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Abstract

Deep neural networks (DNNs) such as convolutional neural networks (CNNs) have enabled

remarkable progress in the application of machine learning and artificial intelligence. Research

scientists are gearing up for adopting DNN methods to their respective domain problems. Automated

neural architecture search (NAS), also known as automated DNN (AutoDNN), aims to automate

the architecture search of neural networks to enable researchers adopt DNN methods with ease,

and with little or no expertise in deep learning.

As metaheuristic approach, automated NAS requires a representation scheme to encode the

candidate solutions (architectures). Direct encodings of genetic algorithms and genetic programming

have been widely employed in automated NAS methods. Though easy to implement, direct encoding

cannot be easily modularized and the lack of distinctive separation of genotype and phenotype

spaces limits their functional complexity. Therefore, it may be difficult for direct encodings to

evolve modules (building-blocks) with shortcut and multi-branch connections which can improve

training and enhance network performance in image understanding tasks.

This work presents a novel generative encoding, called symbolic linear generative encoding

(SLGE), that combines the complementary strengths of gene expression programming (GEP)

and cellular encoding (CE) for automatic architecture search of deep neural networks for image

understanding. In particular, evolving modularized CNNs with shortcut and multi-branch

modularity properties (similar to the ones commonly adopted by human experts) for remote

sensing (RS) image understanding tasks such as scene classification and semantic segmentation.

GEP is known for its simplicity in implementation and multi-gene chromosomes with flexible

genetic modification, whereas CE has the ability to produce modular artificial neural networks

(ANNs). Both GEP and CE are well established evolutionary computation methods which have

experienced a lot of development and theoretical study. A large part of this previous work involves

architecture search of ANNs in a small scale, and therefore this work provides the possibility for

CNNs architecture development for image understanding tasks, particularly in the field of RS.

We adopt two automated NAS search strategies: random search with early-stopping and
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evolutionary algorithm, to automatically evolve modularized CNNs architectures for classification

of RS imagery scenes and semantic segmentation of aerial/satellite imagery respectively. Two types

of multi-class image scene classification tasks were performed: single-label scene classification and

multi-label scene classification, using four different remotely-sensed imagery datasets, to validate

the expressiveness and tractability of SLGE representation space. Moreover, we constructed a

two-separate SLGE representation spaces: normal cell and atrous spatial pyramid pooling (ASPP)

cell. Then, using evolutionary algorithm with genetic operators such as uniform mutation, two-point

crossover and gene crossover, we joint search for a normal cell and an ASPP cell as a pair of cells to

build a modularized encoder-decoder CNN architecture for solving RS image semantic segmentation

problem. Three RS semantic segmentation benchmarks were used to verify the performance of

the SLGE architecture representation. By doing this, we also validated the effectiveness and

robustness the proposed SLGE architecture representation. The results position SLGE architecture

representation amongst the best of the state-of-the-art systems.
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Chapter 1

Introduction

Robots [automations] are not going to replace humans,

they are going to make their jobs much more humane.

Difficult, demeaning, demanding, dangerous, dull—these

are the jobs robots [automations] will be taking.

—Sabine Hauert

(Co-founder of Robohub.org)

This chapter provides an overview of the work presented in this PhD dissertation. Section 1.1

briefly presents the context of the work in this dissertation, to give better understanding of the

different research fields surrounding the work. Section 1.2 describes the motivation for the work

presented in this dissertation. In section 1.3, the core aims of the work and the objectives we

propose to achieve are presented. The contributions which have been derived from this dissertation

are presented in section 1.4. Finally, section 1.5 outlines the structure of the dissertation.

1.1 Context

In a broad perspective, this dissertation involves a research work in the area of artificial intelligence

(AI) and machine learning (ML). AI is considered as an old field of computer science with a focus

on making intelligent machines, that is, developing machines that can operate or act intelligently

in a wide range of situations. The field of ML is a subfield of AI that is concerned with making it

possible for machines to learn automatically from data or experience. In other words, ML aims

at making it possible for machines to extract meaningful information from data that it would be

possible to automate it.

Deep learning is relatively a new field of ML but its fundamental concept of neural networks

was theorized and implemented in 1943 by McCulloch and Pitts. Deep learning methods use

multiple layers of neural networks to extract insightful features automatically from data and learn

1



Context

a model representation from such features. The work by Krizhevsky et al. in 2012, AlexNet,

has remarkable transformed the landscape of ML algorithms. The ML community has come to

conclusion that deep neural networks such as convolutional neural networks (CNNs) can yield better

performance on plethora of AI/ML problems with large volumes of data compared to statistical

ML-based techniques. The visual perception tasks such as image classification and semantic image

segmentation are among the key notable AI/ML problems which CNNs have shown excellent results.

The performance of CNNs depends largely on the network architecture (and the network training).

The work in this dissertation concerns an automated design of deep neural networks (AutoDNN)

for visual perception tasks. In particular, automated neural architecture search (NAS) for CNN

in remote sensing image understanding tasks. Thus, this work involves search and optimization,

neural networks and image understanding, which are key disciplines in the field of AI/ML.

In general, in a search problem, the aim is to find a goal condition within a large set of objects

(search space) by systematically examining within the internal representation of the search space for

a path that satisfies the goal condition. And optimization problem can be formulated as a search

problem which concerns finding (near)-optimal solution with respect to some objective function.

Exact optimization methods are efficient for problems that can be solved with polynomial time.

However, many optimization problems like combinatorial problems with a large set of feasible

solutions become intractable and can not be solved using exact optimization methods. Because

the time for solving these problems with exact optimization methods increases exponentially.

Metaheuristics optimization methods use problem-invariant and widely applicable search strategy

to solve wide range of difficult problems including combinatorial problems with less computational

effort. These optimization methods use a search strategy that search through the search space on

a meta-level. Metaheuristics employ some degree of randomness to find (near)-optimal solutions

for hard optimization problems. They are often considered as “black-box” algorithms which we

can plug-in arbitrary search operators, representation and objective function as needed to solve a

particular complex problem. In combinatorial problems, metaheuristics can provide a sufficiently

good solution with less computational effort. AutoDNN (automated NAS) can be described

as a combinatorial optimization problem which involves searching for the (near)-optimal DNN

architecture a∗ from a large set of possible candidate solutions A that maximizes an objective

function f(a) with respect to certain constraints. Thus in this dissertation, AutoDNN is considered

as an optimization problem which can best be solved within a reasonable computational effort

using metaheuristic approach.

The other aspect of the work in this dissertation involves image understanding tasks in the

field of remote sensing (RS). RS images are remotely-sensed data of the Earth observation. They
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are acquired by satellite constellations such as Landsat 1 and Sentinel 2 which are placed in the

space, and also by drones and airborne means. Approximately, 1.6TB of compressed optical

imagery data are produced per day by Sentinel-2A and 2B satellites only and they observe the the

entire planet each week. Such a massive amount of remotely-sensed imagery provide a valuable

resource with which to address many important social and environmental issues. Despite the specific

features of remotely-sensed imagery with respect to spectral, spatial and radiometric resolutions,

the understanding and interpretation of these images involves extracting information from the

images and visual perception tasks as computer vision.

Computer vision is a field of AI which is concerned with developing techniques to enable machines

and systems understand and interpret digital images such as photographs, videos and other visual

inputs. In other words, computer vision enables machines to see, observe and understand their

environment by extracting meaningful information from digital images. The problem of visual

perception seems very simple since it is trivially solved by human. However, it largely remains an

unsolved problem for computers and machines. This is attributed to both our limited understanding

of the human vision and the complex nature of visual perception in a dynamic environment. For

about 60 years, researchers in computer vision have been working hard to develop techniques for

machines to imitate the human vision’s ability to interpret dynamic scenes from visual signals, for

example, to recognize objects in photographs. The emergence of deep learning has significantly

improved this effort, and currently almost every computer vision task is carried out with DNNs.

DNNs approach has also shown a remarkable performance in the field of RS image understanding.

The common cause of computer vision and RS image understanding is to seek to understand and

interpret imagery data. Thus far, the work in this dissertation is can be placed at the intersection

of deep learning (neural architecture search), search and optimization (metaheuristic), and remote

sensing image understanding (computer vision). We propose to implement automatic architecture

search of deep neural networks to search for convolutional neural networks for understanding and

interpretation of imagery data, particularly, remote sensing images.

1.2 Motivation

Deep neural networks (DNNs) such as convolutional neural networks (CNNs) have enabled

remarkable progress in the application of machine learning and artificial intelligence. CNNs

methods have achieved excellent results in a large variety of problems with multiple modalities such

as images, speech, and text. Research scientists and engineers are gearing up for adopting CNNs to

solve problems of their respective disciplines. The performance of CNNs depends on a non-trivial
1https://landsat.gsfc.nasa.gov/
2https://sentinels.copernicus.eu/web/sentinel/home
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manual crafting of their architectures (and the training of the parameters). Besides being error-

prone and time-consuming, designing and developing a well-performing CNN architectures manually

for specific tasks requires a certain level of expertise and experience in deep learning. Neural

architecture search (NAS), also known as AutoDNN, has emerged to automate the architecture

design of deep neural networks to enable researchers adopt CNNs and other deep learning methods

with easy, and with little or no expertise in deep learning.

As metaheuristic optimization problem, NAS requires a representation scheme to encode the

candidate solutions (neural network architectures). The direct encodings of genetic algorithms

(GA) and genetic programming (GP) have been widely employed in NAS methods to encode

candidate solutions in the search space [1, 2]. Though easy to implement, direct encoding cannot

be easily modularize and the lack of distinctive separation of genotype and phenotype spaces

limits their functional complexity [3–5]. It may be difficult for direct encodings to evolve modules

(building-blocks) with shortcut (skip) and multi-branch connections [6] which can improve training

and enhance network performance [7, 8]. Thus, some researchers have adopted human experts

designed modules such as ResNet-Blocks [9] and DenseNet-Blocks [10] into direct encoding to

evolve modularized CNN architectures [11–13]. Evolving modularized CNN architectures with

modularity properties of shortcut and multi-branch connections commonly adopted by human

experts represents one of the key motivations of this work.

The alternative to direct encoding is a generative encoding which can produce modular and

regular structures [3, 5]. The second motivation of this work is pertained to exploring the strengths

of two generative encodings, gene expression programming (GEP) and cellular encoding (CE), with

the aim of harnessing their complementary strengths into a new encoding scheme, which we called

symbolic linear generative encoding (SLGE). GEP was introduced by Ferreira in 2001 [4], and it

inherits the advantages of the GA and GP. GEP is known for its simplicity in implementation and

multi-gene chromosomes with flexible genetic modification. On CE, it was proposed by Gruau in

1994 [14]. CE has the ability to produce modular neural networks using graph grammar. Both GEP

and CE are well established evolutionary computation methods which have experienced a lot of

development and theoretical study [15–17]. A large part of this previous work involves architecture

search of artificial neural networks (ANNs) in a small scale, and therefore this work provides the

possibility for CNNs architecture development.

1.3 Research Aims and Objectives

Based on the aforementioned motivations and from application perspective, the main aims of work

in this dissertation are as follows:
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1. To explore the capability of GEP with CE in evolving CNNs architectures. In particular,

to investigate the viability of combining the encoding schemes of GEP and CE into a new

scheme called SLGE for CNNs architecture representation.

2. To investigate whether the multi-gene chromosomes and modularity properties of GEP

and CE respectively can be used to evolve network modules with shortcut connections and

multi-branch connections to develop modularized CNN architectures.

3. To investigate the expressiveness and tractability of the representation space developed with

GEP of CE (SLGE) for evolving modularized CNN architectures.

4. To investigate the suitability of applying GEP of CE (SLGE) to evolve CNNs for visual

perception tasks such as image classification and image semantic segmentation and its

robustness when transferred to others benchmarks.

And to achieve these aims, we propose the accomplishment of the following objectives:

1. Design and development of a novel generative encoding, SLGE, which adopt the simplicity

features of GEP with modularity properties of CE to model representation space of CNN

architectures.

2. Development of (metaheuristic) optimization algorithms able to optimize the architecture

search of CNNs automatically based on objective (1), given specific visual perception tasks.

3. Evaluation of the automatically evolved CNNs on various visual perception tasks in order

to validate that they are competitive to, if not better than, manually designed ones. The

tasks should cover a spectrum of remote sensing image understanding tasks such as scene

classification and aerial image segmentation.

1.4 Contributions

The scientific contributions derived from the work in this dissertation are summarized as follows:

1. We introduced a novel encoding scheme, SLGE, which extends GEP to AutoDNN by injecting

the modularity features of CE into the linear representation of GEP to evolve modularized

CNN architectures.

2. We demonstrated that SLGE can discover modules with shortcut and multi-branch connections

commonly adopted by human experts and develop modularized CNN architectures of arbitrary

complexity with fewer parameters.
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3. We achieved results that are competitive to, or even exceed, human experts designed networks

in various RS image understanding tasks. For each of the tasks used in the evaluation, the

results of the best automatically discovered CNNs architecture contributed to the state-of-

the-art.

4. By evolving and evaluating CNN architectures via random search policy with early-stopping

and evolutionary algorithm on remotely-sensed imagery data, we have extended AutoDNN

approach to the field of RS image understanding.

1.5 Outline of the Dissertation

The dissertation is organized on the basis of 2 papers published in international journals and a

paper presented at international conference.

Chapter 2 describes the necessary background of the work in this dissertation which include

deep neural networks and metaheuristic optimization methods such as random search strategy and

evolutionary algorithm. Also, a review of relevant related work in neural architecture search and

remote sensing image understanding are presented.

Chapter 3 presents a comprehensive description of SLGE, the underlying representation scheme

of the NAS method of interest in this dissertation. The description includes the fundamental

algorithm and distinguishing features of SLGE; and a discussion of implementation and preliminary

experiments which have been performed. Preliminary experiments on the CIFAR-10 and CIFAR-100

image classification benchmarks to validate the approach are reported. The algorithm and the

preliminary results have been published in: C. Broni-Bediako, Y. Murata, L. H. B. Mormille,

and M. Atsumi, “Evolutionary NAS with gene expression programming of cellular encoding”. In

Proceedings of 2020 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 2670–2676,

2020, DOI: 10.1109/SSCI47803.2020.9308346.

In Chapter 4, SLGE is extended to RS image understanding tasks and evaluated experimentally

in various RS scene classification benchmarks. Several experiments with different configurations

of SLGE hyperparameters are performed using random search with early-stopping strategy to

demonstrate the expressiveness and tractability of the representation space developed with SLGE

to evolve modularized CNN architectures. The description of the experiments performed and

the analysis of the experimental results have been published in: C. Broni-Bediako, Y. Murata,

L. H. B. Mormille and M. Atsumi, “Searching for CNN architectures for remote sensing scene

classification”, IEEE Transactions on Geoscience and Remote Sensing, pp. 1–13, 2021, DOI:

10.1109/ TGRS.2021.3097938.

Chapter 5 presents an extension of SLGE algorithm which enables the construction of two-
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separate search space representations, to joint search for pair of encoder and decoder modules

using evolutionary algorithm to build modularized encoder-decoder CNN architectures for semantic

segmentation of RS images. Several experiments are presented to validate the effectiveness

SLGE. And the discovered architectures are transferred to other benchmarks to demonstrate their

robustness. The proposed method achieved significant results with affordable computational effort.

The algorithm and the experimental results have been published in: C. Broni-Bediako, Y. Murata,

L. H. B. Mormille and M. Atsumi, “Evolutionary NAS for Aerial Image Segmentation with Gene

Expression Programming of Cellular Encoding”, Neural Computing and Applications, 2021, DOI:

10.1007/s00521-021-06564-9.

Chapter 6 provides the final discussion and concluding remarks with suggestions for further

improvement of SLGE for evolving modularized CNN architectures.
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Chapter 2

Background and Related Work

The brain is a statistical, probabilistic system, with logic

and mathematics running as higher-level processes. The

computer is a logical, mathematical system, upon which

higher-level statistical, probabilistic systems, such as

human language and intelligence, could possibly be built.

— George B. Dyson

(Turing’s Cathedral)

The work in this dissertation is built upon deep learning and metaheuristic optimization, and it is

towards the applications in image understanding tasks in the field of remote sensing. This chapter

briefly introduces the basic concept of deep learning with a focus on convolutional neural networks

in section 2.1. Metaheuristic optimization methods, random search strategy and evolutionary

algorithm, which are adopted in this work are briefly described in section 2.2. In sections 2.3 and

2.4, the review of relevant related work in automatic architecture search of deep neural networks and

remote sensing image understanding with convolutional neural networks are presented respectively.

2.1 Deep Learning and Deep Neural Networks

Deep learning is a subfield of machine learning in artificial intelligence that is concerned with

computational models which use multiple processing layers to learn representations of data with

multiple levels of abstraction [1]. These processing layers are based on the fundamental concepts of

artificial neural networks, which are repeatedly stacked to form the computational models called

deep neural networks (DNNs). Artificial neural networks (ANNs), commonly referred to as neural

networks, have been around for more than 70 years [2]. The emergence of deep learning in the

early 2000s rekindled neural network research, which has ameliorated the performance in visual

perception tasks and other cognitive tasks such as language and speech recognition [1, 3]. There

are several architectures of DNNs, including:
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• Multilayer perceptrons (MLP), the simplest and the oldest neural network architecture;

• Convolutional neural networks (CNNs), the architecture mostly used for image and video

processing; and

• Recurrent neural networks (RNNs), the architecture which are used largely for sequential

data such as text and times series.

This section presents a brief introduction to deep learning. In particular, the basic concepts of

neural networks and the CNNs which are commonly used for visual perception tasks. LeCun et al.

[1] and Bengio et al. [3] provide a comprehensive overview of deep learning. For further information

and implementation details, we refer to the text Deep Learning by Ian Goodfellow, Yoshua Bengio

and Aaron Courville (2016) [4].

2.1.1 Basic Concepts of Neural Networks

A neural network is a machine learning technique able to solve mathematically ill-defined problems

with a network of computationally simple elements which are inspired by biological neural networks

[2, 5, 6]. The basic definition given by K. Gurney in his book titled An Introduction to Neural

Networks is: “A neural network is an interconnected assembly of simple processing elements, units

or nodes, whose functionality is loosely based on the animal neuron. The processing ability of

the network is stored in the interunit connection strengths, or weights, obtained by a process of

adaptation to, or learning from, a set of training patterns” [7]. Neural networks can be used for

both regression and classification problems. Most importantly, they are universal approximators.

Which means they are capable of arbitrarily accurate approximation to any complex function if the

network has enough hidden neurons [8, 9].

2.1.1.1 Artificial Neuron

The fundamental building block in neural networks is the mathematical model of an artificial

neuron that accepts a set of inputs x = {1, 2, . . . ,m} and consists of the following three basic

components in addition to the inputs x and the output y as shown in Figure 2.1.

Figure 2.1: A schematic representation of an artificial neuron [10].
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1. The connecting edges which provide weights ωi to the input values xi and a bias term b.

2. The summation function Σ that sums the weighted input values and the bias as an input for

the activation function ϕ as defined in Equation (2.1).

Σ = 〈ωi, xi〉+ b (2.1)

3. The activation function ϕ which acts on the weighted input values given in Equation (2.1) to

produce an output value y. The activation function that maps the summation function to

the output value of the neuron is given in Equation (2.2)

y = ϕ (Σ) = ϕ (〈ωi, xi〉+ b) (2.2)

The output y could be unidimensional or a multidimensional of d values.

Historically, the original activation function was a threshold function. To enabled neural networks

learn complex nonlinear phenomenon, nonlinear functions are largely used recently. The common

activation functions are the sigmoid function σ(x) which restricts input values to the range of (0,

1), the hyperbolic tangent function tanh(x) which also restricts input values to the range of (-1,

1), and the rectified linear unit function φ(x) which returns max(0, x) as the output of the input

values [6, 11, 12]. Because of vanishing gradient problem [13] that sigmoid and hyperbolic tangent

functions might cause in neural networks, the default activation function in DNNs such as CNNs

is the rectified linear units (ReLU) which is not susceptible to vanishing gradient and can enable

DNNs to learn faster and perform better [12, 14].

In generally, the weights ωi, also called parameters, are estimated from learning samples via

stochastic gradient decent (SGD). The work by Rumelhart et al. [15] and LeCun et al. [16, 17] on

backward propagation algorithm, though not a learning algorithm, but its efficiency in computing

gradient to find the parameters that minimize the cost function of a neural network has made

DNNs a practical tool in solving real-world problems.

2.1.1.2 Backward Propagation

The backward propagation algorithm, also known as backpropagation for short, has a long history.

It was proposed in the 1970s, but its potency was realized in the 1980s [15, 17]. The algorithm

has two distinct phases called forward pass (feedforward calculation) and backward pass (error-

backpropagation), which alternates several times through the layers of the neural network during

the learning process to find the parameters that minimize the cost function of the network as shown

in Figure 2.2. The algorithm estimates the parameters in the network such that for every input
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value in the training sample, the network produces an output value which closely matches the

prescribed target value. A brief summary of backpropagation algorithm is given in Algorithm 1.

We refer to Goodfellow et al. [4] for further information and implementation details.

Figure 2.2: A schematic diagram of backpropagation algorithm with a mathematical
model of artificial neuron [18].

Algorithm 1 A simple description of backpropagation algorithm.
1 Initialize the weights randomly and stop condition.
2 For each input set compute the activation of the hidden units and output units.
3 Calculate the error at each output, then the derivative of the activation w.r.t each parameter.
4 Pass the error from the output back to the hidden layer.
5 Update the weights from the hidden to output layer.
6 Exit and return the weights if stop condition is met, else go to Step 2.

2.1.2 Convolutional Neural Networks

In traditional ANNs, learning normally requires extraction of variables of interest, called features, by

the human experts. It needs a lot of experience to extract image features for visual perception tasks

[19]. CNNs are deep neural networks that have the ability to automatically extract and learn image

features, and have achieved the state-of-the-art performance in visual perception tasks [20–23]. The

idea behind CNN was first put forward in 1979 by Fukushima in his work: the neocognitron [24, 25].

The CNNs proposed by LeCun et al. [16] revolutionized the field of computer vision, and now they

are widely used for visual perception tasks such as image classification, image segmentation and

object recognition. The success of CNNs in visual perception tasks is largely because they can

act directly on patches of image with three colour channels (RGB), thereby preserving the spatial

relationship among the pixels in an image [1, 20]. CNNs are perhaps the most popular and used

DNNs architecture in many other applications, including audio and speech processing, language
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processing, among others [26–29]. The basic components of CNNs architecture are: convolutional

layers, pooling layers and fully-connected layers. A brief description is given here and we refer to

Goodfellow et al. [4] for further information and implementation details.

Convolutional Layer

The convolution layer uses kernels, also known as filters, to compute neurons that are connected to

local patches of input image, by computing the dot product between their weights and the local

patches of the input image. As shown in Figure 2.3, the convolution operation is performed by

scanning through an input image with a fixed size kernel. The kernel is shifted by the stride of s

pixels, and to preserve the input volume size, p zero paddings must be added to the boarder of the

input. Mathematically, for 2-dimensional input image, the convolution operation is expressed as:

(K ∗ I) (i, j) =
∑
m,n

K (m,n) I (i+ n, j +m) (2.3)

where K is a convolution kernel applied to a 2D input image I. The resulting output is normally

fed into an activation function, generally the ReLU function, to produce an activation map, also

called feature map.

Figure 2.3: An example of 2D convolution operation [4]. The resulting feature map is a
weighted sum of the pixels (a, b, c..., l) of an input image and a kernel of size 2×2 which
represents the weights (w, x, y, z) that are learned during training of the network. Stride
of 1 pixel is used with no zero paddings.

Pooling Layer

Incorporating pooling layer into the CNNs provides for invariance of object class to translations,

which is important for object identification. The pooling layer also reduces the spatial dimension of

the input volume and it is referred as downsampling operation. Pooling layers are usually placed

in between convolutional layers and thus reduces number of parameters and computational cost.

As the convolutional operation, pooling operation is performed with stride s on local patches of

the input image. The common pooling operations in CNNs are max and average pooling where
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the maximum and mean value of local patches are computed, respectively. Figure 2.4 depicts max

pooling operation with a kernel of size 2×2 and a stride of 2 pixels.

Figure 2.4: An example of max pooling operation [30].

Fully-Connected Layer

The fully-connected layer is an ordinary multilayer perceptron. As the name implies, in this layer

each input is connected to all neurons. Generally, after stacking several several convolution and

pooling layers, the last activation map volume is transformed into a vector and then fully-connected

layers are added at the end of the architecture to compute class scores. We lose the spatial

relationships within the data when the input volume is transformed into a vector as input to the

fully-connected layer as shown in Figure 2.5.

Figure 2.5: An example of fully-connected layer with a 2D array of pixel values [31].

2.1.2.1 Common CNN Architectures

For almost a decade now, after the celebrated AlexNet [20] which set a new record on the ImageNet

[32] classification competition in 2012, various CNN architectures have been proposed [33–35]. CNN

architecture design is a crucial factor to its performance. Designing CNN architectures is more of

engineering than science. In most classical CNNs such as AlexNet [20] and VGG-Net [36], a chain

of a convolution layer plus a ReLU activation function followed by a pooling layer is repeatedly

stacked several times, then fully connected layers are added at the end (see Figure 2.6). For a
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typical classification tasks, as shown in Figure 2.6, the computed class scores of the network are

normally fed into a softmax function to predict the class distribution.

Recent remarkable progress in the performance of CNNs is largely due to structural re-

organization of the processing-unit and the development of novel building-blocks (modules), as

well as the increase in the network depth [35]. Such innovative architectures have been introduced

for image classification tasks, which include GoogLeNet [37], ResNet [38], Inception-ResNet [39],

DenseNet [40], CapsuleNet (CapsNet) [41], among others. For example, GoogLeNet used multiple

output channels and a novel modules (called inception blocks) which are repeatedly stacked, ResNet

introduced a shortcut (skip) connection which is an additive transformation also known as residual

connection, and Inception-ResNet combined the power of inception blocks and residual connections

to construct CNN architectures.

In other visual perception tasks such as object detection and semantic segmentation, many

interesting architectures are built based on ResNet, VGG and Inception. These architectures include

Region-based CNN (R-CNN) [21], Fast R-CNN [42], Mask R-CNN [43], Single Shot Multibox

Detector (SSD) [44] and Fully Convolutional Neural Network (FCN) [45]. Also by combining these

architectures with RNN, Vinyals et al. [46] and Herdade et al. [47] extended CNNs to image

captioning task. In addition to these aforementioned CNN architectures, there are many other

novel architectures in the literature that have been proposed for many niche applications. We refer

to Khan et al. [33] and Alzubaidi et al. [35] for comprehensive review of CNN architectures. The

large diversity in CNN architectures truly suggests that architecture design of deep neural networks

is indeed an important problem and a method to automate the process could be very useful.

Figure 2.6: An example of a classical convolutional neural network architecture [48].

2.2 Metaheuristic Optimization Methods

Historically, metaheuristic algorithms have been employed for searching for neural network

architectures of traditional ANNs, a comprehensive review has been presented in Ojha et al.
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[49]. In recent years, a lot of work has been geared towards automatic architecture search of DNNs,

particularly CNN architectures, due to their outstanding performance in computer vision and

natural language processing [50, 51]. A large variety of metaheuristic algorithms have been adopted

for automatic CNNs architecture search [52, 53], which include random search [54, 55], evolutionary

algorithms [56, 57] and particle swam optimization [58, 59].

Metaheuristic is a term coined by Glover in 1986 [60] which refers to approximate general-

purpose search and optimization methods which are used to find a/an (near)-optimal solution

in search space of candidate solutions. Metaheuristics are well known as efficient methods for

combinatorial optimization problems with properties such as high dimensionality, parameter

interaction, multimodality and non-differentiability which are difficult to be solved by exact

optimization methods with a reasonable effort. Metaheuristics use problem-invariant and widely

applicable search strategy with intensification (exploitation) and diversification (exploration)

mechanisms for searching through a search space to find a sufficiently good solution with less

computational effort [61, 62].

Usually, metaheuristic algorithms are often considered as “black-box” which one can plug-in

arbitrary search operators, representation and objective function as needed to solve a particular

complex problem. Metaheuristic algorithms can be categorized into two groups: a single-solution

based and population based algorithms. Single-solution based metaheuristic algorithms improve a

single solution, whereas population-based metaheuristic algorithms improve a number of solutions

iteratively until the termination condition is satisfied. Random search, tabu search and iterated

local search are examples of single-solution based; and evolutionary algorithms and swarm-based

algorithms are examples of population based [62, 63].

Here, we briefly describe random search and evolutionary algorithm which have been employed

in this work to search for CNN architectures automatically. And refer to Rothlauf et al. [61] and

Weise et al. [63] for further information and implementation details of metaheuristic algorithms.

2.2.1 Random Search

Random search, also called random sampling algorithm, refers to an algorithm that repeats creating

random solutions from across the entire search space until the termination criterion is satisfied

[64]. It is the simplest hyperparameter optimization method [65] and can find better models by

effectively searching a larger, less promising search space [66]. Bergstra et al. [66] have shown

that random search is able to find models that are good or better within a small fraction of the

computation time compare with grid search.

In random search, the representation of the search space X can be any data structure that is

suitable for the candidate solutions to a given problem and able to apply the objective function
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to determine the quality of the solutions. The pure random search [67] typically uses uniform

sampling distribution as search operator to generate feasible candidate solution for a given problem.

It has been shown that pure random search can converge to a solution within a distance of the

global optimum with probability one [68, 69]. Other variants of random search algorithm include

fixed step size random search [70], adaptive step size random search [71] and optimized relative step

size random search [72]. A pure random search algorithm is briefly describes in Algorithm 2 [63].

Algorithm 2 A description of random search algorithm.
1 Initialize the best objective value b to infinity.
2 Generate a random point (uniform sampling) x in search space X .
3 Map the generated point x to a candidate solution y using the representation mapping function
y = γ(x).

4 Compute objective value of y using the objective function z = f(y).
5 If z is better than best objective value b, then:

i. Set the value of b to z.
ii. Store the candidate solution y for future retrieval.

6 If termination criterion is not satisfied, return to step 2.
7 Return best objective value b and best candidate solution y.

2.2.2 Evolutionary Algorithm

There exists a number of evolutionary algorithms (EAs) in the literature [73, 74]. In this section, we

briefly describe EAs and two classical EAs, genetic algorithm (GA) [75] and genetic programming

(GP) [76], that are relevant background of the work in this dissertation.

EAs are subclass of evolutionary computation which are inspired by biological evolution

mechanisms (such as mutation, recombination and selection) as search operators that are applied

over individuals in a population to find the best solution for a given problem [77]. The model

or abstraction of biological evolution mechanisms is based on the Darwinian theory of evolution

[78]. As inspired by nature, the terms such as genotype and phenotype are also commonly used in

EAs. The genotype (also called chromosome) encodes all the genetic information that describe

an individual solution to a given problem and phenotype represents an instance of the candidate

solution. The phenotypic appearance of a solution determines its quality, therefore the quality

of different candidate solutions is compared in phenotype space. In other words, the genetic

modification mechanisms are applied in genotype space to create new candidate solutions. Then,

the candidate solutions are evaluated in the phenotype space to determine their quality with

respect to the objective function of a given problem. The success of an EA largely depends on

the choice of genotype-phenotype representation and the choice of genetic variation mechanisms

(search operators) [61, 77, 79].
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In EAs, we randomly generate an initial population of candidate solutions to a given problem

encoded in certain representation. Then an objective function, also called fitness function, is

applied to determine their quality. For next generation, some candidate solutions are selected

based on their fitness value for reproduction. This is achieved via genetic modification mechanisms:

recombination (crossover) and mutation. Crossover is applied to two selected candidate solutions

known as parents to generate a new candidate solution (child), whereas mutation is applied to only

one candidate solution to generate a new child. Then, the generated children, that is the new set of

candidate solutions, are evaluated to determine their fitness values. This is an iterative process and

it continues until a termination criterion is satisfied or a sufficiently good solution is found [61, 77].

Figure 2.7 is a generic framework of evolutionary algorithm. EAs are often simple at a high-level

as they do not implement knowledge specific to the problem as in heuristic search [61], but become

increasingly complex as partial domain knowledge are encoded into the system to guide the search

process [74].

Figure 2.7: A general framework of evolutionary algorithms.

Genetic Algorithms

Genetic Algorithm (GA) [75] is an EA developed by Holland and his collaborators in the 1960s

and 1970s [80, 81] for adaptive search and adaptive system design. It is the simplest and most

common among the EAs, and it is adept at evolving rule-based systems. In GA, the candidate

solutions are represented in the genotype space as chromosomes of fixed-length binary strings using

direct encoding scheme [82, 83]. The direct encoding scheme encodes the candidate solutions to a

problem into its “natural” problem space. Hence in GA, the genotype space and the phenotype

space are clearly not separated as seen in nature. As an EA, GA apply various genetic modification

mechanisms (such as crossover, mutation, and selection) as search operators via evolutionary process

(see Figure 2.7) to search for the best solution to a given problem. Because of the simple bit-string

representation of the chromosomes in GA, the genetic modification operations are easily performed,

and any variation made in the genotype space always results in syntactically correct chromosomes.
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Genetic Programming

Genetic Programming (GP) [84] is an EA introduced in 1992 by Koza [76] for evolving computer

programs or mathematical equations that solve given problems. In contrast to GA, the candidate

solutions in GP represents executable programs or mathematical expressions which are encoded

as chromosomes of tree structures (called parse-trees) of varying shape and size. Traditionally, in

GP, the chromosomes are represented by a LISP expression. The individuals that encode possible

candidate solutions to a given problem are programs that, when executed, become the candidate

solutions to the problem. Thus, GP evolves computer programs rather than binary strings (as

in the case of GA) using various genetic modification mechanisms. Like GA, GP also uses direct

encoding scheme to encode candidate solutions. However, due to the varying shape and size of the

parse-trees (chromosomes) in GP, the genetic modification operations are difficult performed, the

parse-trees need to be managed to ensure syntactical correctness in the genotype space [84–86].

2.3 Automatic Architecture Search of DNNs

There are many techniques and algorithms in the literature concerning the automatic architecture

search of DNNs. Elsken et al. [51] categorized these approaches according to three dimensions:

architecture search space, search optimization method, and performance evaluation strategy. This

section briefly reviews related work of automatic architecture search of CNNs for visual perception

tasks including image classification, object detection and semantic segmentation.

2.3.1 Architecture Search Space

The architecture search space defines the representation of candidate architectures which are to be

searched to find the optimal architecture. Generally, the architecture search space of CNNs can be

classified into two categories: the global search space which defines the whole network architecture,

that is the macroarchitecture, and the cell-based search space which defines building-blocks, also

called cell or module, for building the macroarchitecture [50, 51]. Various methods of encoding the

candidate architectures in the search space are mainly grouped as direct encodings and indirect

encodings (also called generative encodings or developmental encoding) [83, 87]. A comprehensive

review on encoding schemes for automated neural architecture search (NAS) have been presented in

Fekiač et al. [88] Vargas-Hákim et al. [89]. The success of automated NAS method largely depends

on the architecture representation (as the work in this dissertation will show later). Even small a

change to the encoding of the architectures can make a significant difference in the performance of

NAS method [90].

Most of the earlier studies in automated NAS methods for CNN architectures employed global
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search space to search for the entire network architecture [91, 92]. The global search space approach

needs high computation effort and architectures discovered by this approach are not flexible, and

cannot be transferred easily to other tasks [93]. Zoph et al. [93] was the first to propose cell-based

search space, NASNet, to search for cells (modules) and repeatedly stacked them to build a CNN

architecture. NASNet optimizes two types of cells: a normal cell that preserves the spatial resolution

of input volume and a reduction cell which is used to reduce the feature map spatial resolutions.

Later, Zhong et al. [94] introduced similar cell-based approach but used max-pooling layer to reduce

the feature map spatial resolution, and Liu et al. [95] used separable convolution layer to reduce

the feature map spatial resolution. Besides the flexibility and transferability of CNN architectures

discovered by the cell-based approach [93], they also perform better than the global-based ones [96].

Therefore, recent studies in automated NAS for CNNs in image classification tasks have adopted

cell-based search space approach to represent candidate architectures [97–99]. Combining the

global-based and the cell-based search space approaches have also been explored to evolve CNNs

architectures for dense image prediction tasks such as semantic segmentation [100, 101] and object

detection [102, 103].

2.3.2 Search Optimization Method

Automated NAS using evolutionary algorithms, a field now known as neuroevolution [104], has

been of interest in the AI/ML community for three decades [57, 83]. Most earlier studies in

automated NAS optimized both the network architectures and their connection weights at a small

scale [83]. However, since CNNs have millions of connection weights, recent studies optimized only

for the network architectures and learn their connection weights via back-propagation method

[57]. The growing interest in automatic architecture search of CNNs in recent years, since 2017,

has seen a phenomenal development of new automated NAS methods [50, 51]. Many parallel

studies have employed various search optimization methods including evolutionary algorithms

[97, 105, 106], reinforcement learning [91, 107, 108], gradient-based methods [99, 109, 110], random

search [111, 112] and Bayesian optimization [113, 114] to evolve CNN architectures for visual

perception tasks. Among these optimization methods, evolutionary algorithms and reinforcement

learning the popular methods, and more recently gradient-based methods [50, 115].

Although, the sophisticated NAS optimization algorithms such as reinforcement learning,

evolutionary algorithm and gradient-based methods have achieved remarkable results. A a simple

random search strategy, as highlighted in Yu et al. [116], is a competitive optimization method in

finding the best CNNs architecture for a given tasks (as the work in this dissertation will show

later as well). Li & Talwalkar et al. [117] have performed extensive experiments to show that

random search strategy is sufficiently efficient for searching CNNs architectures for several datasets
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in computer vision using less computation resources. And Xie et al. [112] have further explored the

efficiency of random search using classical random graph models to generate CNNs architectures.

Evolutionary algorithm has demonstrated as more computationally feasible optimization method

for automated NAS than their reinforcement learning based competitors [56, 91, 118]. As such, the

work in this dissertation also optimize the architectures of CNN with evolutionary algorithm as well.

Most of the evolutionary NAS studies have employed genetic algorithm and genetic programming

to evolve CNN architectures for visual perception tasks [56, 57]. For example, Liu et al. [95]

have proposed hierarchical encoding scheme in genetic algorithm and Sun et al. [119] introduced

chromosomes of variable-length in genetic algorithm to evolve CNN architectures of variant shapes

and sizes for image classification tasks. In Suganuma et al. [106], Cartesian genetic programming

was adopted and Assunção et al. [120] combined genetic algorithm with grammatical evolution

to evolve CNN architectures. Galván and Mooney [56] and Baldominos et al. [57] have provided

comprehensive survey on recent evolutionary algorithms in automated NAS methods.

2.3.3 Performance Evaluation Strategy

In automated NAS methods, candidate architectures need to be evaluated to enable the optimization

method to find the best performing architecture for given tasks. The pioneering work by Zoph & Le

[91] trained each “child” candidate architecture from scratch until it converges and then measure

its accuracy on the selected dataset. This naive approach demands many GPU resources and it is

a computationally expensive process. To reduce the computation effort in order to speed up the

search process, recent automated NAS studies have introduced various performance evaluation

strategies to evaluate the quality of a candidate architecture [121, 122].

Proxy task approach, that is using smaller dataset and fewer epochs to train and evaluate, has

been widely used as the evaluation strategy of candidate architecture [94, 97, 114, 123]. Although

this approach has produced good empirical results, since the networks with fewer parameters may

converge faster and produce better results for a few epochs than cumbersome ones, the networks

with good performance may be abandoned [116]. However, the work in this dissertation adopts the

proxy task approach to show that we can find good architectures even with limited computation

resources. Other studies have employed parameter sharing techniques, where network weights are

shared amongst the candidate architectures [96, 99, 110]. Bender et al. [124] have extended the

idea of weight sharing into one-shot architecture search. Moreover, network morphism has also

been utilized to warm-start the candidate architectures, in order to reduces the number of training

epochs for networks to convergence [108, 125, 126].
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2.4 Remote Sensing Image Understanding with CNNs

Neural networks, traditional ANNs, were introduced in remote sensing (RS) in the late 1980s for

analysis of multispectral remotely-sensed data [127]. However, due to limited training data, the

RS research community shifted focus from ANNs to statistical learning methods such as support

vector machines [128] and random forest [129] which perform well with few training samples.

The recent advent of massive volumes of high resolution RS imagery data from various advanced

earth observation technologies [130] has necessitated researchers to adopt CNN models which can

automatically learn hierarchical and insightful features from large volumes of imagery data, and

generalize well than the statistical learning models [131]. This section briefly reviews related work

of RS image understanding tasks, in particular, scene classification and semantic segmentation

tasks using CNNs.

2.4.1 RS Image Scene Classification with CNNs

Since 2014, CNN models that are pre-trained on general-purpose imagery datasets, especially

ImageNet [32], have been employed in RS image scene classification using transfer learning approach

and have achieved promising results [132, 133]. Most of the state-of-the-art works in single-label

scene classification adopted pre-trained CNN models, including AlexNet [20], CaffeNet [134],

VGGNet [36], GoogLeNet (Inception) [39] and RestNet [38], as feature extractors [135–137], or

fine-tuned them on single-label RS image datasets [138, 139]. In multi-label RS image scene

classification, Zeggada et al. [140] and Koda et al. [141] applied radial basis functions and support

vector machine respectively on CNN features. Whereas Alshehri et al. [142] and Hua et al. [143]

integrated attention-based RNNs into pre-trained CNN feature extractor for multi-label scene

classification. Sumbul & Demİr [144] departed from pre-trained CNN models by proposing spatial

resolution specific CNN branches with multi-attention strategy to classify multi-label RS image

scenes. Moreover, Liu and Huang [145] proposed a weakly supervised triplet network using weakly

single-label data to train CNN from the scratch. Furthermore, in Stivaktakis et al. [146], data

augmentation strategy was introduced to train shallow CNNs on a multi-label dataset.

2.4.2 RS Image Segmentation with CNNs

CNNs have also emerged as the leading method in semantic segmentation of RS images (also known

as land cover classification or pixel-wise classification). The first successful use of a patch-based

CNNs by Mnih et al. [147] for roads and buildings segmentation saw other studies built upon it,

by combining the patch-based CNNs with pre-segmentation and handcrafted features improve the

results [148, 149]. The fully convolution network (FCN) [45] and the encoder-decoder networks such
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as U-Net [150] and SegNet [151] which can directly perform pixel-wise classification without any

pre-processing such as pre-segmentation have also been adopted in aerial or satellite image semantic

segmentation [152–157]. Some of the previous studies have also adopted pre-trained networks such

as ResNet [38], DenseNet [40] and Xception [158] with dense conditional random fields (CRFs) [159]

or atrous spatial pyramid pooling (ASPP) [160] to extract multi-scale context features for aerial

image semantic segmentation, and these methods have achieved significant performance [161–163].

2.4.3 AutoDNN in RS Image Understanding

A few works have explored automated NAS for RS image understanding tasks. Chen et al. [164]

employed the architecture search space that was introduced in DARTS [99] with a gradient-based

optimization algorithm to find CNN architectures for hyperspectral image classification. Also,

using the search space of DARTS with gradient-based algorithm, Zhang et al. [165] and Jing et

al. [166], evolved encoder-decoder CNN architectures for semantic segmentation of high-resolution

aerial images. Finally, a simple random search strategy with cell-based search space has been

used to search for CNN architectures for RS image scene classification [167]. The work in this

dissertation employ random search and evolutionary algorithms with cell-based search space to

find well performing CNN architectures for both single- and multi-label RS scene classification and

semantic segmentation of RS images.

2.5 Summary

This chapter provided a brief overview of the foundations and related work for automated neural

architecture search. The basic concepts of DNNs and the main components of CNNs, as well as,

the two metaheuristics methods, random search and evolutionary algorithms, that are adopted

for network architecture optimization were briefly discussed. The chapter reviewed related work

in the context of architecture search space, search strategy and performance evaluation strategy

for automated neural architecture search. Moreover, previous studies that have adopted CNNs

for RS image understanding tasks, scene classification and semantic segmentation, were reviewed.

The work in this dissertation draws inspiration from a lot of the topics presented in this chapter

to develop a novel automated neural architecture search method for RS image understanding as

presented in the later chapters.
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Chapter 3

Symbolic Linear Generative Encoding

The key to artificial intelligence has always been the

representation.
—Jeff Hawkins

(Founder of Palm, Inc.)

This use of building blocks to generate internal models is a

pervasive feature of complex adaptive systems.
—John H. Holland

(1929–2015)

This chapter presents a new generative encoding, symbolic linear generative encoding (SLGE), we

introduce for automatic architecture search of DNNs. SLGE combines elements of two generative

encodings, gene expression programming (GEP) and cellular encoding (CE), that were developed

based on the foundations of evolutionary algorithms to evolve modularized CNN architectures.

Section 3.1 describes SLGE background and motivation, then in section 3.2, SLGE is described in

detail, in particular, the encoding and the mapping in the architecture search space. In addition,

preliminary experimental results in general-purpose image classification domain on the CIFAR-10

and CIFAR-100 benchmarks are presented in section 3.3. The preliminary experiments aimed at

verifying the effectiveness and viability of SLGE for evolving building-blocks to develop modularized

CNN architectures. Finally, section 3.4 describes the application of SLGE to remote sensing image

understanding.

3.1 SLGE Background and Motivation

In this section, we provide a brief introduction of gene expression programming (GEP) and cellular

encoding (CE) as background knowledge to understand the symbolic linear generative encoding

Parts of this chapter were previously published in Broni-Bediako et al., 2020 (see Appendix B) and Broni-Bediako et
al., 2021 (see Appendix D). Reprinted with permission from the publishers.
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(SLGE) proposed in this dissertation. Then, the motivation for combining GEP with CE to develop

SLGE for automatic architecture search of CNNs is explained.

3.1.1 Gene Expression Programming

GEP is an evolutionary algorithm which extends the genetic algorithm (GA) and genetic

programming (GP) described in section 2.2.2. It was introduced by Ferreira in 2001 [1]. Like GP,

GEP was developed to evolve computer program or mathematical expressions. However, GEP

differs from GP with respect to the representation of its candidate solutions and the additional

genetic modification mechanisms such as transposition and gene recombination that are used [2].

In GEP, the computer programs or mathematical expressions are represented as chromosomes

of linear fixed-length strings similar to the ones in GA, and then expressed in the phenotype

space as expression-trees of different shapes and sizes similar to the parse-trees in GP. Because the

phenotypes in GEP are represented in tree-like structures, some literature in field of evolutionary

computation describe GEP as a variant of GP [3, 4]. However, GEP can be seen as a generalization

of both GA and GP techniques, since it combines the simplicity of GA and the complexity of

GP. The main advantage of GEP over GA is that it can evolve complex tree-like structures as

in GP with simple linear fixed-length strings, and in the case of GP, the effort of managing the

tree-structures (parse-trees) to ensure syntactical correctness of the evolving programs is eliminated.

Moreover, GEP explicitly separates genotype and phenotype spaces in analogue to nature using

generative (developmental) encoding scheme. Therefore, with simple, linear compact chromosomes

and a distinct separation of the genotype and phenotype spaces, GEP is more flexible and effective

compared with GA and GP [1, 2]. GEP has well resolved a large variety of problems including

symbolic regression [5], function optimization [6], time series analysis [7] and classification [8]. A

comprehensive survey on GEP and its applications has provided in Zhong et al. [9].

The chromosomes of GEP are usually composed of several genes of equal length. A gene is

structurally organized in a head and a tail format called Karva notation or K-expression with

the head consists symbols that represent both functions and terminals, and the tail contains only

terminals. The tail length t is expressed as:

t = h ∗ (n− 1) + 1 (3.1)

where h is the length of the gene head which is determined by the user for a given problem and n is

the number of arguments of the function with most arguments (arity). The genes in a chromosome

are translated into an expression-trees (phenotypes) according to the basic principles of GEP, and

then converted to mathematical expression or program using a breadth first traversal method. The
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fitness value of the corresponding chromosome is the evaluation of the mathematical expression or

program [1]. Figure 3.1(a) is an example of a chromosome with only one gene of head length h = 4.

And Figure 3.1(b) is an expression-tree of the chromosome presented in Figure 3.1(a), with which

is then expressed mathematically as:

√
(a− c) ∗ (3 + d) (3.2)

For a given problem, the number of genes for a chromosome, as well as the length of a gene head,

are a priori selected. We refer to Ferreira (2006) [2] for further information and implementation

details of GEP.

sqrt × − + a c 3 d b

head tail

(a) K-expression (genotype)

sqrt

×−

a c

+

3 d

(b) Expression-tree (phenotype)

Figure 3.1: A genotype-phenotype representation in GEP: (a) is a GEP chromosome with
only one gene of head length 4, and (b) is the expression-tree of the chromosome in (a)
with which is expressed mathematically in Equation 3.2.

3.1.2 Cellular Encoding

CE was proposed by Gruau in his PhD thesis [10]. Inspired by the developmental process in a living

organism, CE is a generative encoding scheme that was purposely developed for evolving ANNs.

Thus, it is also known as neuron-centric encoding method. It uses graph grammar that control the

division of nodes to encode ANNs. The graph grammar, also called local graph transformations,

are represented as grammar-tree (called program) similar to the parse-tree in GP. The reader must

not confused a grammar-tree that encoded as a tree, with a tree-grammar that rewrites trees. The

labels of the grammar-tree represent the instructions for generating a neural network [11–13]. The

basic instructions (graph grammar) are:

1. SEQuential division (SEQ): it splits current node into two and connects them in serial; the

child node inherits the outputs of the parent node.

2. PARallel division (PAR): it splits current node in two and connects them in parallel; both

parent and child nodes share the same inputs and outputs.

3. CoPy Input division (CPI): it performs SEQ, then shares the same inputs with parent and

child nodes.

4. CoPy Output division (CPO): it performs SEQ, then shares the same outputs with parent

and child nodes.
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5. RECursive (REC): it recalls the instructions from the root.

6. END (END): it stops the developing process.

Figure 3.2(a) is an example of grammar-tree consists of (SEQ), (PAR), (REC) and (END)

instructions. And Figure 3.2(b) shows the development of a neural network from the grammar-tree

presented in Figure 3.2(a). For further information and implementation details, we refer to Gruau

[10] and Gruau & Quatramaran [13].

CE adopts evolutionary process for evolving architectures of ANNs. In CE, the genotype is

a grammar-tree with which is expressed as candidate network architecture (phenotype) via the

sequence of local graph transformations. The genetic modification mechanisms are applied according

to the common paradigm of GP [14] which limits its flexibility in crossover and mutation operations.

The development of a neural network begins with a single initial unit1 which has both input and

output nodes, and grows into a whole ANN by executing the instructions in the grammar-tree.

Then the weights of the generated network architectures are trained using back-propagation method.

The grammar-tree in CE can be evolved to find modular structures for ANN architectures [15, 16].

CE has shown its efficiency on a wide range of problems, particularly in evolutionary robotics for

evolving ANNs for controlling two poles on a cart and locomotion of a 6-legged robot [13, 17, 18].

(a) Grammar-tree (genotype) (b) ANN development (phenotype)

Figure 3.2: (a) An example of CE grammar-tree consists of four different instructions.
The instructions are applied sequentially, based on CE procedure, from the initial node 0
and grows into the final feed-forward neural network in (b).

3.1.3 Combining Gene Expression Programming with Cellular Encoding

Both GEP and CE are evolutionary optimization methods, therefore they are metaheuristic methods

as such. As metaheuristics, they are very desirable for problems where no gradient information is

available such as neural architecture search. Unlike CE which was developed purposely for evolving

ANNs, GEP was developed to evolve mathematical expressions or programs. However, Ferreira [19]

has proposed that GEP could encode ANNs and evolve architectures of ANNs through evolutionary
1A unit is a single neuron in the original idea of CE, in this work it represents a convolutional layer of neurons
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process. Wang et al. [20] have then used GEP to evolve ANNs for regression and classification

tasks.

Given that GEP has emerged as a powerful EA due to its simplicity in implementation and

multi-gene chromosomes with flexibility in genetic modification operations as compared to CE,

and the capability for evolving architectures of ANNs, it is a promising starting point for CNNs

architecture search. Although it is easy to implement and flexible in variation operations, GEP is

not without weaknesses. The Karva notation of GEP lacks structure-preserving representation and

does not allow hierarchical compositions, hence good evolved building-blocks or modules are very

likely to be destroyed by genetic modifications in the subsequent generations [21]. Incorporating the

graph grammar of CE into the linear fixed-length string of GEP could facilitates the development

of building-blocks of different shapes and sizes for evolving architectures of neural networks. Thus,

using chromosomes of simple fixed-length string which can be easily modified for architecture search

as opposed to the complex tree-like structures in CE that are difficult to modify.

Furthermore, combining well designed generative encodings should produce compact chromo-

somes to evolve large-scale modular neural networks such as CNN architectures [22]. Also evolving

architectures with modularity property is very important, as such property can improve the network

training and enhance the network performance [23, 24]. GEP and CE have been largely employed

in neural architecture search for artificial neural networks (ANNs) in a small scale [9, 17, 25], this

work therefore provides the possibility for CNNs architecture development.

3.2 The Symbolic Linear Generative Encoding

The symbolic linear generative encoding (SLGE) is a novel generative encoding scheme which

combines elements of two well established generative encodings, GEP and CE discussed in section

3.1.1 and section 3.1.2 respectively, to evolve modularized neural network architectures. SLGE

harnesses the strengths of GEP and CE for automatic architecture search of DNNs, in particular

CNN architectures, for visual perception tasks. By integrating the modularity features of CE

into the linear representation of GEP to induce compact chromosomes which are able to evolve

building-blocks of different shapes and sizes for construction of modularized CNN architectures.

SLGE embeds local graph transformations in linear fixed-length strings for the representation of

candidate CNN architectures. It uses first-in-first-out (FIFO) queue strategy to design a genotype-

phenotype mapping mechanism to translate the information encoded in the chromosomes into

building-blocks for individual candidate CNN architectures. Besides the conventional genetic

modification mechanisms (such as crossover, mutation, selection), SLGE also adopts some of the

mechanisms in GEP, such as transposition and gene crossover, and follows the same fundamental

evolutionary process as GEP to evolve candidate architectures. Like GEP, any genetic modification
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operation in SLGE always results in syntactically correct phenotype, and it is easy to implement as

well. With the inherited features of multi-gene and modularity, SLGE can evolve building-blocks

which have multi-branch and shortcut (skip) connections [23, 26] similar to the ones commonly

adopted by human experts. This is very important because such modularity can improve the

network training and enhance the network performance [24, 27].

In SLGE, the cell-based search space [28] is designed to induce a wide range of building-blocks for

architectures of CNNs. We implement SLGE on the top of geppy2, a GEP Python library which is

built on top of an evolutionary algorithms framework called DEAP [29]. The CNN architectures are

implemented in the PyTorch [30] deep learning framework. The remain of this section will describe

the representation of the search space in terms of the genotype representation, the phenotype

representation and the genotype-phenotype mapping.

3.2.1 Genotype Representation

A genotype or chromosome in SLGE is a simple program to grow a building-block, also called a

cell. The program is a linear fixed-length string which consists of multiple genes of equal length,

structured in head-and-tail format similar to the genotype representation in GEP (see Figure 3.3).

The head of a gene composes of CE graph grammar and the tail is made up of common CNN

convolution and pooling operations. Given the length of a gene head h, the tail length t is a function

of h expressed as:

t = h+ 1 (3.3)

Thus, the length of a gene in SLGE can be expressed as:

2h+ 1 (3.4)

And the length of a chromosome consists of m genes is:

m ∗ (2h+ 1) (3.5)

The length of a gene head h and the number of genes m in a chromosome are hyperparameters

that must be set by the user.

END SEQ SEQ Max 1×1 3×3 3×3 CPI CPO END 3×3 Avg 5×5 Max SEQ CPI END 5×5 3×3 3×3 Avg

Gene
head tail

Figure 3.3: A schematic representation of SLGE genotype.

2 https://geppy.readthedocs.io/en/latest/index.html
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With the exception of recursive instruction (REC), the head of a gene consists of the CE

graph grammar described in section 3.1.2. The (REC) instruction is not used because it is be

more appropriate for evolving recurrent neural networks (RNNs) which is out of the scope of

this work. Figure 3.4 depicts the graphical illustration of (SEQ), (CPI) and (CPO) instructions.

The standard convolution operations such as Conv1×1, Conv3×3 and Conv5×5, and average

pooling and max pooling operations are used for a tail of a gene to achieve flexibility in the search

space. This will enable SLGE to evolve modules similar to human experts designed ones like

Inception-ResNet-Blocks [23]. In Figure 3.3, 1×1, 3×3 and 5×5 represent Conv1×1, Conv3×3 and

Conv5×5 standard convolution operations respectively, and Avg and Max represent average pooling

and max pooling operations respectively. The genotype space representation and phenotype space

representation in SLGE are distinctively separated. The algorithm that encodes the building-blocks

for candidate architectures as chromosomes of linear fixed-length strings (see example in Figure

3.3) in the genotype space is presented in Algorithm 3. The decoding algorithm, Algorithm 4,

translates the chromosomes in the genotype space into the phenotype space of cells (see example in

Figure 3.5) for candidate CNN architectures. The complexity of the SLGE search space can be

expressed as: n×(# of transformation functions)h×(# of operations)h+1 possible chromosomes

(cells) of candidate CNN architectures, where h is a gene head length and n is the number of genes

in a chromosome. For example, with a set of four possible operations defined for normal cell and

the four CE graph transformation functions, a chromosome with h = 3 and n = 3 will yield 49,152

possible chromosomes of candidate architectures. The large number of possible chromosomes may

express the potential diversity of the search space.

Input

Parent

Child

Output

Input

Parent

Child

Output

Input

Parent

Child

Output

SQE CPI CPO

Figure 3.4: The graphical illustration of SQE, CPI and CPO graph
transformation functions of cellular encoding (CE).

3.2.2 Phenotype Representation

In SLGE, a phenotype is a building-block (cell) for a candidate architecture. The cell is a directed

acyclic graph (DAG): G = (V,E), where V is a set of nodes and E is a set of connections. The input

and output nodes are input and output tensors respectively, and the other nodes represent various

convolution and pooling operations. The operations without successor are depthwise concatenated

to produce the output tensor, and if an operation has more than one predecessor, the feature maps

of the predecessors are added together. The connections are latent information flow direction in the
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Algorithm 3 The algorithm that encodes a building-block for candidate architecture as linear
fixed-length string chromosome. As inputs, it takes a CE graph transformation functions set fset
and operations (convolution and pooling) set pset as basic search units in the search space, and m
(the number of genes) and h (head length) as hyperparameters. It produces a SLGE chromosome
as an output.
input : fset, pset, m, h
output: SLGE chromosome

1 ch ← string_list() //Initialize chromosome as an empty string list
2 for i ← 1 to n do
3 g ← Gene(fset, pset, h) //Call Gene function
4 ch.append(g) //Add a gene g to chromosome ch
5 end for
6 return ch //Return a chromosome of fixed-length m(2h + 1)
7 function Gene(fset, pset, h)
8 t ← h+1 //Compute the length of a gene tail
9 g ← string_list() //Initialize a gene as an empty string list

10 for i ← 1 to h do
11 g.append(select(ce_funcs)) //Randomly pick a CE function
12 end for
13 for i ← 1 to t do
14 g.append(select(conv_ops)) //Randomly pick a convolution or pooling operation
15 end for
16 return g //Return a gene of fixed-length 2h + 1
17 end function

architecture. Figure 3.5 is the phenotype representation of the genotype (chromosome) presented

in Figure 3.3. The process of translating a chromosome in a genotype space into a phenotype space

of building-blocks for candidate architectures in Algorithms 4 and 5.

Input

Output

Max
Pool

Conv
3×3

Avg
Pool

Conv
5×5

Conv
5×5

Conv
3×3

Conv
3×3

Figure 3.5: A schematic representation of SLGE phenotype. This is
the phenotype (cell) representation of the chromosome in Figure 3.3.

3.2.3 Genotype-Phenotype Mapping

The development of a phenotype in SLGE starts from an initial cell Gτ with the input and the

output nodes. Then each gene in the chromosome of the phenotype is developed as a subgraph Gi

with the first operation (convolution or pooling) in its tail as hidden node connected to input and

output nodes. The subgraph Gi is developed by applying the head program of the gene to its tail

part. The final cell Gτ , that is the phenotype, is the merging of the subgraphs Gi:n at the input

and output nodes, that is Gτ= Γ(Gi:n), where Γ is the function to merge the subgraphs Gi:n. The

evolved cells are repeatedly stacked, for a predefined number of times, to build modularized CNN
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architectures as candidate solutions. The Algorithms 4 and 5 represent the genotype-phenotype

mapping in SLGE.

Algorithm 4 The algorithm for translating a SLGE chromosome into a cell or building-block for
a candidate architecture.
input : SLGE chromosome ϕ ∈ Φgenotyp-space

output: A directed acyclic graph (DAG) of a cell Gτ ∈ Ωphenotype-space

1 num ← len(ϕ) //Get the number of genes in the chromosome ϕ
2 DAG.init() //Initialize a cell Gτ as DAG with the input and the output
3 for i ← 1 to num do
4 ϕ(i) ← ϕ[i] //Get a gene i in the chromosome ϕ
5 Create a queue Q which contains all operations in the gene ϕ(i)

6 pnode ← Q.dequeue(0) //Get a parent node pnode and remove
7 cnode ← Q.next() //Get a child node cnode
8 Gi ← subgraph(pnode) //Initialize a subgraph Gi for ϕ(i) with a pnode with the input

//and the output
9 pos ← 0

10 while Q is not empty do
11 gtf ← ϕ(i)[pos] //Get a CE graph transformation function
12 if gtf = “END” then
13 DAG.merge(Gi) //Merge Gi to the cell Gτ at input and output nodes
14 return DAG //Return DAG as cell Gτ
15 end if
16 Transform(Gi, gtf, pnode, cnode) //Call Algorithm 5
17 pnode ← Q.dequeue(0)
18 cnode ← Q.next()
19 pos ← pos + 1
20 end while
21 DAG.merge(Gi) //Merge Gi to the cell Gτ at input and output nodes
22 end for
23 return DAG //Return DAG as cell Gτ

3.3 Preliminary Experiments on CIFAR-10 and CIFAR-100

In this section, SLGE is applied to evolve CNNs in general-purpose image classification domain. The

preliminary experiments aimed at verifying the effectiveness and viability of SLGE for discovering

cells or building-blocks to evolve modularized CNN architectures. Because remotely-sensed imagery

datasets are mostly large, for a fast preliminary experiments, two relatively small general-purpose

image classification benchmarks, CIFAR-10 and CIFAR-100, were used. The experimental settings

and detailed results are presented in Appendix ??, a conference paper that was presented at 2020

SSCI IEEE conference.

3.3.1 CIFAR-10 and CIFAR-100 Benchmarks

CIFAR-10 and CIFAR-100 benchmarks [31] are widely used general-purpose image classification

benchmarks in computer vision and deep learning research. Each dataset consists of 50,000 training
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Algorithm 5 A procedure calls in Algorithm 4 to transform a subgraph Gi with a parent node
pnode to generate a child node cnode via the CE graph transformation function gtf.

1 procedure Transform(Gi, gtf, pnode, cnode)
2 if gtf = SEQ then
3 successor ← list(Gi.successors(pnode))
4 for node in successor do
5 Gi.addEdge(cnode, node)
6 Gi.removeEdge(pnode, node)
7 end for
8 Gi.addEdge(pnode, cnode)
9 end if

Input

Parent

Child

Output

10 if gtf = CPI then
11 predecessor ← list(Gi.predecessors(pnode))
12 successor ← list(Gi.successors(pnode))
13 for node in predecessor do
14 Gi.addEdge(node, cnode)
15 end for
16 for node in successor do
17 Gi.addEdge(cnode, node)
18 Gi.removeEdge(pnode, node)
19 end for
20 Gi.addEdge(pnode, cnode)
21 end if

input

parent

child

output

22 if gtf = CPO then
23 successor ← list(Gi.successors(pnode))
24 for node in successor do
25 Gi.addEdge(cnode, node)
26 end for
27 Gi.addEdge(pnode, cnode)
28 end if

input

parent

child

output

29 end procedure

and 10,000 testing RGB images. The images are of size 32×32 RGB pixels. The images in CIFAR-10

are in 10 classes, and the ones in CIFAR-100 are in 100 classes. In the experiments, SLGE was used

to evolve the architectures of CNNs to maximize their classification performance on the CIFAR-10

dataset, and the architecture of the best found network was transferred to CIFAR-100 dataset to

verify its robustness. As used in evaluating manually designed CNNs, CIFAR-10 and CIFAR-100

datasets are considered as an acceptable way to evaluate the effectiveness of CNN architectures

found by SLGE. Figure 3.6 shows examples of images from each class of the CIFAR-10 dataset.

Figure 3.6: Examples of CIFAR-10 dataset images from the 10 classes [32].
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3.3.2 Formulating Architecture Search Problem

To search for architectures for CNNs in visual perception tasks, we formulated the neural architecture

search (NAS) problem as follows. Given the problem space ψ = {A,S,P, tD, vD}, where A is the

architecture search space, S represents the search strategy, P denotes the performance measure,

and tD and vD are the training and validation datasets respectively, the objective is to find a small

CNN architecture a∗ ∈ A via random search or evolutionary search strategy S, which maximizes the

performance measure P of accuracy on the validation dataset vD after training it on the training

dataset tD. Small architecture here means a CNN model has the number of parameters θ less than

or equal to the target network size. Mathematically, the objective function F for the automatic

architecture search of CNNs can be formulated as:

F(ψ) = max
θ, a

P(L(a(θ), tD | S, a ∈ A), vD)

s.t. the number of parameters θ ≤ Tparams

(3.6)

where L represents the training of the model parameters θ with the loss function and Tparams

denotes the target number of parameters.

3.3.3 Preliminary Experimental Results

The evolved network architectures were built with 3×3 convolution stem and initial output channel

size 40, followed by three blocks denoted as B=[b1, b2, b3], then a classifier. Each block i consist of

repeated cell of bi times. A max-pooling layer inserted between the blocks to downsample. The

max-pooling reduces the feature maps of each block by a half and the channels are doubled after

each max-pooling operation.

First, we performed six experiments, three each on single-gene and multi-gene chromosomes, on

CIFAR-10 dataset using random search strategy with early-stopping. Each multi-gene chromosome

consists of two genes. In each experiment, ten chromosomes were randomly generated and trained

from the scratch to analysis the effectiveness of a single-gene and a multi-gene SLGE chromosomes.

The target number of parameters Tparams was set to 4M. Figure 3.7 shows that the multi-gene

chromosomes achieved better classification error rate than single-gene chromosomes. The multi-gene

chromosomes performed well because they evolved into a cell with multi-branch connections, which

can improve training and enhance the networks performance.

We then adopted the SLGE multi-gene chromosomes and the evolutionary process in GEP to

run eight more experiments, two each of four different configurations of multi-gene chromosomes,

on CIFAR-10. The best discovered network was built with B=[3, 3, 1] and has 2.8M parameters.

Figure 3.8 shows the graphical representation of the cell that was used to build the best discovered

44



Extending SLGE to Remote Sensing Image Understanding

Figure 3.7: SLGE single-gene vs multi-gene chromosomes on CIFAR-10.

network. In experiments, the viability of SLGE was validated in discovering networks that improved

the performance of the state-of-the-art manually designed CNNs on CIFAR-10 benchmarks and

achieved a competitive results with the state-of-the-art automated NAS methods using fewer

parameters and GPU resources. The best discovered network obtained 3.74% classification error

rate on CIFAR-10. To evaluate the effectiveness of the best discovered network, we transferred its

architecture to CIFAR-100 dataset by replacing the classifier head with 100 classes and trained it

from scratch. It achieved 22.95% classification error rate using approximately 2.8M parameters.

These are considerable competitive results which demonstrate the effectiveness and viability of

SLGE for automated architecture search in visual perception tasks.
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Figure 3.8: Visualization of the cell or building-block for the best
discovered network by SLGE on CIFAR-10 dataset.

3.4 Extending SLGE to Remote Sensing Image Understanding

DNNs have recently been introduced into the remote sensing (RS) community for the interpretation

and understanding of remotely-sensed imagery. Since 2014, CNNs have achieved excellent

performance in the understanding and interpretation of high-resolution satellite or aerial images.

Several different networks have been suggested for various RS image understanding tasks including

land-use and land-cover classification, scene classification, semantic segmentation and object

detection, and most of them are based on general-purpose image pre-trained CNNs models [33–35]

Unlike general-purpose images commonly used in the field computer vision (cf. section 3.3.1 ),
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remote sensing images are usually in a top-view perspective with complex background (see Figure

3.9). Moreover, remote sensing images are considerably different from general-purpose images

with respect to spectral bands, spatial resolution and radiometric resolution [36]. Therefore, the

pre-trained CNNs learned on general-purpose image dataset (e.g. ImageNet [37]) may not be

sufficient for RS image understanding tasks. Inspired by these observations, we are convinced that

an automated method to design CNN architectures suitable for RS image understand tasks is very

important.

Based on the preliminary experimental results which demonstrate that SLGE is an effective and

viable approach for automated NAS in visual perception tasks, we improved the search space and

extended SLGE to find well performing CNN architectures for the understanding of high-resolution

satellite or aerial images. By this, we introduced automated NAS into the RS community to enable

the domain research scientists to adopt DNNs systems with little or no expertise in deep learning.

Using random search with early-stopping strategy, as presented in chapter 4, SLGE was used to

evolve modularized CNN architectures to classify single-label and multi-label multispectral satellite

image scenes and single-label RGB high-resolution aerial image scenes. Also in chapter 5, the

evolutionary algorithm procedure in GEP is adopted with an improved version of SLGE search

space to evolve modularized CNN architectures, dubbed SLGENet, for semantic segmentation of

high-resolution aerial images.

(a) NWPU-RESISC45 dataset (b) BigEarthNet dataset

Figure 3.9: Examples of RS images: (a) Single-label RGB high-resolution aerial images
from NWPU-RESISC45 dataset [38], and (b) Multi-label multispectral satellite images
form BigEarthNet dataset [39].

3.5 Summary

This chapter presented a novel representation scheme called SLGE that is capable of evolving

modularized CNN architectures for visual perception tasks. The approach combines two well

established and powerful generative encoding schemes, called GEP and CE, and harnesses their

strengths such as the simplification and modularity features of GEP and CE respectively for

efficient automatic architecture search of CNNs via random search and evolutionary algorithm.
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Preliminary experimental results are presented in CIFAR-10 and CIFAR-100 general-purpose image

classification domain. The results show that networks discovered by SLGE are competitive with

the state-of-the-art manually designed and automated NAS-based networks. In the subsequent

chapters, the application of SLGE to remote sensing image understanding tasks such as scene

classification and semantic segmentation are presented.
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Chapter 4

Extending SLGE to Remote Sensing Image
Scene Classification

Random search can be more efficient than nonrandom

search—something that Good and Turing had discovered at

Bletchley Park. A random network, whether of neurons,

computers, words, or ideas, contains solutions, waiting to

be discovered, to problems that need not be explicitly

defined.

— George B. Dyson

(Turing’s Cathedral)

So far, based on the preliminary experimental results presented in chapter 3, SLGE has demonstrated

to be viable for evolving and optimizing the architectures of CNNs for visual perception tasks.

In this chapter, SLGE-based architecture representation is explored by the means of random

search with early-stopping strategy to find well performing modularized CNN architectures for the

classification of single-label and multi-label multispectral satellite image scenes and single-label

RGB high-resolution aerial image scenes. Four RS image scene classification benchmarks, two RGB

high-resolution aerial image datasets and two multispectral satellite image datasets, are employed

for the experiments. Although random search is a simple search strategy, it is a competitive strategy

if the architecture search space is not intractable and it converges to a solution within a distance of

the global optimum with probability one. By using random search, we also validate the tractability

and expressiveness of SLGE representation space.

Parts of this chapter is published in Broni-Bediako et al., 2021 (see Appendix C). Reprinted with permission from
the publisher.
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4.1 Introduction

RS image scene classification has many important applications including urban planning, land

resource management, geospatial object detection and environmental monitoring [1]. Vast volumes

of very high resolution RS images have become easily available due to progress in satellite technology

[2]. For over 60 years, researchers have been applying learning algorithms in resolving different

kinds of RS image classification [3]. Interpretation of RS imagery is a complex and tedious task.

Until relatively recent years, even a simple task like identifying building footprints requires laborious

sub-specialities. Deep learning [4] has opened up an entirely novel frontier of learning algorithms

including convolutional neural networks (CNNs) techniques that have been adopted in the RS

research community. Since 2014, there has been a significant progress in RS scene classification

using CNN models. Most CNN-based RS scene classification studies employed pre-trained networks

as feature extractors for scene classification. And other works focus on fine-tuning the pre-trained

networks on RS image scene classification datasets [5–7]. Several studies depart from pre-trained

networks and manually designed task-specific architectures for RS scene classification [8–10]. And

for the first time, Chen et al. [11] introduced automated NAS into RS scene classification. Refer to

section 2.4.1 of chapter 2 for review on RS scene classification with CNNs.

4.1.1 Automated NAS with Random Search

Various search strategies have been adopted in automated NAS to learn CNN architectures for

computer vision and natural language processing (NLP) problems. This include reinforcement

learning [12, 13], evolutionary algorithms [14, 15], gradient-based methods [16, 17], Bayesian

optimization [18] and random search [19, 20]. Random search strategy is a simple optimization

method that is able to find models that are good or better within a small fraction of the computation

time compare with grid search. It can find better models by effectively searching a larger, less

promising search space [21]. Many open-source hyper-parameter optimization tools implement

random search, including Vizier [22] and AHSA [23] used in Chen et al. [19] and Li & Talwalkar

et al. [24] respectively, to find CNN architecture via random search. As highlighted in Yu et al.

[25], random search is competitive with the state-of-the-art reinforcement learning [26, 27] and

other NAS methods [14, 16, 28]. And it converges to a solution within a distance of the global

optimum with probability one [29, 30]. The efficiency of random search has further been explored

using classical random graph models to generate CNNs architectures [20].
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4.2 Methodology

Based on the formulated architecture search problem in section 3.3.2 of chapter 3, we search for

CNN architectures for RS image scene classification using random search with early-stopping

strategy. Following previous studies in automated NAS [13, 14], the SLGE-based random search

searches for the topological structure of cells which are repeatedly stacked to construct an entire

CNN architecture (see Fig. 4.1). The cell is a directed acyclic graph (DAG) generated via the search

strategy S from the architecture search space A. Each node of the cell represents a convolutional

layer whereas edges are representation of latent information flow direction in the CNN architecture.

To reduce computational cost, proxy task is normally employ on the search space to search for

good architectures [26, 31]. And to make the architecture search result robust, we repeat the

search several times with different random seeds. The search space and proxy task adopted in the

experiments are described as follows.
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Figure 4.1: The entire CNN architecture is constructed by stacking an auto-generated
cell (see Fig. 4.3) as cell blocks marked in yellow. The architecture begins with two 3×3
convolution layers followed by several auto-generated cell blocks repeated N times with
average pooling layers inserted in between them to downsample the spatial resolutions.

4.2.1 Search Space

The SLGE search space represents individual architectures as linear string structures (see Fig. 4.2)

as described in chapter 3. And the mapping function presented in chapter 3 is used to translate

the linear structure into a cell (see Fig. 4.3), which is typically stacked repeatedly to build a

final CNN architecture in Fig. 4.1. Three types of convolution operations conv3×3, conv1×1 and

conv3×3 depthwise are used as cell nodes. The identity operation which is employed in other studies

[14, 16] to enable shortcut connections in a network is not explicitly included in the set of possible

convolutional operations because SLGE implicitly encodes the shortcut (or skip) connections (see

section 3.2.1 of chapter 3). We adopt four different search spaces of SLGE linear string structures

for the experiments (see Table 4.1). This defines the overall search space with nodes between 3 and

16 in a cell, and contains approximately 2.4× 106 possible cells in 16-node case. Refer to chapter 3

for further details of SLGE representation space.
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Table 4.1: The four different SLGE search spaces use in the experiments.

SLGE Linear Structure Settings
Search Space Element Head Tail
A 3 2 3
B 3 3 4
C 4 2 3
D 4 3 4

SEQ SEQ END 3×3Dw 1×1 3×3 3×3Dw CPI CPO SEQ 1×1 3×3 3×3 1×1 SEQ SEQ SEQ 3×3Dw 1×1 3×3 3×3

an element
head tail

Figure 4.2: SLGE linear structure of the best discovered network. SEQ,CPO,CPI and
END are transformation functions (refer to section 3.2 of chapter 3 for details), and 1×1,
3×3 and 3×3Dw (depthwise) are convolution operations.

Input

Output

3×3Dw

1×1

3×3

1×1

3×3

3×3

1×1

3×3Dw

1×1

3×3

3×3

Figure 4.3: SLGE module of the best discovered network. A cell representation of
the linear string shown in Fig. 4.2. The convolution operations without successor are
depthwise concatenated to produce an output, and if an operation has more than one
predecessor, the feature maps of the predecessors are added together. This is a common
approach in cell-based search [13].

4.2.2 Proxy Task

Searching for large-scale CNN architectures directly on a large datasets such as NWPU-RESISC45

and BigEarthNet is computationally expensive. It takes several days for each architecture to

converge. To reduce the amount of computation resources required during the architecture search,

we employed a small-scale task as a proxy task for quick-search-evaluation. This may provide a

predictive signal about training the large-scale architecture settings. Following previous studies in

computer vision [13, 14, 26], we designed a proxy task by employing a small-scale network which

consist of few repeated cell blocks in Fig. 4.1 and resize the RS images into 32×32 low resolution

to perform the architecture search over small networks. The proxy task network begins with only

one 3×3 convolution stem with output channel size C, followed by three cell blocks denoted as

B = [b1, b2, b3], then a classifier. Each block i in B consists of repeated cell of bi times with average

pooling layer inserted between them to downsample the feature dimension. Average pooling is used

to reduce the feature maps resolutions of each cell block by half, then the channels C is doubled.

We implement the proxy task with 25,200 sample set of NWPU-RESISC45 dataset. The sample
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set is split into 80% training and 20% validation subsets with normalization. To speed up the

search process, proxy task networks with C = 32 and B = [2, 2, 2], which have relatively small

model memory-footprint (less than 2M parameters), are used. Each generated proxy network is

trained on the training subset without any data augmentation for 100 epochs with batch size of 256

and evaluated on the validation subset to determine its classification accuracy. Then, the top proxy

networks are re-trained from scratch to full convergence in the large-scale architecture settings

shown in Fig. 4.1 and present as the best CNNs architectures.

4.3 Experiments

All the architecture searches are performed on the NWPU-RESISC45 single-label classification

task. A total of 400 CNN architectures are searched on a 11GB GPU GeForce GTX1080 Ti

machine using five different random seeds for 9.6 GPU days. The best architectures discovered

on NWPU-RESISC45 are evaluated on AID single-label, EuroSAT single-label and BigEarthNet

multi-label scene classification tasks to verify their effectiveness. We compared the results on

NWPU-RESISC45, AID and EuroSAT with the state-of-the-art transfer learning models and a

NAS-based baseline model, whereas the results on BigEarthNet are compared with the state-of-the-

art CNN models trained from scratch and the baseline. We implement the architectures in the

PyTorch [32] deep learning framework.

4.3.1 Datasets

The NWPU-RESISC451 is a single-label dataset created by the Northwestern Polytechnic University

[1]. The dataset consists of 31,500 satellite images categorized into 45 classes. Each class includes

700 images of size 256×256 in RGB space with spatial resolution varying from 30m to 0.2m. The

images were acquired from Google Earth imagery of more than 100 countries and regions. AID2 is

made up of satellite images acquired from Google Earth imagery of different countries and regions

[33]. The dataset consists of 10,000 single-label images categorized into 30 classes. The number

of samples per class varies from 220 up to 420. Each image is 600×600 pixels in RGB space with

spatial resolution varying from about 8m to about 0.5m.

EuroSAT3 is a single-label multispectral image dataset acquired from Sentinel-2 satellite images

of cities in the 34 European countries [34]. The dataset consists of 10 different classes with 2,000 to

3,000 images per class. In total, the dataset has 27,000 images with 13 different spectral bands of

size 64×64 pixels. We use the images of the RGB and RGB-NIR (RGB and Near-infrared) 10m
1https://1drv.ms/u/s!AmgKYzARBl5ca3HNaHIlzp_IXjs
2https://captain-whu.github.io/AID/
3https://github.com/phelber/EuroSAT
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bands. BigEarthNet4 is a multi-label dataset created from Sentinel-2 multispectral satellite images

scattered over different European countries [35]. The dataset consists of 590,326 images with 12

different spectral bands. Each image is associated with one or more class labels extracted from

CORINE land cover (CLC) map of 2018. Originally, BigEarthNet has 43 classes, then the authors

realigned it in a new nomenclature of 19 classes based on CLC Level-3 nomenclature. We use the

new nomenclature classes, which is called BigEarthNet19 [36], and the RGB and RGB-NIR 10m

bands images of 120×120 pixels.

NWPU-RESISC45, AID and EuroSAT are challenging RS scene classification benchmarks,

however, BigEarthNet is the more complex. We randomly split NWPU-RESISC45, AID and

EuroSAT into 80/20 ratio for training and testing respectively, and 20% of the training set is used

as validation set. The split is applied class-wise. BigEarthNet is split as 269,695 for training,

123,723 for validation and 125,866 for testing as provided by the authors. The testing sets are only

used for the final performance evaluation of a model.

4.3.2 Training Details

During the architecture search, the candidate architectures are trained and evaluated on NWPU-

RESISC45 based on the proxy task described in section 4.2.2. After the search, the cell of the

best found architecture is repeatedly stacked as 4 cell-block B = [b1, b2, b3, b4] with initial channels

C = 16, and average pooling layer is inserted between them to build the large-scale CNN architecture

in Fig. 4.1, subject to model size constraint Tparams ≤ 5.5M. We resized the images in NWPU-

RESISC45 and AID to 224×224, but maintained the 64×64 and 120×120 size of EuroSAT and

BigEarthNet respectively, and augmented the training subset as in He et al. [37]. The large-scale

architecture is trained from scratch on NWPU-RESISC45, AID and EuroSAT for 600 epochs, and

on BigEarthNet for 200 epochs. We use a batch size of 128 for all the datasets. We use fastai5

[38], a PyTorch-based library, for the training of the architectures. All the architectures, during

search and after search, are trained using 1-cycle policy in Smith [39] with Adam optimizer [40].

The learning rate is set to go from 0.0004 to 0.01 linearly while the momentum goes from 0.95 to

0.85 linearly in phase one of 1-cycle policy. Then in phase two, the learning rates follows cosine

annealing from 0.01 to 0, as the momentum goes from 0.85 to 0.95 with the same annealing, and

the weight decay is set to 0.0001. These are default values in 1-cycle policy [39].

4http://bigearth.net/
5https://fastai1.fast.ai/
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4.3.3 Baseline Network

We select EfficientNets [41], a gradient-based NAS model pre-trained on ImageNet, as a baseline

for the study. For a fair comparison, we adopt EfficientNet-B06 model which has 5.3M parameters

[41] comparable to those of our best networks. The experimental results on the four datasets

(NWPU-RESISC45, AID, EuroSAT and BigEarthNet) are compared with EfficientNet-B0 trained

from scratch and with fine-tuning from the parameters learned on ImageNet. The linear classifier

of EfficientNet-B0 was simply replaced with a linear classifier which corresponds to the number

of classes in the considered datasets. EfficientNet-B0 was fully trained from scratch with 80/20

training-testing ratio using the hyper-parameters described in section 4.3.2. On fine-tuning, the

replaced linear classifier was trained for 100 epochs with the same training settings in section 4.3.2.

Then, we halved the learning rate and trained the whole model for 150 epochs. The baseline was

fine-tuned with both 20/80 and 80/20 training-testing ratios on NWPU-RESISC45, and 50/50 and

80/20 training-testing ratios on AID. On EuroSAT and BigEarthNet, it was fine-tuned it with only

80/20 training-testing ratios.

4.3.4 Searching on NWPU-RESISC45 Dataset

To investigate the effectiveness of proposed method, we conducted several experiments on 4 different

search spaces we adopted from SLGE (see Table 4.1). For each search space, the experiment was

performed 5 times with different random seeds. We randomly sampled 20 individual cells per

experiment to build 20 different proxy architectures, then trained and evaluated based on the proxy

task described in section 4.2.2. A total of 400 individual cells were sampled to build 400 different

architectures during the architecture search process. Fig. 4.4 shows the search results of the proxy

task for each search space. The results show an average accuracy of 82.23% with 1.72% standard

deviation over the 400 proxy networks. Although the networks in the proxy task were not trained

to converge, the results surpassed the feature extraction method in Cheng et al. [1] and compete

with the fine-tuning approach in Jiang et al. [42].

The cells of top 20 networks (one from each of the five experiments per a search space) found

during the architecture search are used to build 20 large-scale architectures (see Fig. 4.1), and

trained from scratch using the training settings in section 4.3.2. The architectures were trained and

evaluated ten times to reduce the bias effect, and the results were averaged to determine the best

network for RS scene classification. The best network achieved 96.56±0.13% accuracy as shown in

Table 4.2. The results show an average accuracy of 95.93% with 0.21% standard deviation over the

top 20 networks.
6https://github.com/lukemelas/EfficientNet-PyTorch
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Figure 4.4: Search results of the 400 proxy networks trained according to the proxy task
described in section 4.2.2. In each search space, we performed 5 experiments by sampling 20
individual cells per experiment to build 20 different proxy architectures and trained each for
100 epochs. The results show accuracy distribution of 20 networks per experiment in each
search space. It took 9.6 GPU days to train and evaluate all the 400 proxy networks.

Table 4.2: The results of top 20 networks found via proxy task and fully trained on NWPU-
RESISC45 in the large-scale architecture settings (see Fig. 1). Boldface is the best result.

Search Space Seed Cell Block Accuracy (%) Size

A

320 [4, 5, 5, 3] 95.37±0.09 5.3M
321 [4, 4, 4, 3] 95.12±0.19 5.5M
322 [3, 2, 1, 2] 96.12±0.18 5.5M
323 [3, 2, 1, 2] 95.45±0.31 5.4M
324 [3, 3, 1, 2] 95.74±0.23 5.5M

B

330 [2, 2, 1, 1] 96.02±0.14 5.0M
331 [2, 3, 3, 1] 96.36±0.11 5.4M
332 [2, 1, 2, 1] 96.13±0.14 5.4M
333 [3, 4, 4, 1] 95.91±0.21 5.3M
334 [4, 4, 4, 3] 95.72±0.20 5.0M

C

420 [4, 3, 4, 3] 96.14±0.15 5.5M
421 [2, 2, 1, 2] 95.73±0.18 5.5M
422 [2, 3, 2, 1] 96.56±0.13 5.1M
423 [2, 3, 3, 2] 95.37±0.86 5.2M
424 [3, 4, 4, 3] 95.81±0.10 5.5M

D

430 [2, 2, 1, 1] 96.08±0.15 5.1M
431 [3, 4, 4, 1] 96.44±0.21 5.5M
432 [2, 2, 1, 1] 96.02±0385 5.0M
433 [2, 2, 1, 1] 96.28±0.11 5.3M
434 [2, 2, 2, 1] 96.21±0.13 5.0M

In Table 4.3, we compared the results with the state-of-the-art transfer learning methods and

the baseline in terms of classification accuracy, model size and FLOPS. The state-of-the-art transfer

learning methods on NWPU-RESISC45 in the literature are trained with 20/80 training-testing

ratio. For competitive comparison, we compared our results to these methods (see Table 4.3).

However, for a fair comparison, we also compared the results with the state-of-the-art handcrafted

CNNs networks and gradient-based NAS networks which are trained from scratch with 80/20

training-testing ratio in [43] (see Table 4.5).

With few parameters, our best network improved the performance of most of the popular transfer

learning methods on NWPU-RESISC4. Table 4.3 shows an approximately 0.2% improvement over

the state-of-the-art results reported in DLGFF [44]. By analysing Table 4.3, one can observe that
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fine-tuning the baseline with 80/20 training-testing ratio achieved a competitive result. However,

training the baseline from scratch, our best network achieved an accuracy of approximately 1%

higher than the baseline. Table 4.5 shows our best discovered network achieved an approximately

3% higher accuracy than gradient-based NAS model [43]. In addition, the best network improved

the performance of the state-of-the-art handcrafted CNN models reported in [43] by 4% (see Table

4.5).

Table 4.3: Comparisons between our method and the baseline network and the state-of-the-art
transfer learning (feature extraction and fine-tuning) methods with 20/80 training-testing ratio
on NWPU-RESISC45 dataset. Here our method is auto-generated architectures discovered on
NWPU-RESISC45. The baseline results are based on our training. Boldface is the best result.

Model Accuracy (%) Size FLOPS Method
BoCF with VGGNet-16 [45] 84.32±0.17 138M† 15.5B†

Feature
Extraction
(Handcrafted)

SAL-TS-Net fusion with GoogLeNet [46] 87.01±0.19 13.6M† 2.80B†
D-CNN with VGGNet-16 [47] 91.89±0.22 138M† 15.5B†
DLGFF with CaffeNet [44] 96.37±0.05 60M† 0.72B†
DDRL-AM with ResNet-18 [48] 92.46±0.09 11.5M† 1.82B†
GLANet with VGGNet-16 [49] 93.45±0.17 138M† 15.5B†
FDPResNet with ResNet-50 [50] 95.40±0.11 25.6M† 4.12B†

VGGNet-16 with SVM [1] 90.36±0.18 138M† 15.5B†
Fine-Tuning
(Handcrafted)

VGGNet-16 with XGBoost [42] 83.35 138M† 15.5B†
Fusion of VGGNet-16 & CaffeNet [51] 95.36±0.22 198M† 16.2B†
Fusion of ResNet-50 & VGGNet-16 [52] 94.03 163.6M† 19.6B†

EfficientNet-B0 [41] (baseline)

91.98∗ 5.3M 0.39B Fine-Tuning
(Auto-Generated)96.43‡ 5.3M 0.39B

95.90‡ 5.3M 0.39B Fully-Trained
(Auto-Generated)

Our method (C=16)

B=[3, 2, 1, 2] 96.12±0.18‡ 5.5M 0.58B
Fully-Trained
(Auto-Generated)

B=[2, 3, 3, 1] 96.36±0.11‡ 5.4M 0.91B
B=[2, 3, 2, 1] 96.56±0.13‡ 5.1M 0.56B
B=[3, 4, 4, 1] 96.44±0.21‡ 5.5M 0.73B

† Model size and FLOPS are based on the open source backbone pre-trained networks.
∗ This result is based on 20/80 training-testing ratio.
‡ This results is based on 80/20 training-testing ratio.

To provide further understanding of the performance of our proposed approach, we present a

confusion matrix (see Fig. 4.5) to illustrate the correct and incorrect classification results of our best

network on NWPU-RESISC4. Fig. 4.5 shows that our best network achieved classification accuracy

rate greater than 96% on most of the scene classes. Our best network achieved high accuracy rate

on image scenes such as chaparral, forest, sea ice and snowberg which have single texture and exhibit

low inter-class similarity. On the other hand, scenes such as commercial area, industrial area and

medium residential which have complex textural composition with high inter-class similarity and

intra-class diversity experienced low accuracy rate. The highest misclassification results occurs

between palace and church classes with 89% and 76% accuracy rate respectively. Images in both

classes are very similar in structural and textural characteristics (see Fig. 4.6).
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Figure 4.5: Confusion matrix of our best network on NWPU-RESISC45 (Table 4.3).
Diagonal values are correct predictions (%), non-diagonals values are incorrect predictions
(%) and the dash (–) means no incorrect prediction.

Palace Palace Church Church

Figure 4.6: An example of most confused classes, palace and church, in NWPU-RESISC45
(see Fig. 4.5). It shows the similarity in textural and structural features among the images.

4.3.5 Evaluating on AID Dataset

To further demonstrate the effectiveness of the proposed method, the architectures discovered on

NWPU-RESISC45 were experimented on AID to evaluate the architecture transferability of the

best discovered networks. AID is a single-label classification benchmark consists of RGB images like

NWPU-RESISC45 with similar complexity and features. However, AID has only 10,000 samples

and 30 scene classes, which makes it a bit challenging for training CNN model from scratch. The
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best 4 architectures discovered on NWPU-RESISC45 (see Table 4.2) were evaluated on AID. We

trained them from scratch with a linear classifier head of 30 classes. The training details remain

the same as applied on NWPU-RESISC45.

The results are compared with the state-of-the-art transfer learning methods and the baseline

in terms of classification accuracy, model size and FLOPS as shown in Table 4.4. In the literature,

the state-of-the-art transfer learning methods on AID are trained with 50/50 training-testing ratio.

We compared the results with these methods for competitive comparison (see Table 4.4). Also, for

a fair comparison, we compared the results with the state-of-the-art handcrafted CNNs networks

and gradient-based NAS networks which are trained from scratch with 80/20 training-testing ratio

in [43] (see Table 4.5).

Table 4.4 shows our best network with only 5.1M parameters competed with the state-of-

the-art feature extraction methods, D-CNN [47] and GLANet [49], which used VGGNet-16 as

backbone pre-trained network. It also improved the performance of the state-of-the-art fine-tuning

methods by approximately 1% accuracy rate. By examining Table 4.4, one can observe that the

baseline with 80/20 training-testing ratio improved the performance of the best discovered network

by approximately 0.5% when fine-tuned. However, training the baseline from scratch, the best

discovered network achieved approximately 2% higher accuracy than the baseline. Table 4.5 shows

the best discovered network improved the performance of the gradient-based NAS model [43] by 5%

accuracy rate. It also improved the performance of the state-of-the-art handcrafted CNN models

reported in [43] by 6% (see Table 4.5).

Table 4.4: Comparisons between our method and the baseline network and the state-of-the-art
transfer learning (feature extraction and fine-tuning) methods with 50/50 training-testing
ratio on AID dataset. Here our method is auto-generated architectures discovered on NWPU-
RESISC45 which are evaluated on AID. The baseline results are based on our training. Boldface
is the best result.

Model Accuracy (%) Size FLOPS Method
AID Benchmark (VGGNet-16) [33] 89.64±0.36 138M† 15.5B†

Feature
Extraction
(Handcrafted)

Two-Stream Fusion (VGGNet-16) [53] 94.58±0.25 276M† 31.0B†
SAL-TS-Net fusion with GoogLeNet [46] 95.99±0.35 13.6M† 2.80B†
D-CNN with VGGNet-16 [47] 96.89±0.10 138M† 15.5B†
GLANet with VGGNet-16 [49] 96.66±0.19 138M† 15.5B†

Fusion of VGGNet-16 & CaffeNet (LR) [51] 94.93±0.28 198M† 16.2B† Fine-Tuning
(Handcrafted)Fusion of VGGNet-16 & CaffeNet (SVM) [51] 95.36±0.22 198M† 16.2B†

EfficientNet-B0 [41] (baseline)

95.54∗ 5.3M 0.39B Fine-Tuning
(Auto-Generated)96.65‡ 5.3M 0.39B

94.35‡ 5.3M 0.39B Fully-Trained
(Auto-Generated)

Our method (C=16)

B=[3, 2, 1, 2] 95.08±0.18‡ 5.5M 0.58B
Fully-Trained
(Auto-Generated)

B=[2, 3, 3, 1] 95.96±0.20‡ 5.4M 0.91B
B=[2, 3, 2, 1] 96.10±0.18‡ 5.1M 0.56B
B=[3, 4, 4, 1] 95.49±0.16‡ 5.5M 0.73B

† Model size and FLOPS are based on the open source backbone pre-trained networks.
∗ This result is based on 50/50 training-testing ratio.
‡ This result is based on 80/20 training-testing ratio.
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Table 4.5: Comparisons between our method and the state-of-the-art handcrafted CNN models
and gradient-based NAS method fully trained on NWPU-RESISC45 (NWPU) and AID with
80/20 training-testing ratio. The results of the state-of-the-art handcrafted models are reported
in [43]. Boldface is the best result.

NWPU AID

Model Accuracy (%) Accuracy(%) Size FLOPS Method
GoogLeNet [54] 91.61±0.65 88.15±0.77 6.8M 1.40B

Handcrafted
Inception-V3 [55] 92.58±0.26 89.03±1.27 23.2M 2.85B
ResNet-50 [37] 92.01±0.29 88.10±0.65 25.6M 4.12B
DenseNet [56] 92.71±0.17 87.50±0.24 13.7M 3.42B
MobileNet-V2 [57] 92.29±0.19 89.33±0.37 6.9M 0.58B

CNN Arch. Learning [43] – 91.12±0.49 3.8M – Auto-Generated
(Gradient-Based)93.67±0.24 – 5.2M –

Our method
(C=16)

B=[3, 2, 1, 2] 96.12±0.18 95.08±0.18 5.5M 0.58B
Auto-Generated
(Random Search)

B=[2, 3, 3, 1] 95.96±0.20 96.36±0.11 5.4M 0.91B
B=[2, 3, 2, 1] 96.56±0.13 96.10±0.18 5.1M 0.56B
B=[3, 4, 4, 1] 96.44±0.21 95.49±0.16 5.5M 0.73B

We also present a confusion matrix in Fig. 4.7 to illustrate the classification accuracy. Out of

the 30 scene classes, 21 classes were correctly classified over 96% accuracy rate, and only 3 classes

(resort, school and square) were classified with accuracy rate lower than 90%. The class with the

lowest accuracy of 83% was the square, which is mostly confused with the centre class. Other

confused scenes include bare-land versus desert and resort versus park shown in Fig. 4.8. These

pairs of scenes are very similar in textural characteristics.

4.3.6 Evaluating on EuroSAT Dataset

We evaluated the architecture transferability of networks discovered on a single-label RGB aerial

image dataset to a single-label multispectral satellite image dataset. The best 4 architectures

discovered on NWPU-RESISC45 (see Table 4.2) single-label RGB image dataset were evaluated on

EuroSAT multispectral image dataset. EuroSAT is a single-label classification benchmark with 10

classes. Each architecture was trained from the scratch with a linear classifier head of 10 classes

using the training details as applied on the NWPU-RESISC45. Because the images in EuroSAT

are of size 64×64 pixels, we did not apply the second 3×3 convolution and pooling layers in the

large-scale architecture settings (see Fig. 4.1).

For comparative evaluation in Table 4.6, we used images in the RGB space and RGB-NIR

space of the EuroSAT dataset to train our architectures discovered on NWPU-RESISC45 and

also to fine-tune the baseline network. We reported in Table 4.6 the classification accuracy to

evaluate the performance of our best discovered networks and the baseline. In the RGB space,

as shown in Table 4.6, our best discovered network achieved a classification accuracy of 98.67%

which competes with the baseline’s 98.85% accuracy rate, and the 98.57% of the state-of-the-art

fine-tuned pre-trained benchmark models reported in Helber et al. [34]. However, in the RGB-NIR

space, our best discovered network achieved 99.76% accuracy rate, which is approximately 1%
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Figure 4.7: Confusion matrix of our best network on AID benchmark (Table 4.4). Diagonal
values are correct predictions (%), non-diagonal values are incorrect predictions (%) and
the dash (–) means no incorrect prediction.

Square Square Centre Centre
(a)

Bare Land Bare Land Desert Desert
(b)

Figure 4.8: Examples of confused classes in AID (see Fig. 4.7). This shows the textural
similarity among the images: (a) square and centre classes (b) bare-land and desert classes.
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higher than the 98.78% of the baseline.

Table 4.6: Comparisons between our method and the baseline network and the state-of-the-art
fine-tuned pre-trained benchmark models on EuroSAT in RGB space and RGB-NIR space. Here
our method is auto-generated architectures discovered on NWPU-RESISC45 which are evaluated
on EuroSAT dataset. Boldface is the best result.

Accuracy (%)

Model RGB RGB-NIR Size Method
RestNet-50 [34] 98.57 – 25.6M Fine-Tuning (Handcrafted)GoogLeNet [34] 98.18 – 6.8M

EfficientNet-B0 [41] (baseline) 98.85 98.78 5.3M Fine-Tuning (Auto-Generated)

Our method
(C=16)

B=[3, 2, 1, 2] 98.52 99.76 5.5M

Auto-Generated (Random Search)B=[2, 3, 3, 1] 98.31 99.54 5.4M
B=[2, 3, 2, 1] 98.67 99.63 5.1M
B=[3, 4, 4, 1] 98.61 99.59 5.5M

4.3.7 Evaluating on BigEarthNet Dataset

We also evaluated the architecture transferability of networks discovered on a single-label RGB

aerial image dataset to a multi-label multispectral satellite image dataset. The best 4 architectures

discovered on NWPU-RESISC45 (Table 4.2) single-label RGB aerial image dataset were evaluated

on BigEarthNet-19 multi-label multispectral satellite image dataset. BigEarthNet-19 is a large-scale

Sentinel-2 dataset with 19 classes. Since the images in BigEarthNet are of size 120×120 pixels, we

did not apply the first pooling layer in the large-scale architecture settings (see Fig. 4.1). This

slightly increased the size of our networks, which can be observed by comparing the model size

in Table 4.2 and Table 4.7. Each architecture was trained from scratch with a linear classifier of

19 classes. All training settings remained the same as applied on NWPU-RESISC45. In addition

to classification accuracy (Acc), we reported F1 score, Recall (R) and Precision (P ) metrics as

described in Sumbul et al. [36].

In Table 4.7, we compared our results with the state-of-the-art handcrafted CNN models on

the RGB images of BigEarthNet in [36]. Our best network achieved multi-label classification

accuracy of 93.49%. The best 4 networks we trained on BigEarthNet achieved an average of

93.42% multi-label classification accuracy. Using fewer parameters, our best networks significantly

improved the performance of the state-of-the-art handcrafted CNN models on BigEarthNet [36]. An

improvement of approximately 9% F1 score, 8% recall and 4% precision was achieved over ResNet50,

K-Branch CNN and ResNet152 respectively. Moreover, for further comparative evaluation, we

fine-tuned the baseline network on the RGB-NIR images of BigEarthNet. And as shown in Table

4.7, in the RGB-NIR space, the baseline trailed behind our best network by approximately 0.9% in

multi-label classification accuracy, 3.9% in F1 score, 3.5% in recall metric and 4.5% in precision

metric. An example of the BigEarthNet RGB images with the true multi-labels and the predicted
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multi-labels by our best network is shown in Fig. 4.9.

Image True Multi-Label Predicted Multi-Label Image True Multi-Label Predicted Multi-Label

Arable land; Inland
waters; Coniferous for-
est; Mixed forest

Arable land; Inland
waters; Coniferous
forest; Mixed forest;
Land principally oc-
cupied by agriculture

Natural grassland and
sparsely vegetated
areas; Broad-leaved
forest; Transitional
woodland-shrub

Natural grassland and
sparsely vegetated
areas; Broad-leaved
forest; Transitional
woodland-shrub

Arable land; Urban
fabric; Complex cul-
tivation patterns;
Land principally oc-
cupied by agriculture;
Pastures

Arable land; Urban
fabric; Complex cul-
tivation patterns;
Land principally oc-
cupied by agriculture;
Pastures

Coniferous forest;
Broad-leaved forest;
Inland waters; Land
principally occupied
by agriculture; Mixed
forest; Pastures

Broad-leaved forest;
Land principally
occupied by agricul-
ture; Mixed forest;
Pastures; Inland
waters; Transitional
woodland-shrub

Agro-forestry areas;
Pastures; Transitional
woodland-shrub;
Arable land;

Agro-forestry areas;
Pastures; Transitional
woodland-shrub

Complex cultivation
patterns; Arable
land; Mixed forest;
Pastures; Urban
fabric

Complex cultivation
patterns; Arable
land; Mixed forest;
Pastures; Urban
fabric

Figure 4.9: An example of the BigEarthNet RGB images with the true multi-labels and the
predicted multi-labels by our best network. The green labels are true labels correctly predicted;
blue labels are true labels that were not predicted; and red labels are wrongly predicted labels.

Table 4.7: Comparisons between our method and the baseline network and the state-of-the-art
handcrafted CNN models on BigEarthNet in RGB space and RGB-NIR space. Here our method is
auto-generated architectures discovered on NWPU-RESISC45 which are evaluated on BigEarthNet
dataset. The results of the state-of-the-art handcrafted models are reported in [36]. Boldface is
the best result.

Band Model Acc (%) F1 (%) R (%) P (%) Size Method

RGB

VGGNet-16 [58] – 76.01 75.85 81.05 138M

Handcrafted

VGGNet-19 [58] – 75.96 76.71 79.87 143M
ResNet-50 [37] – 77.11 77.44 81.39 25.6M
ResNet-101 [37] – 76.49 77.45 80.18 44.5M
ResNet-152 [37] – 76.53 76.24 81.72 60.2M
K-Branch CNN [59] – 72.73 78.96 71.61 –

Our method
(C=16)

B=[3, 2, 1, 2] 93.34 86.36 86.76 86.32 5.7M
Auto-Generated
(Random Search)

B=[2, 3, 3, 1] 93.40 85.84 86.78 85.84 5.6M
B=[2, 3, 2, 1] 93.43 86.53 85.45 86.26 5.3M
B=[3, 4, 4, 1] 93.49 86.30 86.75 85.99 5.8M

RGB-NIR

EfficientNet-B0 [41] (baseline) 93.03 85.29 84.69 85.68 5.3M Fine-Tuning
(Auto-Generated)

Our method
(C=16)

B=[3, 2, 1, 2] 93.66 88.09 87.60 88.58 5.7M
Auto-Generated
(Random Search)

B=[2, 3, 3, 1] 93.87 88.18 87.69 88.67 5.6M
B=[2, 3, 2, 1] 93.89 89.21 88.22 90.23 5.3M
B=[3, 4, 4, 1] 93.87 88.55 87.98 89.13 5.8M

4.4 Discussion

Automated architecture search methods would enable the domain scientists to apply CNN techniques

with little or no deep learning experience. In this paper, we have introduced SLGE-based random

search with early-stopping strategy to automatically search for efficient CNN architectures for both

single-label and multi-label RS scene classification tasks. We experimented the proposed method

on RGB aerial image datasets, NWPU-RESISC45 and AID, and on multispectral satellite image

datasets, EuroSAT and BigEarthNet. Through comparing and analysing the experimental results
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with the state-of-the-art transfer learning (feature extraction and fine-tuning) models and the

baseline network, we evaluated the effectiveness of the proposed SLGE-based random search with

early-stopping strategy for RS scene classification. The results showed that the proposed automated

architecture search method discovered architectures which could offer a promising performance in

classifying RS image scenes, particularly multispectral satellite image scenes.

As shown in Table 4.6, in the 4-band RGB-NIR space of EuroSAT dataset, our best discovered

network outperformed the baseline network by approximately 1.0% classification accuracy rate.

Whereas in the RGB space of EuroSAT, our best discovered network achieved a competitive

performance that was only 0.2% lower than the baseline. Clearly, since the baseline was pre-trained

on RGB images (ImageNet), this might be the reason why it showed 0.2% accuracy rate over our

best discovered network in the RGB space of EuroSAT, but trailed behind our best discovered

network in the RGB-NIR space by 1.0%. Moreover, in RGB-NIR space of BigEarthNet multi-label

dataset, our best discovered network gained a performance boost in F1 score, recall and precision

metrics with respect to the state-of-the-art models reported in [36], which is relatively higher

compared to fine-tuning the baseline. Table 4.7 shows that in the RGB-NIR space of BigEarthNet,

our best discovered network significantly improved the performance of the state-of-the-art models on

BigEarthNet by approximately 12.1% in F1 score, 9.2% in recall and 8.5% in precision as compared

to the baseline which showed approximately 8.2%, 5.7% and 4.0% in F1 score, recall and precision

respectively. Specifically, in Table 4.7, our best discovered network outperformed the baseline by F1

score of 3.9% , recall of 3.5% and precision of 4.5% in the RGB-NIR space of BigEarthNet. Even

in case using 4-band RGB-NIR space of multispectral image dataset, the proposed SLGE-based

method achieved relatively better performance in RS image classification task.

The performance comparisons on RGB aerial image datasets (NWPU-RESISC45 and AID)

indicate that the proposed SLGE-based method competed with the state-of-the-art transfer learning

models and the baseline network. For example, in Table 4.3, with about 91% less memory footprint,

our best discovered network achieved 0.2% improvement of classification accuracy over the best

feature extraction method, DLGFF [44], and approximately 1.3% improvement over the best

fine-tuned model, Fusion of VGGNet-16 & CaffeNet [51]. Also, in Table 4.4, the best discovered

network improved the performance of the fine-tuned models by approximately 0.8% classification

accuracy rate, and competed with the state-of-the-art feature extraction methods. However, it can

be seen from the confusion matrices Fig. 4.5 and Fig. 4.7 that the proposed method demonstrated a

poor performance on some scene classes, particularly, palace and church classes in NWPU-RESISC45

(see Fig. 4.6), and bareland, desert, square and centre classes in AID (see Fig. 4.8). The reason

is most of the examples of these classes exhibit very high inter-class similarities in textural and

structural characteristics. Searching for CNNs that can solve this problem is one of the future
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research topics.

4.5 Summary

In this chapter, we extended SLGE to classification of remote sensing image scenes. Using SLGE-

based architecture representation, we explored random search with early-stopping strategy as an

architecture search technique to automatically search for CNNs architectures for remote sensing

scene classification task. The experimental results on four remote sensing scene classification

datasets, two RGB aerial image benchmarks (NWPU-RESISC45 and AID) and two multispectral

satellite image benchmarks (EuroSAT and BigEarthNet), suggest that the auto-generated CNN

models demonstrated a promising performance in classifying multispectral satellite image scenes.

With fewer parameters, the best discovered networks significantly improved the state-of-the-art

models on EuroSAT single-label and BigEarthNet multi-label classification tasks. The next chapter

extends to SLGE to aerial/satellite image segmentation task using evolutionary algorithm as a

search strategy.
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Chapter 5

Extending SLGE to Aerial/Satellite Image
Segmentation

Evolution continually innovates, but at each level it

conserves the elements that are recombined to yield the

innovations.

—John H. Holland

(1929–2015)

The work presented in this chapter extended the SLGE-based architecture representation to semantic

segmentation task of RS image understanding. By improving the SLGE representation space, we

construct a two-separate search space representation: one for normal cells and the other for atrous

spatial pyramid pooling (ASPP) cells. Using evolutionary algorithm with genetic modification

mechanisms such as uniform mutation, two-point crossover and gene crossover, we joint search for

a normal cell and an ASPP cell as a pair of cells to build a modularized encoder-decoder CNN

architecture, which we called SLGENet, for solving aerial or satellite image semantic segmentation

problem. Three ISPRS benchmarks are employed to verify the performance of the SLGENet in

aerial image segmentation tasks. In this regard, we validate the effectiveness and robustness of

SLGE representation space.

5.1 Introduction

Aerial or satellite image segmentation (also known as land cover classification) aims to assign

semantic labels to each pixel in an aerial or a satellite image based on their spatial and/or spectral

information. This allows for smart identification and classification of land use, with numerous

Parts of this chapter is published in Broni-Bediako et al., 2021 (see Appendix D). Reprinted with permission from
the publisher.
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applications including urban planning, land resource management and environmental monitoring

[1–3].

Semantic segmentation of aerial imagery dates back to the 1960s [4] and it remains an important

research problem in the field of remote sensing (RS) image analysis [5]. Traditionally, boundary-

based and region-based algorithms [6–8], and handcrafted feature extraction methods with support

vector machine and artificial neural network (ANN) classifiers [9–12] are employed for aerial image

semantic segmentation. Convolutional neural networks (CNNs) methods [13], which have achieved

remarkable performance in the field of computer vision [14], have recently emerged as the leading

approach in RS image analysis [15] including aerial image segmentation [16–18]. Especially, fully

convolutional networks (FCNs) [19] have achieved significant results in aerial image segmentation

[20–22]. The vast majority of current works [23–27] on semantic segmentation of high-resolution

aerial and satellite images adopt the encoder-decoder structures, for example U-Net [28] and SegNet

[29], which efficiently extract long-range context features to improve the accuracy of boundary

segmentation. Other studies [30–33] employed pre-trained networks such as ResNet [34], DenseNet

[35] and Xception [36] as backbone networks, and dense conditional random fields (CRFs) or atrous

spatial pyramid pooling (ASPP) modules are used on top of those networks to extract multi-scale

context features for semantic segmentation. These methods have also achieved a remarkable

performance in aerial and satellite image semantic segmentation [37–40]. Refer to section 2.4.2 of

chapter 2 for review on RS image segmentation with CNNs.

5.1.1 Automated NAS with Evolutionary Algorithms

Evolutionary NAS is a bio-inspired automated NAS approach that imitates the basic principles

of biological evolution to automate the architecture design for neural networks [41]. Evolutionary

NAS has been of interest in the AI community for three decades [42], dates back to the 80s

when Miller et al. [43] first used genetic algorithm to evolve simple ANN architectures and

optimized their parameters with a gradient-based method. Most of the earlier works evolve both

the network architecture and its parameters at a small scale [41]. Since 2017, the growing interest

in automated CNN architecture design [44, 45] has seen classical evolutionary algorithms, such

as genetic algorithms [46] and genetic programming [47], also being exploited in the search for

CNNs architectures for image classification in the field of computer vision [48]. Besides achieving

promising performance [49–55], they also consume fewer computational resources than their

competitor, reinforcement-based NAS [56, 57]. Furthermore, they have proven to be competitive

with handcrafted architectures of human experts [58]. Galván and Mooney [48] and Baldominos et

al. [42] have provided comprehensive survey on recent evolutionary NAS methods.
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5.2 Methodology

Using the formulated architecture search problem presented in section 3.3.2 of chapter 3, we search

for modularized encoder-decoder CNN architectures for aerial or satellite image segmentation task

using evolutionary algorithm search strategy introduced in gene expressing programming [59]. This

section describes SLGE representation of a two-separate search spaces for normal and ASPP cells

that are based on the standard SLGE representation presented in chapter 3 and evolutionary NAS

components: fitness evaluation, selection and reproduction, and evolutionary search process.

5.2.1 Search Space

We adopt a pre-defined network structure illustrated in Fig. 5.1 and a cell-based search space is

designed to induce a wide range of normal cells [57] and ASPP cells [60] to evolve modularized

encoder-decoder CNNs architectures. The normal cells and ASPP cells are respectively used to

build the encoder and the decoder of the modularized encoder-decoder CNN architectures. As

illustrated in Fig. 5.1, the pre-defined network structure begins with a fixed stem of two-layer 3×3

convolution, each of which reduces the spatial resolution of an input image by a factor of 2 and

doubles the output channels. Then, it is followed by normal cells, repeatedly stacked four times, to

build the network backbone. Each normal cell block differs in spatial resolution by a downsampled

factor of 2 and output channels by double. An ASPP cell is attached to each normal cell of network

backbone feature map to extract multi-scale information of the image. The output of each ASPP

cell is bilinear upsampled to the original resolution of the input image. They are then summed to

produce the semantic labelling prediction of the image.

The normal cell and the ASPP cell are encoded as a pair of linear string structures (see Fig. 5.2)

based on the SLGE representation introduced in chapter 3. Then the mapping function presented

in section 3.2.3 of chapter 3 is used to translate the pair of the linear structures (see Fig. 5.2)

into a pair of cells (see Fig. 5.3), which is used to build a final modularized encoder-decoder CNN

architecture in Fig. 5.1. The set of possible operations in the normal cell consists of:

• 3×3 and 5×5 depthwise-separable convolutions,

• 3×3 average pooling and max pooling,

and in the ASPP cell:

• 1×1 convolution,

• 3×3 atrous depthwise-separable convolution with rate r, where r ∈ {1, 2, 3, ..., 9}, and
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• average spatial image pooling with spatial size s, where s ∈ {1, 2, 4}. In each pooling operation,

a 1×1 convolution is applied after the average pooling, then followed by bilinear upsampling

to the spatial resolution of the input tensor.

These are very common convolution operations in modern CNNs [31, 36]. All the operations have

appropriate strides and paddings applied to preserve the spatial resolution of the feature maps.

Since SLGE implicitly encodes the shortcut (or skip) connections (see section 3.2.1 of chapter 3),

the identity operation which is employed in other studies [58, 61] to enable shortcut connections in

a network is not explicitly included in the set of possible operations. The complexity of the search

space is the sum of the complexity of normal cell search space and ASPP cell search space. Refer

to chapter 3 for further details of SLGE representation space.

Figure 5.1: A network structure diagram of the modularized encoder-decoder CNN
architecture. The normal cell and ASPP cell described in section 5.2.1 are used in the
encoder and the decoder respectively.

5.2.2 Fitness Evaluation

The evaluation function aims to assign fitness value to individuals with respect to how well they

adapt to the environment in consideration. It forms the basis for selecting individuals as parents

to reproduce offspring for the next generation. The higher the fitness value, the more likely the
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Figure 5.2: Schematic representation of SLGE pair of chromosomes. The pair of chromosomes
of the best network, SLGENet-3, in Tables 5.3, 5.4 and 5.5. (a) A chromosome of 3 genes with
head length of 3 for a normal cell (see Fig. 5.3a). The head of a gene may consists of SEQ,
CPO, CPI or END (CE graph transformation functions), and a tail of operations defined for
normal cell. (b) A chromosome of 3 genes with head length of 1 for ASPP cell (see Fig. 5.3b).
The head of gene may be CPO or END with a tail which consists of possible operations defined
for ASPP cell. The ‘AU4’, ‘AU5’ and ‘AU7’ are atrous depthwise-separable convolution with
rates 4, 5 and 7 respectively; and ‘AP4’ is an average spatial pooling with size 4. See section
5.2.1 for the operations defined for normal cell and ASPP cell.

(a) (b)

Figure 5.3: Evolutionary discovered pair of cells of the best network, SLGENet-3, in Tables 5.3,
5.4 and 5.5. The (a) normal cell and (b) ASPP cell are the phenotypes of the chromosomes
illustrated in Fig. 5.2a and Fig. 5.2b respectively. (a) The convolution operations without
successor are depthwise concatenated to produce an output, and if an operation has more than
one predecessor, the feature maps of the predecessors are added together. (b) The feature
maps of all branches within the cell are depthwise concatenated to produce an output.

individual will have progeny and survive into the next generation. The function is composed from

the quality measure in the phenotype space of the individuals with respect to the task at hand.

Since the proposed method is interested in solving aerial image segmentation problem, the best

strategy to assign fitness to an individual is the pixel-wise classification accuracy of the architecture

decoded by the individual.

The fitness evaluation of individuals is presented in Algorithm 6. In the two-separate SLGE

representation, an individual constitutes a pair of chromosomes which consists of a chromosome for

normal cell and a chromosome for ASPP cell as defined in section 5.2.1. Algorithm 6 encapsulates

the objective function F (see Equation 3.6) and the decoding algorithm (see Algorithm 4) presented

in chapter 3. During fitness evaluation, the decoding algorithm translates the information encoded

in the pair of chromosomes of an individual into pair of cells (normal and ASPP) to build the

corresponding modularized encoder-decoder CNN architecture (see Fig. 5.1). The architecture is
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then trained based on the objective function F for a fixed number of epochs. The objective function

F aims to find an architecture that maximize pixel-wise classification accuracy rate on a validation

dataset, subject to model size constraint Tparams. The loss function in the training function L of

the objective function F is used to train the architecture via back-propagation on the training

set. Then, the performance of the architecture on the validation set is assigned as fitness to its

corresponding individual in the genotype space, where genetic modification may occur to reproduce

offspring for the next generation. We present the training details of architectures in section 5.3.2.

Algorithm 6 Fitness evaluation of individual candidate architectures.
input : Population P of individuals (pairs of chromosomes), a training data tD, and a validation data vD
output: Population P with fitness of the individuals

1 for each individual in P do
2 Transform the information encoded in the pair of chromosomes into pair of cells using Algorithm 4
3 Build a CNN architecture (see Fig. 5.1) with the cells, such that the number of parameters θ ≤ Tparams
4 Train the CNN architecture on tD via the objective function F in Equation 3.6
5 Evaluate the pixel-wise classification accuracy of the trained CNN on vD
6 Assign the accuracy of the CNN as the fitness of the individual
7 end for
8 return P with fitness

5.2.3 Selection and Reproduction

In SLGE representation, individuals are selected as parents of the next generation according to the

luck of the draw by roulette-wheel sampling [46] on their fitness values. We adopt simple elitism

approach [62] as the survivor selection mechanism. In this way, the top individual of each generation

is survived and reproduced without modification. Explicitly replicating the top individual into the

next generation guarantees that the best trait never extinct in SLGE as the evolution progresses.

Thus, together with the parent selection scheme, a continuous improvement may be achieved.

During reproduction, the replication of the top individual occurs before parents are selected and

modified to create offspring for the next generation.

To modify a chromosome of an individual for reproduction, we adopt three genetic operators:

uniform mutation, two-point crossover and gene crossover. The uniform mutation and two-point

crossover are standard genetic operators [46]. Gene crossover operator was first introduced in GEP

[59]. The mutation is applied randomly at a rate pm to all genes in the selected chromosome (see

Algorithm 7). The mutation rate pm is the same as the two one-point mutations per chromosome

used in Ferreira [59], which is expressed as 2 divided by (# of genes×gene length).

Since SLGE chromosomes are fixed-length strings, applying the two-point crossover and gene

crossover is very simple, just as in classical genetic algorithm [46]. As clearly illustrated in Fig. 5.4,

in the two-point crossover operation, two selected parent chromosomes are paired side by side and
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Algorithm 7 The mutation operation in SLGE representation
input : An individual indv with a pair of chromosomes, and a CE graph transformation functions set fset

(see section 3.1.2 of chapter 3) and operation sets pset as defined in section 5.2.1
output: Offspring (i.e a mutated individual indv)

1 for each chromosome in indv do
2 pm ← 2 divided by (# of genes×gene length) //Calculating

the mutation rate pm
3 for each gene in chromosome do
4 Randomly pick a value r between 0 and 1
5 if r < pm then
6 for each function in gene head do
7 Randomly select a transformation function from fset to mutate the gene head
8 end for
9 for each operation in gene tail do

10 Randomly select an operation from pset to mutate the gene tail
11 end for
12 end if
13 end for
14 end for
15 return Return the mutated individual indv

randomly split at two points. Then, the elements in between the split points are exchanged between

the parents to create two new offspring. Gene crossover operation is a two-point crossover where

the elements in between the split points constitute a gene. That is, in gene crossover operation,

an entire gene is exchanged between two parent chromosomes to create two new offspring. Fig.

5.5 is an illustration of gene crossover operation. The two-point crossover constantly destroys old

building-blocks and creates new ones during reproduction [59]. To reduce the disruptive effects

on the genotype space, the selected parent individuals are modified as follows: chromosomes for

normal cells undergo both mutation and crossover operations, whereas chromosomes for ASPP cells

undergo only mutation modification. We use two-point crossover rate of 0.6 and gene crossover

rate of 0.3. These values are defaults crossover rates in GEP [59].

Figure 5.4: Illustration of two-point crossover operation. (a) Two selected parent chromosomes
for the crossover operation. (b) The generated offspring. The red elements in Parent A are
exchanged with the blue elements in Parent B to generate Offspring A and B respectively.
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Figure 5.5: Illustration of gene crossover operation. (a) Two selected parent chromosomes for
the crossover operation. (b) The generated offspring. The gene with red elements in Parent A
are exchanged with the gene with blue elements in Parent B to generate Offspring A and B
respectively.

5.2.4 Evolutionary Search Process

The overview of SLGE evolutionary architecture search process is schematically presented in Fig.

5.6. Like all evolutionary neural architecture search methods, the proposed method works with

populations of individuals which must be created initially in order to begin the process. The initial

population of N individuals is randomly generated based on the SLGE representation algorithm

presented in Algorithm 3 (see section 3.2 of chapter 3). As mentioned in section 5.2.2, every

individual in the population has a pair of chromosomes (i.e. a chromosome for normal cell and a

chromosome for ASPP cell as defined in section 5.2.1). The subsequent populations are progenies

of the initial population via genetic modification.

Figure 5.6: The overview of SLGE evolutionary neural architecture search.

After the population is initialized, each individual (pair of chromosomes) in the population is

then transformed respectively into pairs of cells (normal and ASPP) using the mapping (decoding)

algorithm presented in Algorithm 4 (see section 3.2 of chapter 3). These pairs of cells are then

used to build modularized encoder-decoder CNNs architectures (see Fig. 5.1), subject to the

77



Experiments

maximum number of parameters constraint. The architectures are then trained and evaluated

based on Algorithm 6 (see section 5.2.3), to determine the fitness of their corresponding individuals.

Individuals are then selected according to their fitness, which is the performance of pixel-wise

classification accuracy, to reproduce offspring for the next generation as described in section 5.2.3.

Individuals which have higher fitness value are more likely to have progeny and survive into the next

generation. The offspring are then subjected to the same evolutionary process: transformation of the

individuals into CNNs architectures, trained to determine their fitness, selection, and reproduction

with genetic modification. This process is repeated for a certain the number of generations.

5.3 Experiments

The experiments are aimed to verify whether the SLGE evolutionary architecture search is able to

find CNNs architectures which can achieve a promising performance on aerial or satellite image

semantic segmentation tasks. By so doing, we validate the effectiveness and robustness of SLGE

representation space.

5.3.1 Datasets

The ISPRS Vaihingen and Potsdam datasets consist of very high resolution aerial images over

Vaihingen and Potsdam respectively (both in Germany) for the 2D semantic labelling contest

of ISPRS WG III/41. The images in Vaihingen and Potsdam datasets are 3-band infrared, red

and green (IRRG) and 4-band infrared, red, green, blue (IRRGB) image data respectively, with

corresponding digital surface model (DSM) and normalized DSM (nDSM) data. They are densely

labelled with 6 classes: buildings, impervious surfaces (e.g. roads), low vegetation, trees, cars and

clutter. Overall, there are 33 images (tiles) of average size 2500×2000 pixels at ground sampling

distance (GSD) of about 9cm in the Vaihingen dataset, and 38 images of size 6000×6000 pixels at

GSD of about 5 cm in Potsdam dataset. Among them, only 16 images in Vaihingen dataset and 24

images in Potsdam dataset were publicly available for the contest. The benchmark contest ended

in 2018 summer, and since then, all the data has been publicly available. Nevertheless, just as it

was in the contest, the images which were originally undisclosed in each dataset are used only for

testing. And following Marmanis et al. [23], we use 4 of the originally disclosed images in each

dataset for validation, and the remaining 12 and 20 images of Vaihingen and Potsdam respectively

are used for training. In all the experiments, we only use the 3-band IRRG image data in both

datasets. To keep consistent with previous works [18, 23, 24, 63–65], the clutter class which is

very rare is considered as a reject class, so that the results are reported on buildings, impervious

surfaces, low vegetation, trees and cars classes.
1 https://www2.isprs.org/commissions/comm2/wg4/benchmark/semantic-labeling/
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The UAVid dataset2 is ISPRS semantic segmentation benchmark for UAV imagery created

by Lyu et al. [66] in 2020. The dataset consists of 420 high-resolution UAV images focusing on

street scenes. It has been split as 200 for training, 70 for validation and 150 for testing by the

authors. Among them, the ground truth of only the training and validation are available, and those

of the testing are withheld by the authors for online contest. We use the validation set only for

testing, and randomly split the training set into 80/20 ratio for training and validation. The images

are of the size 4096×2160 or 3840×2160 pixels, and are densely labelled with 8 classes: building,

road, static car, tree, low vegetation, human, moving car and background clutter. The dataset also

contains 42 video sequences captured with 4K high-resolution in oblique views. In this work we

only use the image data. Compared to ISPRS Vaihingen and Potsdam datasets, UAVid dataset has

more images, but the size of the images in Potsdam are quite large. In terms of the total number

of labelled pixels, the Vaihingen and Potsdam datasets are one tenth and one half of the size of

UAVid dataset, respectively.

5.3.2 Training Details

The size of the aerial images in the datasets is very large and they can not be processed directly

in deep networks, because it requires a great amount of GPU memory to store the intermediate

feature maps in the networks. We follow the common practice and use a sliding window approach

to extract 256×256 pixel patches as adopted in Chai et al. [18]. We use a stride of 64 pixels for

Vaihingen dataset and a stride of 128 pixels for Potsdam dataset. On UAVid, the authors used

large patches of 2048×1024 pixels with a stride of 1024 by 512 pixels. We opt for 400×400 with

stride of 200 pixels due to GPU memory constraint. Using such moderate patch sizes and strides

allow us to extract more training samples, which acts as data augmentation, in addition to rotation

and flipping techniques applied. During testing, we average the prediction scores on the overlapping

regions.

The architectures are implemented with PyTorch [67] framework and fastai [68], a PyTorch-

based library, is used to train them. The value of initial output channels, C, determines the size of

the networks. To meet the model size target Tparams = 30M , we set C = 48. All the architectures

are trained using 1-cycle policy in Smith [69] with Adam optimizer [70] implemented in fastai.

The learning rate is set to go from 0.0004 to 0.01 linearly while the momentum goes from 0.95 to

0.85 linearly in phase one of 1-cycle policy. Then in phase two, the learning rates follows cosine

annealing from 0.01 to 0, as the momentum goes from 0.85 to 0.95 with the same annealing, and

the weight decay is set to 0.0001. These are default values in 1-cycle policy [69]. The architectures

weights are randomly initialized using the policy in He et al. [71]. The architectures optimization is
2https://uavid.nl/
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performed for a total of 100 epochs using batch size of 10 for both Vaihingen and Potsdam datasets

and 4 for UAVid dataset.

5.3.3 Searching on Vaihingen dataset

We perform architecture search on the ISPRS Vaihingen dataset for aerial image segmentation.

Applying architecture search to semantic segmentation task is computationally expensive, since the

architecture search space is large and it takes an excessive amount of time and computation to

train each candidate architecture in a large-scale training settings. Therefore, to reduce the search

time and computation resources required for the architecture search, we employ a small-scale task

as a proxy task for fast-search. This may provide a predictive signal about the performance in a

large-scale architecture training settings. Following previous works in computer vision [57, 58, 60],

we design a proxy task by employing a small-scale architecture training settings. More specifically,

we randomly select half of the training set of Vaihingen dataset, and extract 128×128 pixel patches

with a stride of 64 pixels, as adopted in Audebert et al. [24], for training and evaluation of candidate

architectures. In addition, we implement the candidate architectures (see Fig. 5.1) with a smaller

initial output channels, C = 24, and employ early stopping to train them not to convergence. In the

experiments, we train each candidate architecture for only 20 epochs with 80/20 training-validation

ratio and batch size of 30 using the training details in section 5.3.2.

Based on the evolutionary process in section 5.2.4, we performed the two separate experiments

with two different pairs of chromosomes in Table 5.1. Both the population size and the number of

generations were set to 20. Using a larger population size with a larger number of generations might

yield a better performance, but not without additional computational cost. Notwithstanding, such

optimization settings is out of the scope of this work because the current settings, as commonly

adopted in the literature [52], can achieve a promising performance (see Table 5.3). It is also

worth mentioning that using proxy task in NAS process may generate inaccurate ranking of

the architectures, since the networks with fewer parameters may converge faster and produce

better results for a few epochs than cumbersome ones [72]. Although the networks with good

performance might be abandoned, we adopt the proxy task approach to show that we can find good

architectures even with limited computation resources. All the experiments were performed on a

single workstation with a 11GB GPU GeForce GTX 1080 Ti running on Linux Mint 19 Cinnamon.

It took 2.5 GPU days for each of the two experiments.

In Fig. 5.7a and Fig. 5.7b, we visualize the evolutionary trajectories of the two pairs of

chromosomes in order to understand the process of discovering the best CNN architecture. The

figures show the fitness statistics of the individuals selected via evolutionary selection in each

generation of the experiments. We present the statistics in terms of pixel-wise classification
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Table 5.1: The two pairs of chromosomes settings for Normal cell and ASPP cell used
in the experiments. Chromosome settings for ASPP cell is the same for both pairs.

Pair of Chromosomes # of Genes Head Length Tail Length

Pair 1 Normal Cell 3 2 3
ASPP Cell 3 1 2

Pair 2 Normal Cell 3 3 4
ASPP Cell 3 1 2

accuracy of the best individual and the mean with standard deviation over all individuals in each

generation using a dotted line and a solid line with shaded deviation respectively. The best and

mean accuracy results increase as the evolution progresses. The sharp increase in the accuracy at

the earlier generations is due to the random initialization of the population at the beginning of

the evolution process. As the process progresses, the improvement in the accuracy lessens. And it

can be observed that the variation in the accuracy of each generation also lessens. This means the

evolution is towards a steady state in discovering CNNs architectures on the Vaihingen dataset,

and the proposed algorithm seems to converge with the setting of 20 generations.

Figure 5.7: Evolutionary trajectories of the proposed method in searching for the best
CNN architecture on Vaihingen dataset. (a) Trajectory of the pair of chromosomes ‘Pair
1’ (see Table 5.1). (b) Trajectory of the pair of chromosomes ‘Pair 2’ (see Table 5.1).

5.3.4 Baseline

We performed a simple random search on the Vaihingen dataset as a baseline for the study. Here

we seek to compare SLGE evolutionary approach against random search to verify the effectiveness

of the SLGE search space, since a simple random search is a competitive search strategy [72] that
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is generally used in automated neural architecture search as a baseline [58, 61]. We randomly

generated ten individuals, five each from the two pairs of chromosomes settings in Table 5.1, to

build ten architectures with no evolutionary process. This means architectures in the baseline

experiments are not built by any genetic modification. They are randomly constructed so that all

individuals in the search space are equally likely, just as the initial population in the evolutionary

search. All the networks were trained from scratch using the training settings in section 5.3.2.

In Table 5.2, the results show an average accuracy of 81.4% with 7.7% standard deviation

over the five randomly generated networks from ‘Pair 1’ chromosomes (Table 5.1), and an average

accuracy of 85.9% with 7.2% standard deviation over the five randomly generated networks from

‘Pair 2’ chromosomes (Table 5.1). The large variation of accuracy among the networks resembles

the randomized behaviour in the earlier generations of the evolutionary approach (cf. Fig. 5.7).

The best baseline network is evolved from the ‘Pair 2’ chromosomes. It achieved 87.5% mean F1

score and 90.3% overall accuracy as shown in Table 5.2. The evolutionary approach is compared

favourably against the baseline (see Table 5.3). However, the baseline is competitive with the

Vaihingen contest leaderboard3 state-of-the-art models, which demonstrates the effectiveness of our

proposed encoding scheme of the search space.

Table 5.2: Baseline results on Vaihingen datasets. The values are the overall accuracy
of the ten baseline networks, which five each were randomly generated from the two
pairs of chromosomes settings in Table 5.1. Boldface is the best results.

Overall Accuracy (%)
1 2 3 4 5

Pair 1 87.5 71.3 89.3 86.0 72.8
Pair 2 71.6 90.3 90.0 89.7 88.2

5.4 Results and Discussion

After the search, the top four networks found, which are denoted as SLGENet-i in the Tables 5.3,

5.4 and 5.5, are trained on the three ISPRS datasets from scratch to full convergence using the

training settings in Section ?? to precisely measure their effectiveness. The networks denoted as

SLGENet-1 and SLGENet-2 are evolved from the pair of chromosomes ‘Pair 1’, and SLGENet-3

and SLGENet-4 are evolved from the pair of chromosomes ‘Pair 2’ in Table 5.1. The best network

discovered is SLGENet-3. Fig. 5.3 is the structural representation of the pair of cells used to built

the SLGENet-3. We report per-class F1 scores and overall pixel-wise classification accuracy on

Vaihingen and Potsdam datasets as in Audebert et al. [24] and in conformity to the ISPRS 2D
3 https://www2.isprs.org/commissions/comm2/wg4/results/vaihingen-2d-semantic-labeling-contest/
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semantic labelling contest [73]. In addition, we report the mean F1 over all classes. On UAVid, we

report per-class intersection-over-union (IoU) scores (also know as Jaccard Index) and the mean

IoU over all classes as proposed by Lyu et al.[66], in addition to the overall accuracy. We compared

and discussed the results with the state-of-the-arts models. Additionally, we compared the number

of parameters.

5.4.1 ISPRS Vaihingen

In Table 5.3, we report the results on the Vaihingen test set of the top four networks. The

best network, SLGENet-3, achieved mean F1 score of 91.1% and accuracy of 92.1% with 24.8M

parameters. Fig. 5.3 depicts the pair of cells (normal and ASPP) of the best network. Compared

with the baseline, the best network has an advantage of 3.6% in mean F1 score and 1.8% in

the overall accuracy. We further compared with several state-of-the-art models to evaluate their

performance. Among the state-of-the-art models in Table 5.3, CASIA2 achieved the best results

in the mean F1 score and the overall accuracy. Our best network, SLGENet-3, improves the

performance of CASIA2 by 1.0% in both the mean F1 score and the overall accuracy. However,

with respect to the impervious surface, buildings and cars classes, our SLGENet-3 trailed behind

HRNet, CASIA2 and SiameseDenseU-Net by 0.7%, 0.3% and 0.9% F1 scores respectively. In

general, the top four networks improve the performance of the state-of-the-art models by the least

of 0.5% in both the mean F1 score and the overall accuracy. Most of the state-of-the-art works

did not report the number of parameters of their models. Nevertheless, comparing the number

of parameters with their base networks such as VGG, SegNet, U-Net and FCN, our networks use

relatively fewer parameters to improve the performance of the state-of-the-art models. Examples of

semantic segmentation results on the Vaihingen test set with the SLGENet-3 is presented in the

first row of Fig. 5.8.

Table 5.3: Comparison between our method and the baseline and the state-of-the-art models (NAS and
handcrafted) on the Vaihingen test set. The values are the per-class F1 scores, mean F1 and overall pixel-wise
classification accuracy. Boldface is the best result.

Method (Model) Params F1 score (%) mean F1 Accuracy

Imp. surf. Buildings Low veg. Trees Cars (%) (%)

PDN [74]‡ – 88.6 92.7 78.4 88.1 81.2 85.8 87.3
DCNNs [18] 132M† 91.5 94.7 81.9 88.5 74.0 86.1∗ 89.2
SiameseDenseU-Net [26] 60.0M† 92.1 95.6 80.0 88.5 91.3 89.5 89.5
V-FuseNet [24] 30.0M† 91.0 94.4 84.5 89.9 86.3 89.2∗ 90.0
HRNet [75] 65.9M† 94.7 92.9 83.2 88.9 84.3 88.8 90.1
GSN [65] 44.5M† 92.2 95.1 83.7 89.9 82.4 88.7 90.3
DLR_9 [23] 88.0M 92.4 95.2 83.9 89.9 81.2 88.5∗ 90.3
FCN_MFS_DSMbkd [76] 138M† 92.3 95.8 83.8 89.6 86.4 89.6∗ 90.6
CASIA2 [64] 138M† 93.2 96.0 84.7 89.9 86.7 90.1∗ 91.1

Baseline (Random search) 20.6M 92.1 94.0 83.2 90.0 78.5 87.5 90.3

Our method (Evo. NAS)
SLGENet-1 24.7M 93.3 95.3 84.7 91.2 88.4 90.6 91.7
SLGENet-2 25.5M 93.6 95.2 84.3 91.0 89.7 90.7 91.6
SLGENet-3 24.8M 94.0 95.7 84.8 91.5 89.4 91.1 92.1
SLGENet-4 23.9M 93.9 95.7 85.0 91.2 89.9 91.1 92.0

‡The state-of-the-art NAS method, the other state-of-the-art models are handcrafted methods
†The number of parameters of the base networks including SegNet, U-Net, and FCNs adopted in the state-of-the-art models
∗These values are calculated from the results of the authors
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Image Target Segmentation Predicted Segmentation

impervious surface building low vegetation tree car

Figure 5.8: Examples of semantic segmentation results on ISPRS Vaihingen dataset.
256×256 image patches of Vaihingen area 2. The predicted segmentation maps are
produced by the best network, SLGENet-3.

5.4.2 ISPRS Potsdam

Table 5.4 presents the results of our top four networks on the Potsdam test set in comparison to

state-of-the-art networks. The best network on the Potsdam dataset is the same one we found on

the Vaihingen dataset. With 24.8M parameters, the best network, SLGENet-3, achieved 94.4%

in the mean F1 score and 94.2% in the overall accuracy on the Potsdam dataset. Compared with

the SSNet-50, which is the best model among the state-of-the-art models in Table 5.4, our best

network shows an improvement of 2.6% and 1.5% in the mean F1 score and the overall accuracy

respectively. However, our SLGENet-3 lagged behind SSNet-50 by 1.5% F1 score with respect to the

impervious surface class. This means, the best network was not able to improve the performance

on the impervious surface class in the Potsdam dataset, just as in the Vaihingen dataset. With

the exception of SLGENet-2, our networks improve the performance of the state-of-the-art models

by the least of 0.5% in both the mean F1 score and the overall accuracy using fewer parameters.

Though, our SLGENet-2 trailed behind SSNet-50 in the overall accuracy, it competes with SSNet-50

in the mean F1 score, and improves the performance of the other state-of-the-art models using

fewer parameters. We present examples of semantic segmentation results on the Potsdam test set

with the SLGENet-3 in the second row of Fig. 5.9.
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Table 5.4: Comparison between our method and the state-of-the-art handcrafted models on the Potsdam test
set. The values are the per-class F1 scores, mean F1 and overall pixel-wise classification accuracy. Boldface is
the best result.

Method (Model) Params F1 score (%) mean F1 Accuracy

Imp. surf. Buildings Low veg. Trees Cars (%) (%)

DCNNs [18] 132M† 92.3 97.0 86.8 86.9 94.5 91.5∗ 90.1
DST_5 [77] 132M† 92.5 96.4 86.7 88.0 94.7 91.7∗ 90.3
V-FuseNet [24] 30.0M† 92.7 96.3 87.3 88.5 95.4 92.0∗ 90.6
Multi-filter CNN [78] 30.0M† 90.9 96.9 76.0 73.8 86.9 84.9∗ 90.6
CASIA2 [64] 138M† 93.3 97.0 87.7 88.4 96.2 92.5∗ 91.1
HRNet [75] 65.9M† 93.8 97.5 87.8 88.8 96.0 92.8 91.5
SSNet-50 [79] 30.0M† 97.4 94.6 89.6 89.1 93.7 92.9 92.8

Our method (Evo. NAS)
SLGENet-1 24.7M 95.5 97.3 89.6 89.7 98.1 94.0 93.8
SLGENet-2 25.5M 94.4 96.2 88.6 88.7 97.4 93.0 92.3
SLGENet-3 24.8M 95.9 97.7 90.0 90.2 98.2 94.4 94.2
SLGENet-4 23.9M 95.8 97.7 89.9 90.0 98.3 94.3 94.1

†The number of parameters of the base networks including SegNet, VGG, and FCNs adopted in the state-of-the-art models
∗These values are calculated from the results of the authors

Image Target Segmentation Predicted Segmentation

impervious surface building low vegetation tree car

Figure 5.9: Examples of semantic segmentation results on ISPRS Potsdam dataset.
256×256 image patches of Potsdam area 3_13. The predicted segmentation maps are
produced by the best network, SLGENet-3.

5.4.3 ISPRS UAVid

To further evaluate the effectiveness of the top four networks, the networks are also trained on

the new high-resolution ISPRS dataset for UAV imagery semantic segmentation. In Table 5.5,

we report the results on the UAVid validation set which was only used for testing in this work,

since the target maps of the test set is not publicly available. We compared with the results

reported by the authors [66] of the UAVid dataset and the online leaderboard state-of-the-art

results. Among the authors’ models in Table 5.5, the MS-Dilation+PRT+FSO achieved the best

mean IoU score of 50.1%. Our best network, SLGENet-3, with 24.8M parameters significantly

improves the performance by 19.5% mean IoU score. Additionally, SLGENet-3 and the runner-up
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network, SLGENet-4, achieved an overall accuracy of 87.8%, placing our networks amongst the

best of the online leaderboard state-of-the-art. Although, our best network, SLGENet-3, lagged

behind the best online leaderboard results (KangyangWU) in Table 5.5, SLGENet-3 improves the

performance of KangyangWU by 1.1%, 1.0% and 7.0% IoU scores on building, low vegetation

and human classes respectively. On the whole, the top four networks compete with the online

leaderboard state-of-the-art. They significantly improve the performance of Lyu et al.[66] by at

least 18.9% mean IoU score using fewer parameters. Examples of semantic segmentation results on

the UAVid dataset with the SLGENet-3 is presented in the third row of Fig. 5.10.

Table 5.5: Comparison between our method and the results reported in Lyu et al. [66] and the online leaderboard on the UAVid dataset.
The values are the per-class IoU, mean IoU and the overall pixel-wise classification accuracy. Boldface is the best result

Method (Model) Params IoU score (%) mean IoU Accuracy

Building Tree Clutter Road Low veg. Static car Moving car Human (%) (%)

U-Net+PRT+FSO [66] 30.0M† 79.0 73.8 46.4 65.3 43.5 26.8 56.6 0.0 48.9 -
MS-Dilation+PRT [66] 132M† 79.7 74.6 44.9 65.9 46.1 21.8 57.2 8.0 49.8 -
MS-Dilation+PRT+FSO [66] 132M† 80.9 75.5 46.3 66.7 47.9 22.3 56.9 4.2 50.1 -

Clairvoyance∗ – 88.6 80.1 70.1 66.9 81.7 72.6 67.9 23.5 69.0 87.6
YeLyu∗ – 88.6 80.4 66.9 81.6 61.6 75.6 77.2 31.3 70.1 87.2
KangyangWU∗ – 90.2 81.9 71.5 82.9 66.4 67.7 77.7 33.2 71.4 88.3

Our method (Evo. NAS)
SLGENet-1 24.7M 90.9 76.7 63.4 78.9 66.9 66.9 74.5 39.4 69.0 87.5
SLGENet-2 25.5M 91.2 76.8 64.1 79.2 67.4 67.7 74.6 39.9 69.5 87.7
SLGENet-3 24.8M 91.3 77.1 64.4 79.4 67.4 67.7 74.4 40.2 69.6 87.8
SLGENet-4 23.9M 91.4 77.1 64.4 79.2 67.3 66.5 73.6 40.2 69.4 87.8

∗Online leaderboard state-of-the-art results on UAVid dataset at https://competitions.codalab.org/competitions/25224#results
†The number of parameters of the base networks (U-Net and FCNs) of the models
Note: The Lyu et al.[66] models and the online leaderboard models are handcrafted methods

Image Target Segmentation Predicted Segmentation

clutter building road static car trees human

low vegetation moving cars

Figure 5.10: Examples of semantic segmentation results on ISPRS UAVid dataset.
400×400 image patches of UAVid seq37/000300.png. The predicted segmentation maps
are produced by the best network, SLGENet-3.
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Summary

5.5 Summary

In this chapter, an evolutionary neural architecture search with SLGE architecture representation

is explored for aerial/satellite image semantic segmentation. The evolutionary-based SLGE

architecture search for semantic labelling task in remote sensing image analysis was achieved

through (1) the construction of cell-based search space by leveraging the complementary strengths

of gene expression programming and cellular encoding and (2) the joint search for normal and

atrous spatial pyramid pooling cells with shortcut and multi-branch connections as building-blocks

to construct modularized encoder-decoder CNN architectures. We evaluate the result of the

search, SLGENet, on three aerial image semantic segmentation benchmarks, with comparison to

the recent state-of-the-art systems. On ISPRS Vaihingen and Potsdam 2D semantic labelling

challenges, SLGENet achieved performance slight gains in the overall accuracy. On the ISPRS

UAVid segmentation benchmark for UAV imagery, SLGENet significantly improved the performance

and the results position SLGENet amongst the state-of-the-art. The next chapter presented the

summary and concluding remarks of the work presented in this dissertation.
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Chapter 6

Conclusions and Future Work

The coming era of Artificial Intelligence will not be the era

of war, but be the era of deep compassion, non-violence,

and love.

—Amit Ray

(Compassionate Artificial Intelligence)

The research work presented in this dissertation investigates whether the complementary strengths

of gene expression programming (GEP) [1] and cellular encoding (CE) [2] can be combined into a

new representation scheme to evolve modularized architectures for deep neural networks (DNNs), in

particular, for convolutional neural networks (CNNs). The novel encoding scheme called symbolic

linear generative encoding (SLGE) is introduced and implemented for automated neural architecture

search (NAS) in visual perception tasks. The research was conducted towards the applications in

remote sensing (RS) image understanding to illustrate the capability of the SLGE in the architecture

search of CNNs. This chapter provides the summary of the main results of the work presented in

this dissertation and how they contribute to the achievement of the research aims and objectives

expressed in the introductory chapter. Finally, the chapter highlights some future research directions

to further extend this line of research.

6.1 SLGE: Design and Development

The work in this dissertation harnessed the strengths of GEP and CE to produce a novel

representation scheme called SLGE, that is capable of evolving modularized architectures for CNNs

using random search and evolutionary algorithm. The SLGE was designed and implemented

using the simplicity features of GEP with the modularity property of CE to construct the

representation space of CNN architectures. SLGE embeds the graph grammar of CE into the

genotype representation of GEP to represent candidate architectures as multi-gene chromosomes

of linear fix-length strings and utilises the phenotype representation of CE. Additionally, SLGE

93



Extending SLGE to RS Image Understanding

employs standard convolution and pooling operations as the basic search units to achieve flexibility

in the search space as opposed to the sophisticated ResNet-block and DenseNet-block adopted

in other studies [3–7]. This enables SLGE to evolve building-blocks with shortcut connections

and multi-branch connections, similar to the commonly adopted ones by human experts [8–10], to

develop modularized CNN architectures.

The preliminary experimental results presented in chapter 3 on general purpose image

classification benchmarks, CIFAR-10 and CIFAR-100, indicate that the networks evolved by

SLGE via evolutionary algorithm (and random search strategy as baseline) achieved a competitive

performance with the state-of-the-art networks, and in some case improved the performance, using

fewer number of parameters. The results suggest that SLGE is a viable and effective representation

scheme for architecture search of CNNs for visual perception tasks. Also very important is the fact

the networks evolved by SLGE have modules with shortcut and multi-branch connections which

can improve training and performance of the networks. Therefore, the design and development of

SLGE and the preliminary experimental results obtained in general purpose image classification,

have fulfilled the achievement of the first two research aims through the accomplishment of the

first two research objectives that are expressed in the introductory chapter.

6.2 Extending SLGE to RS Image Understanding

In this work, to evaluate the SLGE representation space in terms of expressiveness and tractability

for evolving modularized CNN architectures, and also to verify the performance and robustness

of the architectures evolved by SLGE in visual perception tasks, we extended SLGE to RS image

understanding. We used metaheuristic optimization algorithms, namely random search with early-

stopping strategy and evolutionary algorithm approach, to evolve SLGE-based architectures for

RS image understanding tasks. To accelerate the architecture search process, we developed a

simple objective (fitness) function with the number of parameters of a network as a constraint and

employed proxy-task approach to approximation the network performance during search without

requiring a full training of the evolving networks. The networks evolved by SLGE were validated

against various benchmarks in RS image understanding.

The random search with early-stopping strategy was adopted to explore the SLGE architecture

representation to evolve architectures for CNNs in RS image scene classification. In classifying the

scenes of multispectral satellite images and high-resolution RGB aerial images, SLGE networks

achieved highly competitive results in both single-label and multi-label classification tasks. In fact,

with fewer parameters, SLGE networks improved the performance of most related works and the

results position our method amongst the best of the state-of-the-art (see the work presented in

chapter 4). For a simple random search to discover well-performing networks show that the SLGE
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representation space is expressive and not intractable.

Furthermore, the representation space of SLGE was improved to construct two-separate search

space representation: normal cell search space and atrous spatial pyramid pooling (ASPP) cell

search space. And we used evolutionary algorithm approach with genetic modification operators

such as uniform mutation, two-point crossover and gene crossover to joint search for a normal

cell and an ASPP cell as a pair of cells to evolve modularized encoder-decoder CNN architecture,

dubbed SLGENet, for semantic segmentation of high-resolution satellite and UAV (unmanned

aerial vehicle) images. The architectures of the best discovered networks on a satellite image

benchmark was transferred to UAV and another satellite image benchmarks. SLGENet improved

the performance of the state-of-the-art networks on both the satellite and UAV image benchmarks

using a reasonable computational resources of 2.5 GPU days with fewer parameters (see the work

presented in chapter 5). The results demonstrate the effectiveness and robustness of SLGENet on

challenging ISPRS segmentation benchmarks.

The experimental results on various RS image understanding benchmarks presented in chapter

4 and chapter 5 contribute to the accomplishment of the last two research aims and objectives

that are expressed in the introductory chapter. Just as important, extending SLGE to RS image

understanding, we have introduced automated NAS into the RS community to help domain scientists

to adopt DNNs for their work with little or without deep learning experience.

6.3 Future Work and Concluding Remarks

Within the current framework, related visual perception tasks such as instance segmentation and

object detection might be plausible. Moreover, expanding the current cell-based search space to

include a global search space might be beneficial to develop completely automatic architecture

search of CNNs. Another work is implementing real-world AutoDNN system with SLGE to show

its practical and commercial viability to interpret remotely-sensed imagery or any other computer

vision related problem.

Finally, with the accomplishment of the research aims and objectives expressed in the

introductory chapter, we hope the work in this dissertation would have a positive impact in

future research in the field of automated NAS. The results presented were influenced by the world

of remote sensing image understanding. Hopefully, this might also suggest something inspiring

and opens new research path in such an interdisciplinary field, as well as practical applications

in automated NAS method for real-world situations. This could improve the user experience and

productivity in designing AI-enabled remote sensing applications for urban planning, land resource

management, disaster management, environmental monitoring, and among others.
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Appendix A

Source Code

The Symbolic Linear Generative Encoding (SLGE) is implemented on top of geppy1 (a Python

library for Gene Expression Programming) and DEAP2 (an evolutionary computation framework for

rapid prototyping developed in Python). SLGE extends the geppy to encode deep neural networks

and DEAP provides the fundamental support for evolutionary computation. The PyTorch3 deep

learning library is used for the implementation and training of the deep neural networks that are

automatically discovered via SLGE representation space.

The source code is hosted at https:// github.com/ cliffbb/ geppy_nn. The code is intended to

be used for teaching and academic research only. The source code is not well documented at the

moment. However, in the near future, the author would provide a full documentation and user

guide for easy use and possible extension of the code.

1https://github.com/ShuhuaGao/geppy
2https://github.com/DEAP/deap
3https://pytorch.org/
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Appendix B

Paper I

Evolutionary NAS with Gene

Expression Programming of Cellular

Encoding
Cliford Broni-Bediako, Yuki Murata, Luiz H. B. Mormille,
Masayasu Atsumi

Published in Proceedings of IEEE Symposium Series on
Computational Intelligence (SSCI), December 2020, pp. 2670–2676.
DOI: 10.1109/SSCI47803.2020.9308346.
© 2020 IEEE. Reprinted with permission from the publisher.

Erratum: The author “Cliford Broni-Bediako” should read “Clifford Broni-Bediako”.

Paper Abstract

The renaissance of neural architecture search (NAS) has seen classical methods such as genetic algorithms
(GA) and genetic programming (GP) being exploited for convolutional neural network (CNN) architectures.
While recent work have achieved promising performance on visual perception tasks, the direct encoding
scheme of both GA and GP has functional complexity deficiency and does not scale well on large architectures
like CNN. To address this, we present a new generative encoding scheme—symbolic linear generative encoding
(SLGE)—simple, yet a powerful scheme which embeds local graph transformations in chromosomes of
linear fixed-length string to develop CNN architectures of variant shapes and sizes via an evolutionary
process of gene expression programming. In experiments, the effectiveness of SLGE is shown in discovering
architectures that improve the performance of the state-of-the-art handcrafted CNN architectures on
CIFAR-10 and CIFAR-100 image classification tasks; and achieves a competitive classification error rate
with the existing NAS methods using fewer GPU resources.
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Appendix C

Paper II

Searching for CNN Architectures for

Remote Sensing Scene Classification
Clifford Broni-Bediako, Yuki Murata, Luiz H. B. Mormille,
Masayasu Atsumi

Published in IEEE Transactions on Geoscience and Remote
Sensing, July 2021, pp. 1–13.
DOI: 10.1109/TGRS.2021.3097938.
© 2021 IEEE. Reprinted with permission from the publisher.

Errata: The cell block “[2, 2, 1, 21]” in Table II should read “[2, 2, 1, 2]” and the statement
“...the overall search space with nodes between 2 and 16 in a cell...” at the end of Section A of the
Methodology should read “...the overall search space with nodes between 3 and 16 in a cell...”.

Paper Abstract
Convolutional neural network (CNN) models for remote sensing (RS) scene classification are largely built
on pre-trained networks which are trained on the general-purpose ImageNet dataset in computer vision.
The pre-trained networks can easily be adapted for transfer learning in RS scene classification. However,
the accuracy of transfer learning may decline as RS images are considerably different from other images.
Thus, the pre-trained CNN model learned on ImageNet may not be sufficient for the accurate classification
of RS image scenes. Furthermore, most of the pre-trained models have large memory footprints which place
a further burden on computational requirements. In this work, we explore SLGE-based random search
with early-stopping in the search for CNN architectures for both single-label and multi-label RS scene
classification tasks. In SLGE, the architecture search space is capable of representing multipath Inception-
like modular cells with skip-connections similar to human-experts designs. The experimental results on
four RS scene classification benchmarks show that the automatically discovered networks demonstrate the
promising capability in classifying multispectral satellite image scenes compared with fine-tuned pre-trained
CNN models. Using fewer parameters with 0.56B FLOPS, our best network achieves a classification
accuracy rate of 96.56% and 96.10% on NWPU-RESISC45 single-label and AID single-label RGB aerial
image datasets respectively, and classification accuracy rate of 99.76% and 93.89% on EuroSAT single-label
and BigEarthNet multi-label multispectral satellite image datasets respectively. The results position our
approach amongst the best of the state-of-the-art.
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Appendix D

Paper III

Evolutionary NAS for Aerial Image

Segmentation with Gene Expression

Programming of Cellular Encoding
Clifford Broni-Bediako, Yuki Murata, Luiz H. B. Mormille,
Masayasu Atsumi

Published in Neural Computing and Applications, October 2021.
DOI: 10.1007/s00521-021-06564-9.
© 2021 Springer Nature. Reprinted with permission from the
publisher.

Paper Abstract

Recently, neural architecture search (NAS) has gained a lot of attention as a tool for constructing deep
neural networks automatically. NAS methods have successfully found convolutional neural networks (CNNs)
that exceed human expert-designed networks on image classification in computer vision. However, there are
growing demands for semantic segmentation in several areas including remote sensing image analysis. In this
paper, we introduce an evolutionary NAS method for semantic segmentation of high-resolution aerial images.
The proposed method leverages the complementary strengths of gene expression programming (GEP) and
cellular encoding (CE) to develop an encoding scheme, called symbolic linear generative encoding (SLGE),
for evolving cells (directed acyclic graphs) as building-blocks to construct modularized encoder-decoder
CNNs via an evolutionary process. SLGE can evolve cells with multi-branch and shortcut connections
similar to the Inception-ResNet-like modules which can improve training and inference performance in
deep neural networks. In experiments, we demonstrate the effectiveness of the proposed method on the
challenging ISPRS Vaihingen, Potsdam and UAVid semantic segmentation benchmarks. Compared with
recent state-of-the-art systems, our network, dubbed SLGENet, improves the overall accuracy performance
on Vaihingen and Potsdam; and achieves a competitive overall accuracy on UAVid using fewer parameters.
Our method achieves promising results in a little time of 2.5 GPU days.
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