

The Top-1 accuracy of ARViT-Base on the five downstream tasks is shown in Table 6.1. For a
matter of comparison, we pre-trained a ViT-Tiny, variant of the ViT [7] introduced in section 5.2.3.
The ViT-Tiny also has 6 encoder layers, 12 attention heads and 516 hidden dimensions. However,
the ViT-Tiny has 18 million trainable parameters against the 10 million of ARViT.

The ViT-Tiny was also pre-trained on the Imagenet dataset with 1.3 million images on a rotation
estimation pretext-task, in batches of 80 images, using the adam optimizer with base learning rate
0.0001, and using the same data augmentations as ARViT-Base.

After pre-training, the ViT-Tiny was fine-tuned on the five downstream tasks: CIFAR-10,
CIFAR-100, Flowers-102, Imagenette and Imagewoof. A substantial improvement can be observed
when comparing the Top-1 accuracy of ARViT-Base with the ViT-Tiny. On CIFAR-10, ARViT-Base
outperforms ViT-Tiny by roughly 10%. On CIFAR-100, the improvement is greater than 23%. On
the Flowers-102 dataset, ARViT-Base surpasses ViT-Tiny by approximately 8%. On Imagenette,
ARViT-Base outperforms the ViT-Tiny by roughly 6%. And finally on the Imagewoof dataset, the
improvement obtained by ARViT-Base is of approximately 11%.

Regarding the pre-training time, for ARViT-Base, each epoch was trained on an average of
16m44s, whereas for ViT-Tiny, it took an average of 22m45s for each epoch to be trained. As a
matter of comparison, ViT-B, the smaller of the ViTs from Dosovitskiy et al. [7], took an average
of 1h49m12s to train each epoch on the same machine.

Table 6.1: Top-1 accuracy of ARViT-Base and ViT-Tiny on five different downstream tasks.
ViT-Tiny is as a variant of the ViT [7] included in the table for effects of comparison.

Model CIFAR-10 CIFAR-100 Flowers Imagenette Imagewoof

ViT-Tiny 73.30% 53.55% 73.91% 84.72% 61.77%
ARViT-Base 83.13% 76.27% 81.61% 91.18% 73.01%

6.3.2 ARViT with self-attention regularized using a 2D spatial distance based
approach

The Top-1 accuracy on the 5 downstream tasks attained by the ARViT variants pre-trained using
the two-dimensional distance based self-attention regularization approach is shown in Table 6.2.
Although no substantial improvements could be observed on ARViT-L1, ARViT-L2, ARViT-L4,
ARViT-L5 and ARViT-L6, when regularizing self-attention on the third encoder layer, significant
gains in accuracy were observed on all five tasks. Namely, ARViT-L3 improves the performance
of ARViT-Base by 1.63% on CIFAR-10, 0.36% on CIFAR-100, 1.47% on Flowers-102, 0.87% on
Imagenette and 2.89% on Imagewoof.
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Table 6.2: Comparison between the performance of ARViT on different downstream
tasks when regularized with the two-dimensional distance based method. Values in bold
indicate the model with best performance on each downstream task.

Model CIFAR-10 CIFAR-100 Flowers Imagenette Imagewoof

ViT-Tiny 73.30% 53.55% 73.91% 84.72% 61.77%
ARViT-Base 83.13% 76.27% 81.61% 91.18% 73.01%
ARViT-L1 82.02% 75.89% 80.12% 90.58% 72.92%
ARViT-L2 83.63% 76.20% 81.27% 91.56% 74.81%
ARViT-L3 84.76% 76.63% 83.08% 92.05% 75.90%
ARViT-L4 83.31% 76.52% 81.98% 91.88% 75.24%
ARViT-L5 83.70% 76.01% 81.21% 91.30% 73.46%
ARViT-L6 79.81% 74.84% 79.14% 88.77% 70.44%

As for the training time, for ARViT-Base, and ViT-Tiny, the reported training times per
epoch were 16m44s and 22m45s, respectively. For the ARViT variants pre-trained using the two-
dimensional distance based self-attention regularization method — namely ARViT-L1, ARViT-L2,
ARViT-L3, ARViT-L4, ARViT-L5 and ARViT-L6 — the average training time per epoch was
18m20s.

6.3.2.1 Comparison with State of the Art

So far, studies on self-supervised vision transformers, like the SiT [8], MoCo v3 [9] and DINO [3],
were conducted using variants of the original ViT [7]. ARViT’s capacity is significantly smaller
than these models, with only 6 encoder layers, 12 attention heads, and roughly 10M trainable
parameters. In Table 6.3, the performance of ARViT was compared with other self-supervised vision
transformers on two small downstream classification tasks: CIFAR-10 and CIFAR-100. ARViT-L3
shows an improvement of 3.56% on CIFAR-10 and 20,66% on CIFAR-100 when compared with
the SiT [8], a model with roughly 9 times more parameters than ours. However, MoCo v3 [9] and
DINO [3] still marginally outperform ARViT on these tasks.

Table 6.3: Linear evaluation of vision transformers after self-supervised pre-training. Accuracy
reported on CIFAR-10 and CIFAR-100. ARViT-L3 has its self-attention regularized on the 3th
encoder layer, and it is the best performing ARViT variant using the two-dimensional distance
based regularization method.

Model CIFAR-10 CIFAR-100
SiT[8] 81.20% 55.97%
MoCo v3 (ViT-B) [9] 98.9% 90.5%
MoCo v3 (ViT-L) [9] 99.1% 91.1%
MoCo v3 (ViT-H) [9] 99.1% 91.2%
DINO (ViT-S/16) [3] 99.0% 90.5%
DINO (ViT-B/16) [3] 99.1% 91.7%
ARViT-Base (ours) 83.13% 76.27%
ARViT-L3 (ours) 84.76% 76.63%
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6.3.3 ARViT with self-attention regularized using a region similarity based
approach

When applying the two-dimensional spatial distance regularization to the 3rd encoder layer of
ARViT (ARVIT-L3), it achieved the highest Top-1 accuracy on all 5 downstream classification
tasks, surpassing ARViT-Base and the ViT-Tiny by margins as big as 3% and 23%, respectively.

Experiments with the style similarity based self-attention regularization method deployed on
ARViT demonstrate marginal improvements in the Top-1 accuracy on all 5 downstream classification
tasks. Those gains in performance occur in comparison with both the baseline architecture (ARViT-
Base), as well with the ARViT variants with self-attention regularized using the two-dimensional
spatial distance method. Table 6.4 reports the Top-1 accuracy on each downstream task of the
models pre-trained using the style-similarity based self-attention regularization method.

Table 6.4: Comparison between the performance of ARViT on different downstream tasks
when regularized with the style similarity based method. Values in bold indicate the
model with best performance on each downstream task.

Model CIFAR-10 CIFAR-100 Flowers Imagenette Imagewoof

ViT-Tiny 73.30% 53.55% 73.91% 84.72% 61.77%
ARViT-Base 83.13% 76.27% 81.61% 91.18% 73.01%
ARViT-L3 84.76% 76.63% 83.08% 92.05% 75.90%
ARViT-R2-1 86.97% 84.85% 83.75% 95.18% 80.27%
ARViT-R2-2 87.76% 87.25% 85.33% 95.81% 83.28%
ARViT-R2-3 88.29% 88.45% 85.52% 95.66% 81.93%
ARViT-R2-4 87.06% 86.09% 84.72% 94.99% 81.08%
ARViT-R2-5 87.00% 86.17% 85.33% 95.29% 81.73%
ARViT-R2-6 87.40% 84.80% 84.91% 94.51% 80.81%
ARViT-R1-1 88.29% 88.63% 85.58% 95.48% 82.31%
ARViT-R1-2 86.99% 86.40% 85.15% 94.28% 79.61%
ARViT-R1-3 87.17% 84.91% 85.33% 95.36% 82.20%
ARViT-R1-4 87.54% 86.13% 85.31% 95.48% 82.93%
ARViT-R1-5 88.45% 89.65% 85.82% 95.40% 82.70%
ARViT-R1-6 87.55% 87.31% 85.15% 95.78% 81.15%

On CIFAR-10, the best performing model was ARViT-R1-5, with a Top-1 accuracy of 88.45%.
That represents a gain of roughly 4% in accuracy compared to ARViT-L3, and 5% in comparison
with ARViT-Base.

ARViT-R1-5 also achieved the best performance on CIFAR-100 and the Flowers dataset [6].
On CIFAR-100 it achieved a Top-1 accuracy of 89.65%, surpassing ARViT-Base and ARViT-L3 by
roughly 13%. On the Flowers dataset the gains were around 4% and 3% in relation to ARViT-Base
and ARViT-L3, respectively.

When finetuned on Imagenette and Imagewoof, the model that achieve the best Top-1 accuracy
was ARViT-R2-2. Again, it surpasses ARViT-Base and ARViT-L3 by large margins. On Imagenette,
the accuracy gain is a bit short of 5% compared to ARViT-Base, and 4% compared to ARViT-L3.
On the Imagewoof classification task, the accuracy improvement achieved in comparison with those
models was roughly 10% and 8%, respectively.

Furthermore, when deploying our style similarity based self-attention regularization method to
ARViT and adopting the same training specifications, the observed training time was of 18m44s
per epoch.
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6.3.3.1 Regularization effects

We also evaluate changes in attention loss of each encoder layer during training. Figure 6.2 compares
the regularized (similarity loss is minimized) and non-regularized (ARViT-Base) similarity loss of
each encoder layer. It can be noticed that even on ARViT-Base, during the learning process, the
network implicitly learns self-attention in such way that the similarity loss decreases. Furthermore,
when self-attention is regularized, the similarity loss is reduced faster and converges at a lower
value.
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Figure 6.2: Overview of the Similarity Loss (multiplied by λ) during self-supervised
pre-training of ARViT’s variants on the ImageNet dataset [1], with region resolution
16x16. Each graph compares the similarity loss on a layer of the ARViT-Base against the
ARViT variant in which the same layer was regularized.

We also perform a visual inspection of the attention maps to qualitatively analyse the attention
obtained, with visualizations displayed in Figure 6.3. Regularized layers covers the target of
the image more precisely and attend less to the background, regardless of the target size. This
demonstrates that introducing self-attention regularization indeed mitigates absence of locality and
scale-invariance in self-attention of visual transformers.

6.3.3.2 Comparison with State of the Art

The style-similarity based self-attention regularization method was deployed on ARViT, a small
vision transformer with 6 encoder layers and 8 attention heads. Currently, state-of-the-art self-
supervised vision transformers possess marginally larger capacities, with the SiT [8], MoCo v3 [9]
and DINO [3] ranging from 12 to 32 encoder layers. In addition, ARViT also has a significantly
smaller number of trainable parameters.

In Table 6.5, the performance of ARViT-Base, ARViT-L3 (the best performing ARViT variant
using the two-dimensional distance based regularization method), and ARViT-R1-5 (the best
performing ARViT variant using the style similarity based regularization method) are compared
with other self-supervised visual transformers on two small size classification downstream tasks:
CIFAR-10 and CIFAR-100. ARViT-R1-5 shows an improvement of 7.25% on CIFAR-10 and 33.68%
on CIFAR-100 when compared with the SiT [8], a model with roughly 9 times more parameters than
ARViT. Furthermore, ARViT-R1-5 also achieved competitive results on CIFAR-100 when compared
to very large architectures, like MoCo v3 [9] and DINO [3]. Such results were obtained mainly due
to self-attention regularization, which increased the ARViT-Base performance by more than 13%.
However, MoCo v3 [9] and DINO [3] still marginally outperform ARViT-R1-5 on CIFAR-10.
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Input Image ARViT-R1-1 ARViT-Base
Layer 1

Input Image ARViT-R1-2 ARViT-Base
Layer 2

Input Image ARViT-R1-3 ARViT-Base
Layer 3

Input Image ARViT-R1-4 ARViT-Base
Layer 4

Input Image ARViT-R1-5 ARViT-Base
Layer 5

Input Image ARViT-R1-6 ARViT-Base
Layer 6

Figure 6.3: Attention maps produced by: the first encoder layer on ARViT-Base and
ARViT-R1-1; the second encoder layer on ARViT-Base and ARViT-R1-2; the third
encoder layer on ARViT-Base and ARViT-R1-3; the fourth encoder layer on ARViT-Base
and ARViT-R1-4; the fifth encoder layer on ARViT-Base and ARViT-R1-5; the sixth
encoder layer on ARViT-Base and ARViT-R1-6. For each layer, both attention maps
indicate the self-attention values for the same image patch. The resolution of the attention
maps was enhanced via interpolation to match that of the images.

Table 6.5: Linear evaluation of vision transformers after self-supervised pre-training. Accuracy
reported on CIFAR-10 and CIFAR-100. ARViT-R1-5 has its self-attention regularized on the 5th
encoder layer, and it is the best performing ARViT variant on these tasks using the style similarity
based regularization method.

Model CIFAR-10 CIFAR-100
SiT[8] 81.20% 55.97%
MoCo v3 (ViT-B) [9] 98.9% 90.5%
MoCo v3 (ViT-L) [9] 99.1% 91.1%
MoCo v3 (ViT-H) [9] 99.1% 91.2%
DINO (ViT-S/16) [3] 99.0% 90.5%
DINO (ViT-B/16) [3] 99.1% 91.7%
ARViT-Base (ours) 83.13% 76.27%
ARViT-L3 (ours) 84.76% 76.63%
ARViT-R1-5 (ours) 88.45% 89.65%

6.4 Discussion

This chapter described the the experiments conducted and the results attained during the research
presented in this dissertation. The experiments aimed at tackling the lack of inductive biases on
vision transformers, addressing the ability of smaller capacity vision transformers to generalize well,
reducing the computational cost associated with training high performance vision transformers,
and to improve the ability of vision transformers when pre-trained on unlabeled data.

The experiments involved the exploration of a new vision transformer architecture, denoted
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ARViT, and two novel self-attention regularization methods — the first based on the pairwise
two-dimensional distance between image patches, and the second based on the style similarity of
image regions. Those experiments also aimed at observing if regularization can be an effective tool to
encapsulate an assumption about the problem’s solution in order to promote better generalization.

6.4.1 ARViT analysis

Experimental results with ARViT-base (without any self-attention regularization) indicate that the
baseline architecture obtained marginal improvements in the Top-1 accuracy on all downstream
tasks when compared to the ViT-Tiny, which is a vision transformer with similar dimensions.
The gains obtained by ARViT-Base over the ViT-Tiny were as big as 23%, and such expressive
results indicate that, the changes performed in the ViT architecture that led up to ARViT have a
major role in improving the model’s performance. Furthermore, though ARViT-Base and ViT-Tiny
share the same number of encoder layers, attention-heads and hidden dimensions, because of the
architectural changes, ARViT has only 10 million trainable parameters, as opposed to the 18 million
in ViT-Tiny, demonstrating that it is, indeed, possible to improve performance even with a smaller
capacity model.

6.4.2 Two-dimensional distance based self-attention regularization analysis

Experiments deploying the two-dimensional distance based self-attention regularization on ARViT
indicated that, in most cases, the method had little to no effect on the models performance. Most
especially, when applied to the first, second, fourth, fifth and sixth layers there were no real
performance gains attained. Nevertheless, when applying the two-dimensional distance based
self-attention regularization method to the third layer of ARViT (namely ARViT-L3), the model
achieved notable gains (up to 2.89%) in the Top-1 accuracy of all five downstream tasks. This
indicates that the assumption made in this regularization method is not valid for most encoder
layers, being useful only in specific cases.

6.4.3 Style similarity based self-attention regularization analysis

Experiments with ARViT deploying the style similarity based self-attention regularization showed
that the method was able to lead ARViT’s performance to marginal gains when compared to its
baseline model, ARViT-Base. In fact, all 12 variants of ARViT regularized using this method had
major improvements in Top-1 accuracy on all 5 downstream tasks, with gains as big as 13%.

This experiments also measured the impact of changing the granularity of the style representation
in this regularization method. Two sets of 6 models each were trained using image regions of
resolution 16 and 32, respectively. It observed that, models trained with a smaller style granularity
(region resolution G = 32), promoted the largest gains on downstream tasks containing images
with higher resolution — Imagenette and Imagewoof. On the other hand, a larger style granularity
(region resolution G = 16) was responsible for the larger accuracy gains on downstream tasks with
images of small resolution — CIFAR-10, CIFAR-100 and Flowers 102.

6.4.4 Summary

The experimental results indicate that the two self-attention regularization methods are in fact
introducing new inductive biases to vision transformers, thus restricting the hypothesis space and
making certain solutions preferable, leading to the conclusion that regularization can in fact be a
tool that helps conciliate both the connectionist and symbolic approaches to AI.
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Though ARViT and its variants still unperformed when compared to the very large state-of the
art architectures pre-trained on tens of millions of images, it was able to lower this gap by marking
a considerable improvement in relation to vision transformers of similar capacity. A comparison
between all models learned in the experiments is shown in Table 6.6.

Finally, from a qualitative point of view, the attention maps also learned to represent the
self-attention scores according to assumption embedded in the regularization term. Appendix A
displays a myriad of attention maps, taken from different images and generated by different models.

Table 6.6: Comparison between the performance of ARViT on different downstream
tasks when regularized with different methods. Furthermore, ViT-Tiny is as a variant of
the ViT [7] included in the table for effects of comparison. It has the same number of
encoder layers and attention heads as ARViT. Values in bold indicate the model with
best performance on each downstream task.

Model
Regularization

Type
Regularized

Layer
Region

resolution CIFAR-10 CIFAR-100 Flowers Imagenette Imagewoof

ViT-Tiny - - - 73.30% 53.55% 73.91% 84.72% 61.77%
ARViT-Base - - - 83.13% 76.27% 81.61% 91.18% 73.01%
ARViT-L1 2D distance 1st layer - 82.02% 75.89% 80.12% 90.58% 72.92%
ARViT-L2 2D distance 2nd layer - 83.63% 76.20% 81.27% 91.56% 74.81%
ARViT-L3 2D distance 3rd layer - 84.76% 76.63% 83.08% 92.05% 75.90%
ARViT-L4 2D distance 4th layer - 83.31% 76.52% 81.98% 91.88% 75.24%
ARViT-L5 2D distance 5th layer - 83.70% 76.01% 81.21% 91.30% 73.46%
ARViT-L6 2D distance 6th layer - 79.81% 74.84% 79.14% 88.77% 70.44%
ARViT-R2-1 Region similarity 1st layer 32 86.97% 84.85% 83.75% 95.18% 80.27%
ARViT-R2-2 Region similarity 2nd layer 32 87.76% 87.25% 85.33% 95.81% 83.28%
ARViT-R2-3 Region similarity 3rd layer 32 88.29% 88.45% 85.52% 95.66% 81.93%
ARViT-R2-4 Region similarity 4th layer 32 87.06% 86.09% 84.72% 94.99% 81.08%
ARViT-R2-5 Region similarity 5th layer 32 87.00% 86.17% 85.33% 95.29% 81.73%
ARViT-R2-6 Region similarity 6th layer 32 87.40% 84.80% 84.91% 94.51% 80.81%
ARViT-R1-1 Region similarity 1st layer 16 88.29% 88.63% 85.58% 95.48% 82.31%
ARViT-R1-2 Region similarity 2nd layer 16 86.99% 86.40% 85.15% 94.28% 79.61%
ARViT-R1-3 Region similarity 3rd layer 16 87.17% 84.91% 85.33% 95.36% 82.20%
ARViT-R1-4 Region similarity 4th layer 16 87.54% 86.13% 85.31% 95.48% 82.93%
ARViT-R1-5 Region similarity 5th layer 16 88.45% 89.65% 85.82% 95.40% 82.70%
ARViT-R1-6 Region similarity 6th layer 16 87.55% 87.31% 85.15% 95.78% 81.15%
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Chapter 7

Conclusions and Future Work

The highest forms of understanding we can achieve are

laughter and human compassion.

—Richard Feynman

(Theoretical Physicist)

For small creatures such as we the vastness is bearable only

through love.

—Carl Sagan

(Astronomer, astrophysicist and science communicator)

The work presented in this dissertation addressed the lack of inductive biases on vision transformers,

a limitation usually tackled by pre-training large capacity models pre-trained on hundreds of

millions of labeled data. In parallel, this work also explored the ability of smaller capacity vision

transformers to generalize well, reducing the computational cost associated with training high

performance vision transformers, and aimed at improving the ability of vision transformers when

pre-trained on unlabeled data. This chapter provides the summary of this work’s main propositions

and contributions. This chapter also circles back to the research objectives presented in chapter 1,

summarizing how the results of this research contributed to them. Finally, possible future research

directions to further extend this line of research are also presented.

7.1 Conclusion

In this work, inspiration was drawn from the trade-off between the connectionist and the symbolic

approaches to artificial intelligence in order to address the lack of inductive biases on vision

transformers. The connectionist approach is concerned with model learning, and the symbolic

approach focus on knowledge derived from formal reasoning being passed down to an AI model.

From that perspective, the first contributions of this research were two self-attention

regularization methods. Regularization is a tool in machine learning used to reduce overfitting and
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improve a model’s generalization [1]. Effectively, regularization can be interpreted as a mean to

restrict a machine learning problem’s hypothesis space, thus favoring specific prior distributions

on model parameters [2]. Therefore, the proposed two self-attention regularization methods were

designed to be means of restricting the vision transformer’s hypothesis space based on assumptions

about the learning problem. Hence, though logic was used to constrain the space of possible

solutions, it did not impose a solution by itself, and the vision transformer was still able to learn

within the available hypothesis space, and therefore, this method cannot be formally considered a

combination between the connectionist and symbolic approaches per se.

The first proposed self-attention regularization method was based on the pairwise two-

dimensional distance between image patches, measured using the the Manhattan distance. The

assumption made by this self-attention regularization method was that image patches that are

spatially close to each other should present higher self-attention scores than patches that are

spatially distant to each other. In this method, a novel loss function, denoted distance loss, was

introduced. The distance loss acts as a regularization term added to the vision transformer’s

training loss, and it encapsulates the logic of the method to penalize solutions based on the pairwise

two-dimensional distance between image patches and the respective self-attention scores between

them.

The second self-attention regularization method proposed in this research was based on the

style similarity between different regions of an image. The style representation of a region of an

image was obtained through its gram matrix, following the approach of [3]. The assumption made

in this method was that, the more similar the style of two regions are, the higher the self-attention

scores between them should be. Contrarily, the least similar the style of two regions, the smaller

the self-attention scores between them should be. To measure the distance between region styles,

the pairwise mean squared error between their gram matrices was utilized. The core of our method

is the Similarity Loss, designed to express the assumption of this method. It, as well, was added to

the network training loss to act as a regularization term, penalizing solutions based on the pairwise

similarity between image region styles and their respective self-attention scores.

Furthermore, this work introduced ARViT (Attention Regularized Vision Transformer), a vision

transformer architecture inspired by the ViT [4] and with changes inspired by Chen et al. [5].

ARViT is significantly smaller than the ViT, and in it, the proposed self-attention regularization

methods were deployed.

At the experiments, all models developed in this researched were pre-trained on a self-supervised

task using the ImageNet dataset [6], with approximately 1.3 million images. Results revealed that

ARViT, without any self-attention regularization, when compared to a similar capacity vision

transformer, already obtained performance gains as big as 23% on benchmark classification tasks.
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Moreover, the two proposed self-regularization methods further improved the performance of ARViT

as far as up to 13% on those tasks, thus indicating that the two self-attention regularization methods

are in fact introducing new inductive biases to vision transformers, by restricting the hypothesis

space and making certain solutions preferable.

Finally, the models presented in this research also achieve competitive results with state-of-

the-art visual transformers, in spite of being a smaller-capacity model and trained on a mid-size

dataset.

The scientific contributions derived from the work in this dissertation are summarized as follows:

1. A method to introduce a new inductive bias to vision transformers through self-attention

regularization based on the two-dimensional spatial distance between image patches, and a

new loss function, denoted distance loss.

2. A new inductive bias to vision transformers introduced via a self-attention regularization

method based on style similarity of distinct regions of an image, and a new loss function,

denoted attention loss.

3. ARViT, a reduced variant of the ViT [4], with changes inspired by the work of Chen et al. [5].

ARViT has 6 encoder layers, 12 attention heads on each layer and 10M trainable parameters,

which is a considerably smaller capacity when compared with the original ViT.

4. ARViT’s was pre-trained using a self-supervised learning approach with rotation estimation

as a pretext-task [7], and evaluated on small benchmark downstream tasks, outperforming a

similar capacity variant of the ViT by large margins on all tasks (up to 23%).

5. The deployment of the two proposed self-attention regularization methods on ARViT resulted

in further marginal performance gains on all small benchmark downstream tasks (up to 13%).

7.2 Future work

Given the positive results obtained in the experiments conducted in this research, the following

possibilities of future works were opened:

1. Further explore the use of regularization — on vision transformers and other network

architectures — as a method to introduce inductive biases based on assumptions about the

learning problem.
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2. Experiments with the two self-attention regularization methods proposed in this work on

other vision transformer architectures.

3. Explore the concept of self-attention regularization on vision transformers pre-trained on

different self-supervised learning pretext-tasks. Though rotation estimation provides a good

supervision signal, it provides the same amount of feedback information as a standard

supervised classification task. Therefore, pretext-tasks that "mask" more information from

the input could be explored.
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Appendix A

Figures of Attention Maps

This appendix contains figures with different representations of attention maps produced by ARViT

variants.

Figure A.1: Attention map — example (1). Attention map generated by the 3rd layer of
ARViT-R1-3 for an input image X. A single row Ap can be reshaped into two dimensions.

Figure A.2: Attention map — example (2). Attention map generated by the 3rd layer of
ARViT-R1-3 for an input image X. A single row Ap can be reshaped into two dimensions.

Figure A.3: Attention map — example (3). Attention map generated by the 3rd layer of
ARViT-R1-3 for an input image X. A single row Ap can be reshaped into two dimensions.
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Figure A.4: Attention map — example (4). Attention map generated by the 5rd layer of
ARViT-R1-5 for an input image X. A single row Ap can be reshaped into two dimensions.

Figure A.5: Attention map — example (5). Attention map generated by the 5rd layer of
ARViT-R1-5 for an input image X. A single row Ap can be reshaped into two dimensions.

Figure A.6: Attention map — example (6). Attention map generated by the 5rd layer of
ARViT-R1-5 for an input image X. A single row Ap can be reshaped into two dimensions.

Figure A.7: Similarity matrix S and attention map A. Example (1) (left): input image
X, similarity matrix with region size G = 16, and attention map generated by the third
layer of ARViT-R1-3. Example (2) (right): input image X, similarity matrix with region
size G = 16, and attention map generated by the third layer of ARViT-R1-3.

104



Figure A.8: Similarity matrix S and attention map A. Example (3) (left): input image
X, similarity matrix with region size G = 16, and attention map generated by the fifth
layer of ARViT-R1-5. Example (4) (right): input image X, similarity matrix with region
size G = 16, and attention map generated by the fifth layer of ARViT-R1-5.

Figure A.9: Visual comparison between two distinct rows on the attention map A. On
the left, an input image A is divided into 256 patches. From it, an attention map A is
generated by the 5th layer of ARViT-R1-5 (regularized using style similarity). The input
image contains a sail-ship. Row A101 contains the pairwise self-attention values between
the highlighted patch X101 and all other patches. Row A198 contains the pairwise self-
attention values between the highlighted patch X198 and all other patches. By reshaping
rows A101 and A198, it is possible to visualize a 2D attention map showing how much
patches X101 and X198, respectively, attend all other patches. Patch X101 mainly contains
"sails" and A101 mostly attends to patches containing sails. Patch X198 mainly contains
the hull of the ship, however, A198 attends all patches containing the ship (including the
sails).
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Figure A.10: Visual comparison between two distinct rows on the attention map A. On
the left, an input image A is divided into 256 patches. From it, an attention map A is
generated by the 5th layer of ARViT-R1-5 (regularized using style similarity). The input
image contains a F1 car. Row A105 contains the pairwise self-attention values between
the highlighted patch X105 and all other patches. Row A182 contains the pairwise self-
attention values between the highlighted patch X182 and all other patches. By reshaping
rows A105 and A182, it is possible to visualize a 2D attention map showing how much
patches X105 and X182, respectively, attend all other patches. Patch X105 mainly contains
"grass" and A105 mostly attends to patches containing grass. Patch X182 mainly contains
the F1 car, and A182 attends all patches containing the F1 car.

Figure A.11: Visual comparison between two distinct rows on the attention map A. On
the left, an input image A is divided into 256 patches. From it, an attention map A is
generated by the 5th layer of ARViT-R1-5 (regularized using style similarity). The input
image contains an airplane. Row A149 contains the pairwise self-attention values between
the highlighted patch X149 and all other patches. Row A158 contains the pairwise self-
attention values between the highlighted patch X158 and all other patches. By reshaping
rows A149 and A158, it is possible to visualize a 2D attention map showing how much
patches X149 and X158, respectively, attend all other patches. Patch X149 mainly contains
"airplane" and A149 attends to patches containing mostly "airplane". Patch X158 mainly
contains the sky, and A158 attends mainly the patches containing the sky.
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Figure A.12: Visual comparison between three distinct rows on the attention map A. On
the left, an input image A is divided into 256 patches. From it, an attention map A is
generated by the 5th layer of ARViT-R1-5 (regularized using style similarity). The input
image contains an aircraft carrier ship. Row A114 contains the pairwise self-attention
values between the highlighted patch X114 and all other patches. Row A166 contains the
pairwise self-attention values between the highlighted patch X166 and all other patches.
Row A215 contains the pairwise self-attention values between the highlighted patch X215
and all other patches. By reshaping rows A114, A166 and A215, it is possible to visualize a
2D attention map showing how much patches X114, X166 and X215, respectively, attend
all other patches. Patch X114 mainly contains the sky and A114 attends to patches
containing mostly sky. Patch X166 mainly contains the aircraft carrier ship, and A166
attends mainly the patches containing the the ship. Patch X215 mainly contains the sea,
and A166 attends mainly the patches containing the sea.

Figure A.13: Differences between attention maps generated by different encoder layers
- example (1). Six 2D representations of a row p in attention maps produced by each
encoder layer of ARViT-R1-5. The attention scores on row p indicate how much patch
Xp (highlighted in red) attend to all other patches.
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Figure A.14: Differences between attention maps generated by different encoder layers
- example (2). Six 2D representations of a row p in attention maps produced by each
encoder layer of ARViT-R1-3. The attention scores on row p indicate how much patch
Xp (highlighted in red) attend to all other patches.

Figure A.15: Differences between attention maps generated by different encoder layers
- example (3). Six 2D representations of a row p in attention maps produced by each
encoder layer of ARViT-R1-5. The attention scores on row p indicate how much patch
Xp (highlighted in red) attend to all other patches.
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Figure A.16: Differences between attention maps generated by different encoder layers
- example (4). Six 2D representations of a row p in attention maps produced by each
encoder layer of ARViT-R1-5. The attention scores on row p indicate how much patch
Xp (highlighted in red) attend to all other patches.

Figure A.17: Differences between attention maps generated by different encoder layers
- example (5). Six 2D representations of a row p in attention maps produced by each
encoder layer of ARViT-R1-5. The attention scores on row p indicate how much patch
Xp (highlighted in red) attend to all other patches.
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Appendix B

Source Code

The Two-dimensional distance based self-attention regularization method, the Style similarity based

self-attention regularization method and the ARViT architecture were implemented using Python

as a programming language, the PyTorch1 deep learning library, and the Fast.ai2 deep learning

library. Though the codes for both self-attention regularization methods were developed from

scratch, the implementation of ARViT architecture was made by modifying the ViT codes in

pytorch-image-models3 (a collection of Image Models implemented in Pytorch).

The source code is available at https:// github.com/ mormille/ self-attention-regularization.git .

The documentation of the source code is not provided at the moment, but the author will make it

available in a near future. Furthermore, this code available in the aforementioned url is intended to

be used only for academic research and teaching purposes.

1https://pytorch.org/
2https://www.fast.ai/
3https://github.com/rwightman/pytorch-image-models
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Appendix C

Paper I

Regularizing self-attention on vision

transformers with 2D spatial distance

loss
Luiz H. Mormille, Cliford Broni-Bediako, Masayasu Atsumi

Published in Artificial Life and Robotics (AROB), 27, no. 3,
August 2022, pages 586–593.
DOI: 10.1007/S10015-022-00774-7.

Paper Abstract

Recently, the vision transformer (ViT) achieved remarkable results on computer vision-related tasks.
However, ViT lacks the inductive biases present on CNNs, such as locality and translation equivariance.
Overcoming this deficiency usually comes at high cost, with networks with hundreds of millions of parameters,
trained over extensive training routines and on large-scale datasets. Although one common alternative to
mitigate this limitation involves combining self-attention layers with convolution layers, thus introducing
some of the inductive biases from CNNs, large volumes of data are still necessary to attain state-of-the-art
performance on benchmark classification tasks. To tackle the vision transformer’s lack of inductive biases
without increasing the model’s capacity or requiring large volumes of training data, we propose a self-
attention regularization mechanism based on two-dimensional distance information on an image with a new
loss function, denoted Distance Loss, formulated specifically for the transformer encoder. Furthermore, we
propose ARViT, an architecture marginally smaller than state-of-the-art vision transformers, in which the
self-attention regularization method is deployed. Experimental results indicate that the ARViT, pre-trained
with a self-supervised pretext-task on the ILSVRC-2012 ImageNet dataset, outperforms a similar capacity
Vision Transformer by large margins on all tasks (up to 24%). When comparing with large-scale self-
supervised vision transformers, ARViT also outperforms the SiT (Atito et al. in SiT: self-supervised vision
transformer, 2021), but still underperforms when compared to MoCo (Chen et al. in: 2021 IEEE/CVF
international conference on computer vision (ICCV), Montreal, 2020) and DINO (Caron et al. in: 2021
IEEE/CVF international conference on 354 computer vision (ICCV), Montreal, 2021).
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Appendix D

Paper II

Introducing inductive bias on Vision

Transformers through Gram matrix

similarity based regularization
Luiz H. Mormille, Cliford Broni-Bediako, Masayasu Atsumi

In Artificial Life and Robotics (AROB)
Accepted on November 30, 2022
DOI: 10.1007/S10015-022-00845-9.

Paper Abstract

In recent years, the Transformer achieved remarkable results in computer vision related tasks, matching,
or even surpassing those of convolutional neural networks (CNN). However, unlike CNNs, those vision
transformers lack strong inductive biases and, to achieve state-of-the-art results, rely on large architectures
and extensive pre-training on tens of millions of images. Approaches like combining convolution layers or
adapting the vision transformer architecture managed to mitigate this limitation, however, large volumes
of data are still demanded to attain state-of-the-art performance. Therefore, introducing the appropriate
inductive biases to vision transformers can lead to better convergence and generalization on settings with
fewer training data. To that end, we propose a self-attention regularization method based on the similarity
between different image regions. At its core is the Attention Loss, a new loss function devised to penalize
self-attention computation between image patches based on the similarity between gram matrices, leading
to better convergence and generalization, especially on models pre-trained on mid-size datasets. We deploy
the method on ARViT, a small capacity vision transformer and, after pre-training with a self-supervised
pretext-task on the ILSVRC-2012 ImageNet dataset, our self-attention regularization method improved
ARViT’s performance by up to 13on benchmark classification tasks and achieved competitive.
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