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Research scientists are gearing up for adopting deep learning methods to their respective domain problems. This work
presents a novel generative encoding that combines the strengths of gene expression programming and cellular encoding
for automatic architecture search of deep neural networks (AutoDNN) to develop complex modularized convolutional
neural networks (CNNs). The experimental results of the proposed method are demonstrated to be extremely competitive
to manually designed ones in the domain of visual perception, particularly in remote sensing image understanding tasks.
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1 INTRODUCTION

1.1 Motivation

Deep neural networks (DNNs) such as convolutional neural
networks (CNN5s) have enabled remarkable progress in the
application of machine learning (ML) and artificial intelli-
gence (Al). Neural architecture search (NAS), also known
as AutoDNN, aims to automate the architecture search of
neural networks to enable researchers adopt DNNs with
ease, and with little or no expertise in deep learning (DL).

As metaheuristic approach, NAS requires a representa-
tion scheme to encode the candidate solutions (architec-
tures). Direct encodings of genetic algorithms (GA) and
genetic programming (GP) have been widely employed in
NAS methods [1]. Though easy to implement, direct encod-
ing cannot be easily modularize and the lack of distinctive
separation of genotype and phenotype spaces limits their
functional complexity [2, 3]. Therefore, it may be difficult
for direct encodings to evolve modules (building-blocks)
with shortcut and multi-branch connections [4] which can
improve training and enhance network performance [5].
Evolving CNN architectures with such modularity proper-
ties, as commonly adopted by human experts, represents
one of the key motivations of this work.

The alternative to direct encoding is a generative encoding
which can produce modular and regular structures [2]. The
second motivation of this work is pertained to exploring the
strengths of two generative encodings, gene expression pro-
gramming (GEP) [3] and cellular encoding (CE) [6], with
the aim of harnessing their strengths into a new encoding
scheme. GEP is known for its simplicity in implementation
and multi-gene chromosomes with flexible genetic modifica-
tion, whereas CE has the ability to produce modular neural
networks. Both GEP and CE are well established evolution-
ary computation methods which have experienced a lot of
development and theoretical study. A large part of this pre-
vious work involves architecture search of artificial neural
networks (ANNSs) in a small scale, and therefore this work
provides the possibility for CNNs architecture development.

1.2 Research Aims and Objectives
Based on the aforementioned motivations and from applica-
tion perspective, the main aims of this work are as follows:
1. To explore the capability of GEP with CE in evolving
CNNs architectures. In particular, to investigate the
viability of combining the encoding schemes of GEP

and CE for CNNs architecture representation.

2. To investigate whether the multi-gene chromosomes
and modularity properties of GEP and CE respectively
can be used to evolve network modules with shortcut
connections and multi-branch connections.

3. To investigate the expressiveness and tractability of the
representation space developed with GEP of CE.

4. To investigate the suitability of applying GEP of CE
to evolve CNNs for visual perception tasks and its
robustness when transferred to others benchmarks.

And to achieve these aims, we propose the accomplishment
of the following objectives:

1. Design and development of a novel generative encod-
ing which adopt the simplicity features of GEP with
modularity properties of CE to model representation
space of CNN architectures.

2. Development of optimization algorithms able to opti-
mize the architecture search of CNNs automatically
based on objective (1), given specific tasks.

3. Evaluation of the automatically evolved CNNs on var-
ious visual perception tasks in order to validate that
they are competitive to, if not better than, manually
designed ones. The tasks should cover a spectrum
of remote sensing image understanding tasks such as
scene classification and aerial image segmentation.

2 RELATED WORK

2.1 Neural Architecture Search (NAS)

Automatically searching and learning neural network archi-
tectures is not a new idea in the AI community [7]. The
earlier studies were mostly related to evolving neural net-
work controllers for robots (evolutionary robotics) [8]. The
work by Zoph et al. [9] in 2017 has attracted researchers into
the field of NAS to evolve CNNs for computer vision and
natural language processing tasks [10]. Most earlier studies
in NAS searched for network architectures and their con-
nection weights at a small scale [7]. However, since CNNs
have millions of connection weights, recent studies searched
only for the network architectures and learn their connec-
tion weights via back-propagation method [9, 11, 12]. With
the growing interest in AutoDNN, various search strategies
have been used to explore the space of CNN architectures,
including random search, evolutionary algorithms (EA), re-
inforcement learning, gradient-based methods and Bayesian
optimization [13]. Historically, EA were used in evolution-



ary robotics [8], and have demonstrated as a computationally
feasible method for AutoDNN [1]. Random search is a sim-
ple method, easy to implement and uses less computational
resources. It can achieve results that are competitive to the
ones of the sophisticated search methods, if the architecture
search space is not intractable and overly expansive [14, 15].
We employ EA and random search strategies and focus on
developing an effective and a tractable space of network
representations to find well-performing CNN architectures
for visual perception tasks. We also adopt cell-based search
space of architecture representation, since architectures dis-
covered by cell-based approach are transferable, and they
perform better than global-based search space [11, 12].

2.2 Remote Sensing Image Understanding

Despite the specific features of remote sensing (RS) images
with respect to spectral, spatial and radiometric resolutions,
the interpretation of RS images involves extracting informa-
tion from the images and visual perception tasks as computer
vision. Traditionally, handcrafted feature extraction meth-
ods with support vector machine [16] and artificial neural
network (ANN) [17] classifiers are employed in RS image
understanding. The advent of large volumes of (very) high
resolution remotely-sensed imagery [18] and with the need
to provide accurate interpretation for applications such as
urban planning, land resource management and environmen-
tal monitoring [19] has demanded the RS community to
adopt CNNs which are capable of learning automatically
insightful features from large volumes of imagery data, and
has shown strong generalization ability than the statistical
learning methods [20]. CNNs have achieved excellent re-
sults in various RS image understanding tasks such as scene
classification and aerial image segmentation [20, 21], and
this work seeks evaluate the performance of automatically
evolved CNNs on such tasks.

3 PROPOSED METHOD

This work is built upon the strength of two generative encod-
ings, gene expression programming and cellular encoding,
which are described in Section 3.1. Section 3.2 presents the
objective function defining the problem of aforementioned
research objectives. The proposed encoding scheme is pre-
sented in Section 3.3. Sections 3.4 presents preliminary
experimental results.

3.1 Preliminaries

3.1.1 Gene Expression Programming (GEP)

GEP is a bio-inspired method introduced by Ferreira in 2001
[3]. Its chromosomes consist of linear fixed-length genes
similar to the ones in GA, and are developed in phenotype
space as expression-trees similar to the parse-trees in GP.
The genes are structurally organized in a head and a tail for-
mat called Karva notation. With simple, linear and compact
chromosomes and a distinct separation of genotype and phe-
notype spaces, GEP is more flexible and effective compared
to GA and GP. Ferreira [22] has proposed that GEP can
evolve ANNS via evolutionary process. Though it is easy to
implement and flexible in genetic operations because of its
linear structure, it can not be easily modularized. The Karva
notation lacks structure-preserving representation, hence a
good evolved building-block is very likely to be destroyed

by genetic modification in the subsequent generations [23].
We adapt the linear representation of GEP and infuse it
with modularity features to induce compact chromosomes
which are able to evolve modularized CNN architectures
via random search and evolutionary algorithm.

3.1.2 Cellular Encoding (CE)

Also inspired by biological development, CE is a neuron-
centric encoding method introduced by Gruau in 1994 [6].
It uses graph grammar that control the division of nodes
to encode ANNSs. The graph grammar are represented as
grammar-tree called program which facilitates the develop-
ment of a modular and hierarchical networks via evolution-
ary process. Whilst CE has modularity property which can
improve performance, it is not without weakness, as genetic
modifications are applied according to GP paradigm [24]
which limits its flexibility in crossover and mutation oper-
ations. We adopt the graph grammar (modularity features)
of CE and embed them into linear fixed-length string of
GEP, which we called symbolic linear generative encoding
(SLGE). This enables SLGE to encode building-blocks of
different shape and size with a simple linear fixed-length
strings to evolve modularized CNN architectures.

3.2 Objective Function for Architecture Search

We formulated the NAS problem as follows. Given the
problem space ¢ = {A,S,P,tD,vD}, where A is the
architecture search space, S represents the search strategy,
‘P denotes the performance measure, and ¢D and vD are the
training and validation datasets respectively, the objective
is to find a small CNN architecture a* € A via random
search or evolutionary search strategy S, which maximizes
the performance measure P of accuracy on the validation
dataset vD after training it on the training dataset ¢D. Small
architecture here means a CNN model has the number of
parameters 6 less than or equal to the target network size.
Mathematically, the objective function F for the automatic
architecture search of CNNs can be formulated as:

F) = maz P(L(a(0),tD | S,a € A),vD)
¢ (1

s.t. the number of parameters 6 < T,uams

where L represents the training of the model parameters 6
with the loss function and 7,,4.ams denotes the target number
of parameters.

3.3 Symbolic Linear Generative Encoding (SLGE)
This section presents the proposed SLGE which can encode
cells (building-blocks) with shortcut (skip) and multi-branch
connections to evolve modularized CNN architectures.

3.3.1 Genotype Representation
The chromosome is a simple program to grow a cell. The
program is a linear fixed-length structured string which
consists of multiple genes with head and tail similar to GEP
representation (see Fig. 1). The head composes of a CE
graph grammar and the tail is made up of common CNN
convolution operations. Given the length of a gene head £,
the tail length # is a function of % expressed as: t = h + 1,
thus, the length of a gene is 2/ + 1. The CE graph grammar
adopted are described as follows (see illustration in Fig. 2):
e SEQuential division (SEQ): it splits current node into
two and connects them in serial.
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Figure 1: Schematic representation of SLGE genotype
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Figure 2: Illustration of CE graph grammar

e CoPy Input division (CPI): it performs SEQ, then
shares the same inputs with parent and child nodes.
e CoPy Output division (CPO): it performs SEQ, then
shares the same outputs with parent and child nodes.
o END program (END): it stops the developing process.
InFig. 1, 1x1,3x3 and 5x5 represent Conv1 x 1, Conv3 x3
and Conv5 x5 regular convolution operations respectively,
and Avg and Max represent average pooling and max pool-
ing operations respectively, which are introduced to achieve
flexibility in the representation space to develop modules
similar to human experts designed ones like Inception-
ResNet-Blocks [4].

3.3.2  Phenotype Representation

The phenotype of a candidate solution is a cell, that is a di-
rected acyclic graph: G = (V, E), where V is a set of nodes
and E is a set of connections. The input and output nodes
are input and output tensors respectively, and the other nodes
represent various convolution operations. The convolution
operations without successor are depthwise concatenated to
produce the output tensor, and if an operation has more than
one predecessor, the feature maps of the predecessors are
added together. The connections are latent information flow
direction in the architecture (see Fig. 3).
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Figure 3: Schematic representation of SLGE phenotype.
This is the cell representation of the chromosome in Fig. 1

3.3.3  Genotype-Phenotype Mapping

The development of each phenotype starts from an initial
cell G- with the input and the output nodes. Then each gene
in the phenotype’s chromosome is developed as a subgraph
G, with the first convolution operation in its tail as hidden
node connected to input and output nodes. The subgraph G;
is developed by applying the head program of the gene to its
tail part. The final cell G is the merging of the subgraphs
G;.n, at the input and output nodes, that is G.= I'(Gj.,),
where I is the function to merge the subgraphs G;.,,. The
evolved cells are repeatedly stacked, for a predefined num-
ber of times, to build modularized CNN architectures as
candidate solutions.

3.4 Preliminary Experiments
The preliminary experiments aimed at verifying the viability
and expressiveness of the proposed encoding method for

discovering cells to evolve modularized CNN architectures.
Because remotely-sensed imagery datasets are mostly large,
for a fast preliminary experiments, two relatively small gen-
eral purpose image classification datasets (CIFAR-10 and
CIFAR-100) were used. Using an evolutionary search, we
ran eight experiments, two each of four different configu-
rations of chromosomes and a random search as baseline.
The search was conducted on CIFAR-10, and the best dis-
covered architecture was transferred to CIFAR-100. The
best network obtained 3.74% error rate on CIFAR-10 and
22.95% error rate on CIFAR-100, which is a competitive
performance with the state-of-the-art networks.

4 EXPERIMENTS ON RS IMAGE UNDERSTANDING

4.1 Evaluating SLGE on RS Scene Classification

4.1.1 Experiments

Using SLGE-based architecture representation, we explored
random search with early-stopping strategy as search tech-
nique to automatically evolve modularized CNNs archi-
tectures for classification of RS image scenes. Two types
of multi-class image scene classification tasks were per-
formed: single-label scene classification and multi-label
scene classification, using four different remotely-sensed
imagery datasets.

4.1.2 Datasets

The experiments were performed on two RGB aerial im-
age benchmarks (NWPU-RESISC45 and AID) and two
multispectral satellite image benchmarks (EuroSAT and
BigEarthNet). NWPU-RESISC45, AID and EuroSAT are
single-label tasks, and BigEarthNet is a multi-label task.

4.1.3 Results

The experimental results show the automatically discovered
networks demonstrate the promising capability in classify-
ing multispectral satellite image scenes compared with fine-
tuned pre-trained CNN models. Using fewer parameters
with 0.56B FLOPS, the best network achieves 96.56% and
96.10% accuracy rate on NWPU-RESISC45 single-label
and AID single-label RGB aerial image datasets respec-
tively, and 99.76% and 93.89% accuracy rate on EuroSAT
single-label and BigEarthNet multi-label multispectral satel-
lite image datasets respectively. The results position our ap-
proach amongst the best of the state-of-the-art, which shows
that the search space is expressive and not intractable.

4.2 Evaluating SLGE on RS Image Segmentation

4.2.1 Experiments

The SLGE was extended to construct a two-separate search
space representation: normal cell and atrous spatial pyramid
pooling (ASPP) cell. Using evolutionary algorithm with
genetic operators: uniform mutation, two-point crossover
and gene crossover, we joint search for a normal cell and an
ASPP cell as a pair of cells to build a modularized encoder-
decoder CNN architecture called SLGENet for solving RS
image semantic segmentation problem. Three ISPRS bench-
marks were used to verify the performance of the proposed
SLGENet on RS image segmentation tasks.

4.2.2 Datasets
The three ISPRS benchmarks used in the experiments are:
Vaihingen, Potsdam and UAVid datasets. The Vaihingen



and Potsdam consist of high resolution aerial images over
Vaihingen and Potsdam cities respectively, and the UAVid is
a of high-resolution UAV images focusing on street scenes.

4.2.3 Results

On Vaihingen and Potsdam datasets, the proposed SLGENet
achieved performance gains in the overall accuracy by 1.0%
and 1.4% respectively, compared with the state-of-the-art
models. And on UAVid dataset, SLGENet significantly im-
proved the stat-of-the-art by 18.9% mean IoU. In addition,
the SLGENet uses fewer parameters and reasonable compu-
tational resources of 2.5 GPU days. This demonstrates the
effectiveness of the proposed SLGENet on three challenging
ISPRS semantic segmentation benchmarks.

5 CONCLUSION

5.1 Contributions
The following are the scientific contributions of this disser-
tation:

1. We introduced a novel encoding scheme, SLGE, which
extends GEP to AutoDNN by injecting the modularity
features of CE into the linear representation of GEP to
evolve modularized CNN architectures.

2. We demonstrated that SLGE can discover modules
with shortcut and multi-branch connections commonly
adopted by human experts and develop modularized
CNN architectures of arbitrary complexity with fewer
parameters.

3. We achieved results that are competitive to, or even
exceed, human experts designed networks in various
RS image understanding tasks. For each of the tasks
used in the evaluation, the results of the best automati-
cally discovered CNNs architecture contributed to the
state-of-the-art.

4. By evolving and evaluating CNN architectures via ran-
dom search policy with early-stopping and evolution-
ary algorithm on remotely-sensed imagery data, we
have extended AutoDNN approach to the field of RS
image understanding.

5.2 Future Work

Within the current framework, related visual perception
tasks such as instance segmentation and object detection
might be plausible. Moreover, expanding the current cell-
based search space to include a global search space might
be beneficial to develop completely automatic architecture
search of CNNs. Another work is implementing real-world
AutoDNN system with SLGE to show its practical and
commercial viability to interpret remotely-sensed imagery
or any other computer vision related problem.

5.3 Concluding Remarks

With the aforementioned contributions, we hope the work
in this dissertation to have positive impact in future research
in the field of NAS. The results presented were influenced
by the world of remote sensing. Hopefully, this might also
suggest something inspiring and opens new research path in
such interdisciplinary approach, as well as practical applica-
tions in NAS methods in real-life situations, to enable the
research scientists to use DNNs with little or without exper-

tise in deep learning. This can improve the user experience
and productivity in designing an Al-enabled product.
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