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Chapter 1

Introduction

This chapter provides the introduction of the studies presented in this thesis. Firstly, backgrounds

regarding the recent transformation of electricity markets will be explained. Secondly, research

objectives of the studies will be presented. Finally, problems addressed in this thesis are presented

after introducing research  elds related to thestudies.

1.1 Backgrounds

For a long time, many countries have vertically integrated electricity markets for ensuring a stable

supply of electricity. In the vertically integrated electricity markets, a limited number of power

companies have conducted generation, transmission, and retail of electricity. Nevertheless, those

electricity markets with centralized structure mainly have issues on electricity charges and services

o ered by the suppliers [1, 2]. First, consumers cannot recognize whether current electricity charges

are appropriate or not since they do not have any suppliers for the comparison. Second, electricity

suppliersdo not seem to actively improve their services sinceno competition occurs among a limited

number of suppliers.

Structural transformation in electricity markets has emerged in many countries to ameliorate

the services in electricity markets. As the  rst step of the transformation, traditionally centralized

electricity markets have been deregulated and divided into several sectors. The deregulation aims at

theparticipation of variouselectricity suppliers in themarketsand enhancing competition among the

suppliers. Electricity retail marketshavebeen gradually liberalized toprovideconsumerswith choices

among electricity suppliers. Asdescribed above, power companiesprovideelectricity to consumersat

relatively higher chargesdue to no competition among thecompanies. Recently, many countrieshave

1



deregulated their electricity markets to o er lower charges to consumers. For instance, the Japanese

government hasgradually deregulated their electricity markets. Thederegulation hasallowed various

companies to enter electricity retail for all consumers in Japan since2016.

As modernization of power grids, smart grids have been considered to increase reliability, re-

siliency, sustainability, and energy e ciency by using advanced metering and communication tech-

nologies [3]. The anticipated smart grid bene ts are improving power reliability and quality, accom-

modating distributed power sources, improving resilienceto disruption by natural disasters, and so on.

Bidirectional power  ow realized in smart grids might transforms the structure of electricity markets

than ever. The expected bene ts of smart grids in terms of consumers are (i) to provide consumers

with actionableand timely information about consumers’ energy usageand (ii) to increaseconsumers’

choiceand enable new products, services, and markets [3].

From the consumers’ viewpoint, the roles of consumers in electricity markets have been greatly

changed with the transformation. In traditionally centralized electricity markets, consumers do not

have any alternatives to their electricity suppliers. After the deregulation of centralized electricity

markets, on theother hand, consumers will havealternatives for their electricity suppliers. Moreover,

consumers will possibly have chances to provide surplus electricity to its neighbors in future smart

grids. Thus, consumers’ choices arenot only purchasing electricity from suppliersbut also providing

surplus electricity to others in the future.

1.2 Research objective

Although new types of trading will be available in the transformation of electricity markets, liber-

alization might pose issues regarding consumers’ viewpoints. Consumers do not necessarily act in

liberalized electricity markets as expected. For instance, many consumers have not switched their

suppliers in many countries though consumers can choose electricity suppliers after the deregulation

of electricity retail [4]. This trend might not lead to reduce electricity charges even though relatively

lower charges is one of the expected outcomes of the deregulation. Besides, if consumers will not

actively participate in electricity sharing markets in smart grids similar to the cases in electricity

retail, mechanisms for electricity sharing might also fail since active participation of end-users is an

inevitable factor for the success of resource sharing [5, 6]. Characteristics regarding the deregulated

markets should be examined carefully to avoid causing large impacts to society such as California

electricity crisis in 2001 [7].

2



Theobjectiveof thestudiespresented in this thesis is to analyzeconsumers’ bene ts in electricity

marketstoconsider successful market mechanisms. Thesestudiesprovideopportunitiestounderstand

consumers’ bene tsandprovideinsightsfor themechanismdesignof electricity markets. Thesestudies

clarify thebene tsof consumers about their decision in electricity trading. An exampleof insights is

information about the decision making of consumers in electricity markets. One of the applications

of these studies is a tool for the “proof of concept” of operations regarding electricity markets. For

electricity suppliers, thetool canbeused tocheck thee ectson thesettingsof their electricity services.

Besides, for policymakers such asgovernmentsor public o ces, the tool gives insights to understand

thecharacteristics of consumers such as their bene ts, behaviors, etc.

1.3 Related works

Mechanisms for electricity markets require consideration in many factors such as engineering, eco-

nomics, social and political aspects. Since electricity markets have transformed into a more complex

stylethan ever, many kindsof problemsmust beaddressed toprovidedesirablebene tsfor consumers.

This section introduces related studieson theproblems as an overview of research  elds.

Managingproduction and demand of electricity

Matchingproductionanddemandfor electricity inaparticular timeinterval isinevitabletoavoidpower

failure. These kinds of problems must be solved to continuously provide electricity to consumers

as infrastructure for their daily life. Thus, managing production and demand is the fundamental

constraints on electricity provided in electricity markets.

To determine electricity distribution according to constraints on production and demand, mathe-

matical modeling techniquessuch aslinear programming areutilized. For instance, Georgiou presents

a mixed integer linear programming model for the long-term energy planning of power systems in

[8]. Regarding deregulated electricity markets, Sen et al. introduce algorithms for multi-objective

optimization about transmission linecongestion, line loss, and price volatility [9].

Integratingenergy storagetorealizestablesupply of electricity

Production from renewable energy cannot be controlled since the amounts of electricity production

depend on uncertain conditions such as wind, solar, wave, and so on. Energy storage might facilitate
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this problem since energy storage can o set the gap between production and demand. Although a

number of energy storage technologies have already been available, they need more advancements

than ever sinceenergy storage for electricity markets requires large-scale capacity [10].

Researchers propose models to assess the way to integrate energy storage systems into electricity

networks. Babrowski et al. introduceamodel to analyze theallocation and amount of energy storage

systems required in Germany considering transmission from renewable energy supply to the storage

systems [11]. Velik et al. present an architecture for managing prosumers’ PV systems and battery

storage in microgrids [12].

Designingmechanismsfor electricity markets

Electricity markets require mechanisms to match suppliers and consumers by economic perspectives

in addition to methodsfor distribution of electricity. Hence, mechanism design becomesan important

process to realize successful electricity markets. In addition to consideration of the characteristics of

electricity described above, economic aspects are involved in themechanism design.

There are a variety of mechanisms for each type of electricity market. A typical example is

auction mechanisms to determine electricity trading by adjusting electricity prices based on rules of

the auction. Karaca et al. introduce a game theoretic approach to examine auction mechanisms for

electricity markets to realize truthful bids and prevent strategic manipulations by participants [13].

Another example is the mechanism of Demand Response (DR), which mainly aims at reducing peak

demand. In [14], Rekaet al. proposeaDR scheme for smart grids using game theory.

Forecastingproduction and demand of electricity

Demand forecasting will become more complex after the deregulation of electricity markets. For in-

stance, DR might increasedi culty in forecastingdemand [15]. Furthermore, forecasting isinevitable

to utilize renewable energy since production from renewable energy is considered to be uncontrol-

lableas noted above. Hence, forecasting technologies become crucial for thesuccessful utilization of

demand participation and renewable energy. These technologies are also related to the mechanism

design of markets.

Regarding renewable energy, forecasting models are examined for each type of energy source. In

[16], Bacher et al. present a method for online forecasting of production from PV systems based on

data collected from PV systems on rooftops in Denmark. Wang et al. present a review of forecasting
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models of wind power in [17]. Reikard et al. present test results about the accuracy of forecasting

models for ocean waveenergy [18].

Analyzingcharacteristicsof participantsin electricity markets

The characteristics of participants are one of the crucial factors to design mechanisms for electricity

markets. Regarding supply side, technologies for forecasting production are used for a stable supply

of electricity. Similarly, mechanism design must address the characteristics of consumers at demand

side. The insights of characteristics of consumers will improve the quality of mechanisms to induce

desirableactions from demand side.

To examine consumers’ behaviors, many studies consider modeling techniques about bounded

rationality, which explains behaviors that do not aim at maximizing bene ts [19]. For electricity

consumers, Ruiz et al. [20] present a game theoretical model to investigate the e ects of consumers’

switching costson competition of suppliers. Besides, Biglaiser et al. analyzethebene tsof suppliers

in amodel where consumers haveheterogeneous switching costs [21].

1.4 Problem statement

Thisthesisfocusesonproblemsinmodelingtechniquesfor analyzingconsumers’ bene tsin liberalized

electricity markets. Behavior and decision of demand-side are equally or even more important

than supply-side to deploy new technology even though many related studies have mainly focused

on technology and cost-e ectiveness of supply-side [22]. If proposed methods in this thesis can

obtain insights about consumers’ bene ts, the insights will contribute to the e ective mechanism

designof electricity marketssinceconsumersdemonstratevital rolesin liberalized electricity markets.

Moreover, methods to analyze the characteristics of consumers can be applied for both improving

current situations and examining future novel mechanisms of electricity markets. This thesis deals

with the following four problems about theanalysisof consumers’ bene ts.

Problem 1. Constructinga modelingframework for electricity trading

Structure of electricity markets has became complex after liberalization. Especially, the networked

structure will become important aspect since deregulation increases the number of participants in

electricity networks. For extensiveanalysisof bene ts for consumers in electricity trading, this thesis
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proposes amathematical modeling framework. Thisapproach is applied to electricity market models

for Problem 2, Problem 3, and Problem 4.

Problem 2. Representingelectricity trading in deregulated electricity markets

Thisproblemaimsat modelingparticipantsinderegulatedelectricity marketstoexaminethebene tsof

them. Sincetherearemultipletypesof participantsinthederegulatedelectricity markets, combinations

of electricity trading among participants increase than ever. This thesis focuses on representing

the deregulation of electricity retail since this kind of deregulation is closely related to electricity

consumers. This problem is the  rst application of the model considered in Problem 1 for modeling

bene ts, prices, and trading of market participants.

Problem 3. Examiningswitchingbehavior of consumersin electricity retail

As the third problem, this thesis proposes a market model focusing on switching costs to analyze the

behavior of consumersinelectricity retail markets. Enhanced understandingof theswitchingbehavior

is crucial to improve theswitching rateof consumers in electricity retail. Electricity retail markets in

many countriessee inactiveswitching behavior, which means theaction of consumers to changetheir

supplier. This topic aims at providing insights for promoting theswitching behavior of consumers by

modeling consumers’ decision making. This approach is di erent from that in Problem 2 since the

model in Problem 2 does not focus on thebehavior of each participant.

Problem 4. Describingfairnessamongprosumersin electricity sharing

The fourth problem de nes fairness measures for time-varying electricity sharing to decrease envy

among prosumers about their allocation of electricity. This study examines electricity trading among

prosumers, which has roles varying between suppliers or consumers from time to time. Electricity

consumersdo not necessarily act to maximizetheir bene tsasconsidered in Problem 3. Thisproblem

focuseson envy-freeness, which isoneof thefairnessmeasures for resourceallocation. Thismeasure

is selected since it is considered to be important even for irrational consumers. Since this problem

deals with the time-varying roles of prosumers, this problem is considered to be a successor for

Problem 2.
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1.5 Thesisstructure

The remaining chapters of this thesis are structured as follows. Chapter 2 presents mathematical

modeling techniques for Problem 1 to represent electricity markets using graph theory. Chapter 3

proposesamarket model to describe thebene tsof participants in deregulated electricity markets for

Problem 2. Chapter 4 introducesamodel about Problem 3, which is to analyzetheswitching behavior

of consumers. Chapter 5 introduces a model to examine envy-free allocation in electricity sharing

among consumers for Problem 4. Chapter 6 concludes this thesis and future works regarding this

study.
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Chapter 2

Constructing a modeling framework for electricity

trading

This chapter introduces a mathematical modeling framework about trading in electricity markets for

Problem1. Firstly, relatedworksabout mathematical modelingareintroduced. Secondly, theproposed

mathematical modeling framework for electricity markets is explained.

2.1 Related works

2.1.1 Overview of mathematical modeling

Mathematical modeling isa fundamental concept to describeareal-world problem asamathematical

problem and to acquire a solution for the real-world problem [23]. In [24], Meerschaert explains the

process of mathematical modeling can bedescribed as5 step method. The5 step method includes the

following steps.

Step 1. Focus on a real-world problem

Step 2. De ne amathematical model from the real-world problem

Step 3. Formulatean optimization problem on themathematical model

Step 4. Solve theoptimization problem

Step 5. Consider the relation between theresults and the real-world problem

In this process, Step 5 is the most important step since the result of the formulated mathematical

problem cannot be considered for the real-world problem without Step 5.

One of the key objectives of mathematical modeling is to consider the characteristics of the real-

world problem. However, becausethereal-worldproblem iscomplex inmany cases, all characteristics
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cannot beincluded inasolvablemathematical problem. Hence, proposedmathematical modelsshould

focus on the limited number of characteristics of the real-world problem.

2.1.2 Research  eldsrelated tomathematical modeling

Electricity market models presented in this thesis are composed of several approaches used in Op-

erations Research (OR). As a research  eld to support appropriate decision making, OR deals with

mathematical modeling techniques for decision making in many industries. Mathematical modeling

in OR utilizesapproachesproposed in variousstudy areas: combinatorial optimization, graph theory,

game theory, economics, etc. The rest of this section introduces an overview of the main research

 elds related to mathematical models proposed in this thesis.

Combinatorial optimization

Many real-world problems can be formulated as abstract combinatorial optimization problems [25].

Thecombinatorial optimization problem isdescribed asaproblem to select optimal elements in aset.

Thefeasibility of computation for theproblems isdependent on their search space. If aproblem hasa

largesearchspace, relatively longer computation timeisrequired toobtainanoptimal solution. Hence,

the time complexity is important concepts to consider the computational e ciency of algorithms for

combinatorial optimization [26].

Graph theory

Graph theory is one of the mathematical modeling techniques to solve problems. In graph theory, a

graph is denoted by a set of vertices and edges. Many combinatorial optimization problems can be

modeled and solved by graph theoretic approaches such as network  ows, matching, and so on [27].

The complex structure and characteristics of electrical power networks have been represented and

analyzed by using graph theory [28, 29]. In addition to the applications for conventional electricity

grids, graph theory has been applied to methods for controlling futuresmart grids [30].

Recent applications on graph theory have focused on dynamical changes of the graph structure

even though graph theory has originally dealt with the static structure of graphs. Temporal network

theory appeared asan application of graph theory. Thetemporal network theory integratestimeseries

of graph structure into classical graph theory [31]. Temporal network is also known as Time-Varying

Graph (TVG) [32]. In studiesabout social networks, connectionsof vertices in agraph are focused on
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examining thecharacteristics of interactions among vertices (e.g. propagation of information, rumor,

epidemic, and so on [33].

Regarding algorithms to solve problems about graphs, machine learning techniques have been

adopted to improve the performance of the algorithms. In [34], Dai et al. introduce reinforcement

learning is utilized to design algorithms to solve graph problems. He et al. propose a learning

mechanism to improve branch-and-bound for mixed integer programs [35]. Although these studies

improve the performance of algorithms for graph problems, machine learning techniques in these

studies do not describe how real-world problems can be represented by graph problems. This thesis

mainly focuses on thedescription of real-world problems using graph theory.

Gametheory

Game theory analyzes the strategy of individuals in a situation where multiple players interact with

eachother. In [36], theconcept of gametheory isexplainedasfollows; “gametheory studiessituations

of competition and cooperation between several involved parties by using mathematical methods.” A

popular example of game theory is called prisoners’ dilemma. This game can be utilized to consider

the possible outcomes of each prisoner’s strategy (either cooperation or defect) by examining each

prisoner’sbene t determined by thecombination of thestrategies. Besides, evolutionary gametheory

is considered as an extension of game theory [36]. An evolutionary game mainly focuses on the

player’s population in dynamical systems. For example, the transition of the share of strategy in the

overall population is investigated by the techniques of evolutionary game theory.

Agent-based modeling

In agent-based modeling (ABM), a model of the real world is described by the set of autonomous

agents and interaction between them [37, 38, 39, 40]. By conducting simulations with ABM, the

behavior of a modeled system can be observed. One of the advantages of ABM simulations is the

observation for emergent behavior in a model [41]. As a consequence of micro interactions between

agents in a model, some macro features of the model are revealed by ABM simulations. Hence,

the ABM simulations are used as a complement for analytical methods traditionally used to analyze

real-world problems. If temporal networks and evolutionary games are mainly utilized to model

interactions of individuals, they might beconsidered as ABM.

Reinforcement learning in multi-agent simulation is expected to discover adaptive solutions for
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problems that have uncertainty. However, although an agent learns appropriate actions against the

environment, theenvironment isdependent on other agents’ actions [42]. Hence, agentsaremoredif-

 cult to achievebetter actionsby reinforcement learning techniques through multi-agent environment

compared to reinforcement learning with asingleagent.

Social and economicnetwork

Social and economics network is a relatively new research  eld to investigate economic behavior in

a network representing a market [43]. This theory is also called network market [44]. Compared

to microeconomics, network market has one simple advantage; a typical market network is assumed

in a problem of network market. Ordinary microeconomics assumes an anonymous network as a

market. However, this assumption cannot match with the actual environment of markets. Hence,

network market isbetter in termsof theutilization of themarket structurecompared to theanonymous

network. This type of research  eld is also known as Agent-based Computational Economics (ACE)

[45].

Matchingand buyer-seller network

In 1962, Gale and Shapley discussed stable marriage problem and college admissions problem in

[46]. The stable marriage problem is a classic problem of matching, and this type of matching is

classi ed into one-to-onematching; moreover, when thenumber of elements isthesameon both sides

of matching, thematching iscalled perfect matching. An objectiveof thecollegeadmissionsproblem

is the construction of the matching between colleges and students. Colleges can accommodate some

students, and, ontheother hand, studentsmust belinked toonly onecollege; thus, thistypeof matching

is called many-to-one matching [47]. Thus, matching has variation according to modeling targets.

Matching market is a method for constructing the matching between sellers and buyers in a

networked market with a pricing mechanism [44, 48]. By changing the prices o ered by sellers in

a market model, demand of buyers in the model is changed, and the optimal distribution of sellers’

items is realized if thepricesof sellersareappropriate for buyers’ demand for the items. Thenetwork

structure used in matching market can be described as a buyer-seller network that is discussed in

[49, 50]. The utilization of buyer-seller network provides two advantages. First, a buyer can choose

a seller independently based on its evaluation to the seller, this is practical for the use in real markets

because the markets do not ever have the central coordination of the choice of buyers. Second, the
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e ciency of themarket can beexamined by social welfare, which is the total of utilitiesof all market

participants [51].

2.2 Mathematical modelingframework based on graph theory

Thissection explainsconcepts for mathematical modeling of electricity markets. After explaining the

basic notation of graph theory, this section proposes a modeling framework for electricity markets.

Thoughthissectionproposesconceptsof theframework, detailednotationspecializedfor eachproblem

of this thesis is de ned in subsequent chapters.

2.2.1 Fundamental conceptsof graph theory

Undirected and directed graph

An undirected graph G consists of two sets: node set N and edge set E. G can be represented by

G = (N, E). Nodes are also called vertices. Every edge in E exists between two nodes in N. For

instance, when E contains an edge between two nodes v and w, this edge can be denoted by (v, w) or

(w, v). Both (v, w) and (w, v) represent the same edge because every edge in E has no direction. Fig.

2.1a shows an example of undirected graph G. In this Fig., an edge between v1 and v4 is denoted by

(v1, v4) or (v4, v1).

A directed graph H iscomposed of anodeset N and an arc set A. H isrepresented by H = (N, A).

An arc in A can be considered as a directed edge in H. An arc from v to w is represented as (v, w).

Adversely, (w, v) denotes an arc with the direction opposite to (v, w). Fig. 2.1b is an example of

directed graph H. In Fig. 2.1b, an arrow between v4 and v2 represents an arc (v4, v2).

(a) Undirected graph. (b) Directed graph.

Fig. 2.1: Exampleof undirected graph and directed graph.
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(a) Undirected path (v2-v6 path). (b) Directed path (v2-v5 path).

Fig. 2.2: An undirected path and adirected path.

Path

In an undirected graph, a path is a sequence of edges. A path represents a route from the start node

to the terminal node. In the sequence of edges of a path, the same node must appear only once. If a

path has the start node s and the terminal node t, the path is called s-t path. In Fig. 2.2a, v2-v6 path

(v2  v1  v4  v3  v5  v6) is denoted by the dotted line. Of course, thenumber of v2-v6 paths in the

graph shown in Fig. 2.2a is not necessarily only one. For example, a path v2  v4  v3  v6 is also

v2-v6 path. On the other hand, there is no v2-v6 path in the directed graph in Fig. 2.2b since no path

can reach v6 from v2.

Degree

In graph theory, degree indicates the number of edges connected to a node. For undirected graphs,

degree of node v is simply denoted by deg(v). About a directed graph, two types of degree can be

considered: in-degree and out-degree. For example, degin(v) indicates in-degree of node v. Besides,

degout(v) denotes out-degree of node v.

Multipartitegraph

A multipartitegraph isagraph that consistsof n partitesetsof nodes[52]. For instance, for nodeset N

of multipartitegraph G, therearenodesetsNi (i = 1, 2, 3, ..., n) that satisfy N = N1∪N2∪N3∪...∪Nn.

There is no edge between two nodes which belong to the same partite set of nodes. Hence, v and w

must belong to thedi erent typeof nodeset each other about an arc (v, w) in a multipartitegraph.

A bipartitegraph hastwo typesof nodesetssinceabipartitegraph isamultipartitegraph in which
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(a) Undirected bipartitegraph. (b) Directed bipartitegraph.

Fig. 2.3: An undirected bipartitegraph and adirected bipartitegraph.

n = 2. For example, let Na and Nb betwo nodesetsof abipartitegraph. Thebipartitegraph hasnodes

ai ∈Na (i = 1, 2, ..., |Na|) and bj ∈Nb ( j = 1, 2, ..., |Nb|). Thus, an undirected bipartite graph has

edges represented by (ai, bj ) or (bj, ai ). Examples of undirected bipartitegraph and directed bipartite

graph are shown in Fig. 2.3.

2.2.2 Electricity market model represented by graphs

This thesis focuses on the following three aspects representing characteristics of trading in proposed

models of electricity markets.

1. Representing network structureamong market participants:

Asdescribed in Section 1, thenetworked structureevolving after thederegulation of electricity

markets has become an important aspect. Using graph theoretical concepts, themarket models

denote relationships of trading among participants in electricity markets.

2. Satisfying constraints on production and demand of electricity:

Production and demand of electricity must be balanced in electricity trading to realize a stable

supply of electricity to consumers. This thesis focuseson theconstraints on theproduction and

demand of market participants.

3. Describing bene ts for consumers in markets:

In the networked markets, consumers will face di  erent bene ts according to determined elec-

tricity trading since choices of consumers about suppliers increase than ever. Proposed market

models de ne the bene t of consumers from electricity trading in the networked structure

without violating theconstraints on theproduction and demand of electricity.

The rest of this section presents mathematical modeling concepts for each aspect as the modeling

framework.
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(a) One-to-one matching. (b) Many-to-one matching.

Fig. 2.4: Examples of matching.

1. Matching in buyer-seller networks

The concept of matching is used for the  rst aspect of electricity markets. A bipartite graph in Fig.

2.4a is a one-to-one matching but not a perfect matching because one node in the black nodes is not

assigned to any node in the white nodes; oppositely, a graph in Fig. 2.4b is a perfect one-to-one

matching. By using thebipartitegraph modelsof matchings, someresearchersconsider thematching

problems based on themethods of graph theory.

Even though both matching market and general economics deal with markets, matching market

does not use anonymous networks but given speci ed networks in which there are some buyers,

sellers, and links between them. Therefore, matching market shows how market participants a ect

eachother in thenetwork that hasthespeci ed structure, and thisattempt cannot berealized by general

economics using the anonymous networks. An ordinary method of matching market assumes that

sellersand buyers in amarket deal with asingle item, and an algorithm of matching market constructs

only perfect one-to-one matching.

2. Network  ows

As the second aspect of electricity markets, network  ow [53] can be utilized to determine resource

allocation in matching satisfying constraints on supply and demand of electricity. A directed graph

(V, A) is used in a network  ow problem. Arc (v, w) ∈A is a directed edge from v to w (v, w ∈V).

x(v, w) representsanonnegativevalueof  ow on (v, w) ∈A. c(v, w) denotesweight on arc (v, w). The

cost of  ow on arc (v, w) iscalculated by x(v, w) ꞏ c(v, w). Fig. 2.5 shows thenotation for thevalueof

 ow x(v, w) between v and w.

A directed path is a set of arcs, which represents a route from the source to the sink in a graph.

Therouteof apath must not pass through thesamenodes that arealready visited in thepath. o-t path
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v w
x(v, w)

Fig. 2.5: Exampleof  ow model on arc (v, w).

w

x(o, v)
x(v, w) x(w, t)

x(v, u) x(u, t)

o v

u

t

Fig. 2.6: A samplemodel with two o-t paths.

meansapath which has thesource o and thesink t. For instance, Fig. 2.6 showsadirected graph that

has two o-t paths.

The main goal of a network  ow problem is to  nd  ows on o-t paths to optimize objective

functions (e.g. maximizing amounts of  ow, minimizing costs of  ow, and so on). In a network  ow

problem,  ow x(v, w) must satisfy two constraints. One of the constraints is the capacity constraint

on every arc in A, and the other is the mass-balance constraint on every node in V. For the capacity

constraint, every arc (v, w) ∈A hascapacity of  ow x(v, w). Let ub(v, w) and l b(v, w) beupper bound

and lower bound of x(v, w), respectively. As thecapacity constraint, x(v, w) must satisfy

l b(v, w)  x(v, w)  ub(v, w). (2.1)

Besides, di erence function d : V → R is utilized to de ne the mass-balance constraint. d(v)

describes di erence in  ow of input and output for v. d(v) is calculated by

d(v) =
#

{w:(v,w)∈A}

x(v, w)  
#

{w:(w,v)∈A}

x(w, v). (2.2)

In general, mass-balance constraint means d(v) = 0 except source and sink since structure of

sourceand sink aredi erent from theother nodes. let o and t represent sourceand sink, respectively.

In termsof a source, d(o) must satisfy

d(o) =
#

{w:(o,w)∈A}

x(o, w)  0  0. (2.3)
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Table2.1: Properties of abinary relation R.

Property Description

re exivity (sk, sk) ∈R
irre exivity (sk, sk) ! R
symmety skRsl ⇒ sl Rsk

asymmetry skRsl ⇒ sl Rcsk

transitivity skRsl and sl Rsm ⇒ skRsm

intransitivity skRsl and sl Rsm ⇒ skRcsm

completeness (sk, sl ) ∈R or (sl, sk) ∈R

Moreover, d(t) must satisfy

d(t) = 0  
#

{w:(w,t)∈A}

x(w, t)  0. (2.4)

For example, in the directed graph shown in Fig. 2.6, (2.2) must be satis ed in d(v), d(w), and d(u).

Likewise, (2.3) and (2.4) must besatis ed in d(o) and d(t), respectively.

3. Preference relation and utility function

The third aspect of electricity markets, which is to describe bene ts for consumers, is represented

by using concepts of preference and utility. Preference relation describes preference of a market

participant over itsalternativestochose. For instance, let buyer bj chooseseller si based on preference

over its alternatives of sellers. bj is likely to choose an alternative that is more preferred than

the current seller. The preference of bj over every pair of alternatives sk, sl ∈Xj is expressed as

preference relation, which is based on binary relation. Binary relation R is a subset of Cartesian

product Xj ×Xj . For sk, sl ∈Xj , let (sk, sl ) ∈Xj ×Xj be a pair of alternatives. R can be denoted as

R = {(sk, sl ) | sk, sl ∈Xj } . Let skRsl be (sk, sl ) ∈R, and skRcsl denote (sk, sl ) ! R. R has properties

shown in Table 2.1 based on (sk, sl ) contained in R. In Table 2.1, sk, sl, sm are alternatives arbitrarily

chosen from Xj .

Utility function isused asametric to represent thebene t of aparticipant inamodel. For instance,

utility of buyer bj to choose alternative si is calculated by a utility function µj : Xj → R. Utility

function and preference relation are related each other. Considering P and I over the same set Xj ,

preference relation is rational if P ∪I meets completeness and transitivity. Furthermore, if P ∪I

satis estransitivity, each of P and I isalso transitive. When preferencerelation isrational, preference
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relation can bede ned by using utility function µj as follows.

skPsl  ⇒ µj (sk) > µj (sl ).

Although µj (si ) might contain many types of factors to determine utility obtained from each

alternative, this thesis focuses on electricity charges as the factor of utility. Electricity is an almost

homogeneousproduct since thefunction of electricity doesnot di er with suppliers from consumers’

point of view [54, 55]. In general, the main factor for a comparison of homogeneous products is the

charge of products. The de nition of utility function is also based on the charge of product in game

theory in somecases [56].

In addition to electricity charges, the other factors of consumers’ utility can also be considered

such as theenvironmental e ects of energy sources, reliability of electricity supply, and so on.

• Rowlands et al. investigated several factors of consumers’ decision making about choosing

electricity suppliers [57]. Their results indicate consumers recognized electricity charges and

environmental e ectsasimportant factors. Someelectricity consumersprefer renewableenergy

due to itssmaller environmental e ects. Although consumers who prefer renewableenergy are

possibly willing to pay higher costs than conventional plants, theconsumers’ willingnessto pay

for renewableenergy di  ers across countries [58].

• Some consumers might feel anxious about the reliability of new retailers in the markets. The

consumers are willing to pay costs to avoid electric outages [59]. However, the reliability is

not di erent across retailers if divisions for managing stable electricity supply have not been

deregulated even after the liberalization of electricity retail (for example in Japan) [60].

Hence, this thesis assumes electricity charges are considered to be the common characteristics of

consumers’ utility compared to environmental e ectsand reliability described above. In other words,

this thesis mainly focuses on economic bene ts in the de nition of utility functions in proposed

electricity market models.

Utility function µj (si ) can be used to represent the concept of consumer surplus widely used in

microeconomics. Let vj represent reservation price, which is willingness to pay of bj for purchasing

electricity from si . Besides, let pi be an electricity price o ered by si for one unit of electricity. If bj
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purchases dj units of electricity, µj (si ) is determined as follows in our modeling framework.

µj (si ) =
!
vj  pi

"
dj . (2.5)

Using network  ow, dj can be determined by the amount of  ow between bj and sj in electricity

trading. Since the amount of network  ow must satisfy constraints on production and demand of

electricity, network  ow can beutilized to determinedj without violating theconstraintson electricity

trading. Although utility functions de ned in subsequent chapters are specialized for each problem,

the values given by theutility functions commonly represent the bene t of consumers in matching in

proposed market models.

2.3 Summary of thischapter

Thischapter introducesamathematical modeling framework to represent trading inelectricity markets

as an extension of the concept of matching market. By using concepts of graph theory, relationships

about trading among market participants (e.g. suppliers, consumers) can be described. Network

 ow can denote the quantity of supply and demand of electricity in trading. Furthermore, as a

method considered in social and economic networks, utility function can describe thebene tsof each

participant in electricity trading. This chapter explains the concepts of the modeling framework, and

solutions for Problem 2, Problem 3, and Problem 4 are considered in the subsequent chapters based

on theproposed modeling framework.
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Chapter 3

Representing electricity trading in deregulated

electricity markets

This chapter introduces amathematical modeling technique regarding Problem 2. In thischapter, the

mathematical modeling framework proposed will be utilized for describing consumers’ bene ts in

deregulated electricity markets.

3.1 Introduction

3.1.1 Literaturereview

Numerous studies have been conducted to consider modeling techniques for deregulated electricity

markets [61, 62]. Grine et al. present a multi-layer model to consider electricity prices with another

energy commodity [63]. Triki et al. consider an optimal capacity allocation problem to maximize

pro ts of electricity sellers [64]. Hussein et al. formulate an optimization problem for forecasting

prices in day-ahead electricity markets [65]. Corchero et al. present astochastic programming model

for theSpanish electricity market [66].

Moreover, there are various studies on e ciency, which means the optimal allocation of the

electricity with appropriate prices [67]. E ciency can be measured by social welfare that is the sum

of payo s of all market participants [68]. Stern et al. consider the relation between market clearing

price mechanisms and the maximization of social welfare in deregulated electricity markets [69].

Mechanism designs to maximize social welfare in double-sided electricity markets are presented in

[70, 71]. Nicolaisen et al. propose a price setting problem in a double-price auction for wholesale

markets by implementing a reinforcement learning algorithm [72]. Swami considers social welfare
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maximization with considering congestion of transmission lines[51]. Asoneof theresearch topicson

market e ciency, network market based ongraph theory isproposed in [49]. Thismodel isconsidered

to be more realistic than anonymous networks because actual trades occur between participants that

can interact with each other. Since electricity trades also take place between participants connected

by transmission lines, we proposed an algorithm to  nd optimal matchings in an electricity market

model based on network market [73].

However, thepreviousworkshavenot focused on electricity retailers, becausethepreviousmarket

models contain only suppliers and consumers, not a retailer. In [74], Babic notes advantages of an

agent-based modeling technique for electricity retail markets; however, no characteristics regarding

retailers are demonstrated in the thesis. To model activities of retailers in network markets, Blume

et al. considers optimal price setting on a tripartite graph by utilizing a game theoretical approach

[75]. However, the method cannot deal with a multi-unit commodity such as electricity because

it is assumed that participants trade only a single-unit commodity. Besides, Nava introduces the

competition model utilizing network  ows in oligopolistic markets [76]. Although themodel of Nava

can cope with participants including retailers dealing with multi-unit commodities, the model cannot

beapplied to electricity marketsbecausetherolesof participantsin electricity marketsaredetermined

beforeequilibrium prices are discovered.

3.1.2 Contribution

This thesis proposes a sequential solution method to determine prices and e cient trades in an

electricity market model with electricity retailers. In this thesis, we formulated a determination

problem for e cient electricity trades on a model with electricity as a multi-unit commodity, not a

single-unit commodity. Tosolvetheproblem, weconstructed thesequential solutionmethod tochoose

electricity trades in the market model. In our solution method, a price setting algorithm extended

from a price setting mechanism proposed in [75]. Moreover, to determine electricity trades on the

model, a determination problem is formulated by utilizing integer programming and unsplittable

 ow [77]. Simulation results demonstrate the characteristics in deregulated electricity markets about

e ciency in terms of social welfare and payo allocation of each market participant. Although the

simulation resultsabout e ciency aresimilar to theresult presented in [78], theparameter conditions

about capacity of electricity sellers are di erent in this thesis. Moreover, the results regarding payo 

allocation indicate that important factors for the payo allocation are the market structure and the
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period of timehaving elapsed since thederegulation.

3.2 Electricity market model with agents

Thissection introduces our electricity market model based on graph theory. Themodel denotes three

types of agents and electricity trades conducted between them.

3.2.1 Tripartite network representingelectricity markets

Our electricity market model is represented by tripartitenetwork G = (S∪B ∪T, A). Fig. 3.1 shows

an example of G. G is composed of three types of agents: buyer bj ∈B, seller si ∈S, and trader

10

s1

s2

s3

t1

t2

b2

b3

b1

Fig. 3.1: Tripartitenetwork G composed of agents.

tk ∈T. Each arc indicates that agents at endpoints of the arc can conduct electricity trades between

them. Arc set A contains arcs (si, tk) or (tk, bj ) due to following threeconstraints.

1. Each arc connects two agents not belonging to thesame typeof agents.

2. bj must beprovided electricity from tk.

3. tk must purchaseelectricity from si .

3.2.2 Notation of electricity  ow on market model

In themodel, each seller hasacapacity of electricity, and each buyer hasademand of electricity. The

capacity of si and the demand of bj are denoted by cs
i and db

j respectively. Let cmin be the minimum

capacity of all cs
i , and let dmin be the minimum demand of all bj . Since a seller in our model can

supply electricity to at least onebuyer viaa trader, cmin must satisfy cmin  dmin.

To denoteelectricity trades in themodel, thenotation of network  ow isutilized. Integer x(b, a) is

thequantity of electricity  ow on arc (b, a). Lower bound and upper bound of x(b, a) are represented
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b1t1

b3t2
Fig. 3.2: Exampleof splittable  ow.
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s1

s2

s3

b2

b1t1

b3t2

s1

s2

s3

b2

b1t1

b3t2

Fig. 3.3: Exampleof unsplittable  ow.
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s1

s2

s3

t1

t2

b2

b3

b1

lb(a, b)/ ub(a, b)

a b

0/ cs
1

0/ cs
2

0/ cs
3

db
2/ db

2 db
1/ db

1

db
3/ db

3

db
3/ db

3

Fig. 3.4: Flow constraints on arcs in G.

by l b(b, a) and ub(b, a), respectively. If x(b, a) > 0, electricity currents on (b, a); otherwise, there is

no electricity  ow on (b, a).

In addition, unsplittable  ow is utilized to avoid determining complicated electricity trades satis-

fying the demand of a buyer. In Fig. 3.2 and 3.3, solid arcs represent electricity  ow to satisfy db
3.

Electricity  ow in Fig. 3.2 is considered as splittable  ow. The type of  ow in Fig. 3.3 is called

unsplittable  ow. Only one s2-b3 path is selected as unsplittable  ow, and splittable  ow adversely

needs a larger number of arcs than unsplittable  ow. Hence, our model uses unsplittable  ow to

determineelectricity trades with asimplestructure.

Unsplittable  ow is realized by  ow constraints on the model. si can supply electricity  ow

up to cs
i . There is no electricity  ow if si does not trade any electricity. Hence, l b(si, tk) = 0, and

ub(si, tk) = cs
i . Besides, bj purchasesdj unitsof electricity, and  ow constraintson (tk, bj ) aredenoted

by l b(tk, bj ) = db
j and ub(tk, bj ) = db

j . Fig. 3.4 indicates thesecapacity constraints.

3.3 Price settinggameon market model

Agentsin themodel haveproperty called valuation and payo . Theproperty isutilized in mechanisms

for determining e cient electricity trades.
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10

tk
k ,i  k ,j : Bid price offer

: Ask price offer

Fig. 3.5: Ask and bid prices.

3.3.1 Valuation and trade value

Electricity prices o ered by traders are determined by a price setting game. Each seller and buyer in

themodel hasvaluation, which describes theutility for trading oneunit of electricity. vb
j indicates the

valuation of bj for purchasing one unit of electricity. vs
i denotes the valuation of si for supplying one

unit of electricity. Thesets of each valuation are de ned by

vs =
$
vs
i | si ∈S, vs

i > 0
%

, vb =
&
vb

j | bj ∈B, vb
j > 0

'
.

Electricity trades occur between seller si and buyer bj via trader tk. About the electricity trades

among them, each agent obtains payo . The total of the payo regarding the trade is called trade

value. Since we assume that costs for supplying electricity through arcs between si and bj are zero

regardless of tk, trade value for db
j unitsof electricity isdescribed by

wi, j =
(
vb

j  vs
i

)
db

j . (3.1)

When tk conducts a trade between bj and si , tk has its own strategy denoted by (αk, j, βk,i ). This

strategy consists of two types of prices called ask price αk, j and bid price βk,i . tk o ers αk, j to bj

adjacent to tk. Besides, βk,i is o ered to si adjacent to tk. In Fig. 3.5, tk o ers αk, j to bj and βk,i to

si . Since there will be traders who lost money if βk,i > αk, j , the strategy of tk must be a no-crossing

strategy [79] represented by βk,i  αk, j .

3.3.2 Payo of each participant

bj must purchase db
j unitsof electricity from oneof thetraders to satisfy itsdemand. Thepayo of bj

for trading with tk can bedenoted by the following utility function µj (tk).

µj (tk) =
(
vb

j  αk, j

)
db

j . (3.2)

Since this chapter assumes each buyer purchases electricity from only one trader, the total payo 
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Trade value : 

k ,i

k ,i vs
i  k ,j k ,i

 k ,j

vb
j  k ,j

wi ,j = vb
j vs

i db
j

vb
jvs

i

Fig. 3.6: Trade valueand payo s of agents.

of bj for purchasing electricity from tk is represented by

P
!
bj

"
= µj (tk). (3.3)

About sellers, si is o ered βk,i by tk. To provide electricity, si will choose tk o ering βk,i that

maximizespayo of si . Payo of si for supplying db
j unitsof electricity to bj through tk isdenoted by

µ
!
si, (k, j )

"
=

!
βk,i  vs

i

"
db

j . (3.4)

si can provideelectricity to oneor morebuyers if the total of demandsdo not exceed cs
i . Therefore, si

can obtain the total payo represented by

P (si ) =
#

(tk,bj )∈pair (si )

µ
!
si, (k, j )

"
, (3.5)

where pair (si ) denotes theset of pairs of bj and tk provided electricity from si .

tk obtains payo for trading db
j unitsof electricity between si and bj , which is denoted by

µ
!
tk, (i, j )

"
=

!
αk, j  βk,i

"
db

j . (3.6)

Let S(tk) be theset of si adjacent to tk, and let B(tk) be theset of bj adjacent to tk. The total payo of

tk is represented by

P (tk) =
#

si ∈S(tk),bj ∈B(tk )

µ
!
tk, (i, j )

"
xk,i, j . (3.7)

Fig. 3.6 shows the relation between the trade value and payo sof si , tk, and bj .
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Algorithm 1 Pricesetting (G, vs, vb, λ)
for j ← 1 to |B| do

if |adj (bj )| = 1 then
q(bj ) = 0.

else
Find ŝi with theminimum valuation v̂s

i .
q(bj ) = (vb

j  v̂s
i )λ.

while q(bj ) = (vb
j  v́s

i )λ(śi " ŝi , v́s
i  v̂s

i ) do
Decrease q(bj ).

end while
end if

end for
for i ← 1 to |S| do

if |adj (si )| = 1 then
q(si ) = 0.

else
Find b̂j with themaximum valuation v̂b

j .

q(si ) = (v̂b
j  vs

i )λ.

while q(si ) = (v́b
j  vs

i )λ(b́j " b̂j , v́b
j  v̂b

j ) do
Increase q(si ).

end while
end if

end for
for k ← 1 to |T | do

return αk, j = vb
j  q(bj ) (bj ∈B(tk)).

return βk,i = vs
i + q(si ) (si ∈S(tk)).

end for

3.4 Procedure todetermine electricity trades

To determine electricity trades on the model, we propose a sequential solution method. The method

 rstly calculates equilibrium electricity prices, and then the method determines electricity trades by

using theprices.

3.4.1 Price settingalgorithm

Algorithm 1 showsapricesetting algorithm that calculatesequilibrium prices. In thisalgorithm, each

seller and buyer discovers its maximum payo for trading electricity by considering the valuation of

the other agents. This algorithm is based on price setting mechanism explained in [75]. We extend

the algorithm to adjust payo s of participants for ensuring no participant exclusively obtains larger

payo than other agents.

The process of Algorithm 1 is as follows. First, each buyer bj ∈B calculates q(bj ), which is the

payo of bj for trading oneunit of electricity. q(bj ) isused to obtain ask pricesαk, j . For all a ∈S∪B,

let adj (a) be the set of tk connected to a. If |adj (bj ) = 1|, there is only one trader tk adjacent to bj .

26



There is no competition between bj and tk in this case, and thus q(bj ) = 0. If |adj (bj ) > 1|, two or

more traders tk are connected to bj . Let ŝi be aseller adjacent to tk ∈adj (bj ). ŝi has thevaluation v̂s
i

that is theminimum in thevaluation of sellersadjacent to tk ∈adj (bj ). In our pricesetting algorithm,

a real number λ(0 < λ 0.5) is incorporated into thealgorithm as aparameter that is used to adjust

payo s of sellers and buyers. The range of λis set to realize the no-crossing strategy, explained in

Section 3.3.1. With this notation, q(bj ) is  rstly set as q(bj ) = (vb
j  v̂s

i )λ. Then, q(bj ) is decreased

until q(bj ) becomesequal to (vb
j  v́s

i )λ, where śi " ŝi isoneof thesellersadjacent to tk ∈adj (bj ) and

has valuation v́s
i  v̂s

i .

Second, each seller si ∈S determines q(si ), which is the payo of si for trading one unit of

electricity. By setting q(si ), bid prices βk,i can bedetermined. Theprocess to set q(si ) issimilar to the

process to calculate q(bj ). If |adj (si ) = 1|, there is no competition between si and tk, and q(si ) = 0.

If |adj (si ) > 1|, let b̂j be a seller adjacent to tk ∈adj (si ), and b̂j has the valuation v̂b
j that is the

maximum in the valuation of buyers adjacent to tk ∈adj (si ). q(si ) is  rstly set as q(si ) = (v̂b
j  vs

i )λ.

Then, q(si ) is increased until q(si ) becomes equal to (v́b
j  vs

i )λ, where b́j " b̂j is one of the buyers

adjacent to tk ∈adj (si ) and has valuation v́b
j  v̂b

j .

Finally, ask priceαk, j and bid price βk,i of each trader tk areset based on q(bj ) and q(si ) for all bj

and si . These ask and bid prices  nally determined areequilibrium prices on themarket model.

3.4.2 Optimization problem for trade determination

Maximization of payo for each trader

To determine electricity trades, each trader solves a maximization problem of payo by using prices

calculated by Algorithm 1. In this problem, trades are greedily chosen by each trader to maximize

its payo . This problem is formulated as an integer program similar to the generalized assignment

problem [80].

Themaximization problem isformulated as follows. Let xk,i, j ∈[0, 1] denote theelectricity trades

on si -bj path via tk. xk,i, j = 1 means electricity trades are conducted on the si -bj path. Adversely,

trades on the si -bj path is not conducted if xk,i, j = 0. The condition of network  ow on the model

determines xk,i, j , and thecondition is represented by

xk,i, j =

     

   
 

1
!
x(si, tk) > 0 ∩ x(tk, bj ) > 0

"
,

0
!
x(si, tk) = 0 ∪ x(tk, bj ) = 0

"
.
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By using xk,i, j and µ
!
tk, (i, j )

"
, the maximization problem of tk is described as the following integer

program.

max P(tk) =
#

si ∈S(tk),bj ∈B(tk )

µ
!
tk, (i, j )

"
xk,i, j . (3.8)

0  xk,i, j  1,

µ
!
tk, (i, j )

"
 0,

.
bj ∈B(tk) xk,i, j db

j  cs
i .

In (3.8), xk,i, j = 1 means trades on si -bj path are selected to maximizepayo of tk.

Tradessatisfyingall capacity and demand

Even though every trader determines all trades by (3.8), demands for somesellers might exceed their

own capacity. This situation means some consumers cannot purchase electricity from a seller who

doesnot haveenough capacity to satisfy all demands. Hence, electricity trades satisfying all capacity

and demand should be independently chosen from theelectricity trades which each trader selected by

solving (3.8). To choosetheelectricity tradesconsidering capacity, amaximization problem of social

welfare isutilized in this thesis.

To describe the maximization problem, a maximum unsplittable  ow problem is utilized. In the

problem, bipartite network Gbi = (S∪B, Abi) is constructed. Arc set Abi corresponds to the set of

possible trades xt. Thus, for all tk ∈T, Abi contains (si, bj ) if xk,i, j = 1 in (3.8). The capacity of  ow

on (si, bj ) is denoted by 0  xi, j  1. si can supply  ow up to cs
i , and demand of  ow of bj is db

j .

Finally, the following integer program givesW(xt) that is themaximum social welfare on Gbi .

max W(xt) =
#

(si ,bj )∈Abi

xi, j wi, j . (3.9)

xi, j  0,

.
si ∈adj (bj ) xi, j  1,

.
bj ∈adj (si ) xi, j db

j  cs
i .
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3.4.3 Overall procedure for trade determination

The overall procedure of our solution method to determine e cient trades is described in Procedure

1. First, equilibrium prices are calculated by Algorithm 1. Then, every trader discovers trades

maximizing payo of the trader. After that, e cient trades xt will bedetermined in all trades that the

traders want to conduct. Finally, social welfareW(xt) can becalculated.

Procedure1 tradedetermination

Input: G, vs, vb, λ.

Output: W(xt ), xt ,.

Four stepsof the procedure:

1. Price setting (G, vs, vb, λ).

2. For all tk, determine xk,i, j (si ∈S(tk), bj ∈B(tk)) by (3.8).

3. Construct Gbi by using xk,i, j (tk ∈T, si ∈S, bj ∈B).

4. Obtain W(xt ) and xt by solving (3.9) with Gbi.

3.5 Market participantsassigned to model

By setting conditions of the network and agents in the model, four types of market participants can

be considered. Those participants can be utilized to reveal characteristics of deregulated electricity

markets.

3.5.1 Participantsin deregulated electricity markets

In this thesis, a day-ahead electricity market is focused on as deregulated electricity markets. Prices

in the day-ahead markets are determined hourly or half hourly [81]. Participants supposed in this

thesis are classi ed into four types: the public utility, independent power producers, retailers, and

consumers. Theparticipants are described by agents explained in Section 3.2.1.

1. Public utility (PU) conducts electricity generation and supply. The PU is a large  rm that has

conducted generation and supply since themarket was regulated. In thederegulated market, the
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PU can purchase electricity from another generator. The PU is denoted by a pair of seller and

trader.

2. Retailer (R) conducts electricity trades with consumers. A retailer is described by one pair of a

trader and aseller if the retailer has its own generator. Otherwise, one trader denotes a retailer.

3. Independent power producer (I PP) has its own generator to sell its electricity to customers. An

IPP is assigned to oneof thesellers, and it can supply electricity to PU and retailers.

4. Consumer (C) is an end-user of electricity. A consumer purchases electricity from one of the

best suppliers connected to theconsumer. Theconsumer is assigned to oneof thebuyers.

3.5.2 Constraintson network structure

To describe market participants, network G is constructed with following constraints. G has only

one PU, and PU is connected to all consumers in G since PU existed in an electricity market before

deregulation. The market model contains some IPP and retailers that have newly joined the market

after deregulation. For simplicity, themodel contains thesamenumber of IPPand retailers. Each IPP

is connected to all retailers and PU.

After the deregulation, a consumer cannot choose a retailer if the consumer does not know

the retailer. To describe this situation, R is connected to C with the probability represented by

pr ob(R,C) ∈(0, 1]. If pr ob(R, C) = 1, all arcs between retailers and a consumer are constructed. As

thetimehaselapsed sincethederegulation, each consumer will increasethenumber of retailerswhich

the consumer know. Hence, long time has passed since the deregulation if pr ob(R, C) is high. Fig.

3.7 and Fig. 3.8 show example models with pr ob(R,C) = 0.2 and pr ob(R,C) = 0.8, respectively. In

these  gures, R′and R denote seller si and trader tk of a retailer respectively. Besides, PU′and PU

represent si and tk of PU respectively in the  gures.

3.5.3 Constraintson parametersof participants

The capacity of newly joining participants, such as IPP and retailers, is relatively lower than the

capacity of PU in deregulated electricity markets. The capacity of PU is enough to supply electricity

to all consumers since PU was responsible for electricity supply before deregulation. In this thesis,

capacity of sellers is set according to the following constraint.

cR  cI PP  cPU . (3.10)
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Fig. 3.7: Samplemodel with pr ob(R,C) = 0.2. 1

PU

R1

R2

I PP1

I PP2

C2

C1

C3

C4

C5

C6

C7

C8

C9

C10

PU

R1

R2

0

0

0

Fig. 3.8: Samplemodel with pr ob(R,C) = 0.8.

With regard to valuation of sellers, newly joining participantshavelower valuation than PU in this

thesis. Thisconditionmeansnewly joiningparticipantscan o er low-cost electricity thanPU. Besides,

valuation of all buyers is  xed to the same value for simplicity. The valuation of buyers is enough to

purchase electricity from any sellers. Following constraint indicates theconditions described above.

vR < vI PP < vPU < vC. (3.11)

3.5.4 Metricsindicatingcharacteristicsof markets

To evaluate trades determined by our method, two kinds of themetrics are considered in this thesis.

E ciency rate

AlthoughW(xt) isthemaximum social welfareon Gbi, W(xt) doesnot necessarily correspond toW(x)

that istheupper bound of social welfareon G. W(x) can beobtained by constructing bipartitenetwork

G′
bi = (S∪B, A′

bi) from G. A′
bi is the set of possible trades x on G′

bi . If si can trade with bj through

at least one trader in G, arc set A′
bi contains an arc (si, bj ). With G′

bi, the following integer program

givesW(x).

max W(x) =
#

(si ,bj )∈A′
bi

xi, j wi, j . (3.12)

0  xi, j  1,

wi, j  0,

.
bj ∈B xi, j db

j  cs
i .
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Table3.1: Payo of market participants and agents.

Participant Agent Payo of participant

PU si and tk P(PU) = P(si ) + P(tk).

R si and tk P(R) = P(si ) + P(tk).

I PP si P(I PP) = P(si ).

C bj P(C) = P(bj ).

W(xt) isnot necessarily thesameasW(x) sincethecalculationof W(x) doesnot consider electricity

pricesetting. However, thedi erencebetweenW(xt) andW(x) shouldbesmall tokeephighe ciency.

Hence, theperformanceregarding e ciency of our sequential method can beevaluated by comparing

W(xt) withW(x). ThecomparisonbetweenW(xt) andW(x) can beconducted by examining E ciency

Rate (ER), such that

ER(xt, x) =
$
W(xt)/ W(x)

%
×100 [%]. (3.13)

Payo rate

In regulated electricity markets, PU is responsible for providing electricity to consumers. Hence, PU

exclusively obtainspayo for supplying electricity. On theother hand, payo for providing electricity

is also allocated to newly joining market participants in deregulated electricity markets. Therefore, it

is important to analyzewho can acquirehow much payo to tradeelectricity in deregulated electricity

markets.

In this thesis, Payo Rate (PR) isutilized to indicate therateof payo of each participant in social

welfare. The payo of each participant can be described by using the payo of agents. Table 3.1

showstherelation between thepayo of each participant and agents. In Table3.1, P(a) denotespayo 

of market participant a ∈(PU ∪R∪I PP ∪C). PR for a is denoted by

PR(a) =
$
P(a)/ W(xt)

%
×100 [%]. (3.14)
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3.6 Experimental results

This section demonstrates simulation results of our sequential solution method. After simulation

conditions are introduced, results regarding e ciency rateand payo rate are presented.

Table 3.2: Conditionsof parameters in simulations.

Parameter Assigned value

# of agents |S|=5 or 7, |T |=3 or 5, |B|=10,15, or 30.

# of participants (|S|=5) PU: 1, R: 2, IPP: 2, C : 10, 15, or 30.

# of participants (|S|=7) PU: 1, R: 4, IPP: 4, C : 10, 15, or 30.

vb
j 20 for all bj .

vs
i (|S| = 5) vs

1 = 10, vs
2 = 4, vs

3 = 3, vs
4 = 9, vs

5 = 8.

vs
i (|S| = 7) vs

1 = 10, vs
2 = 4, vs

3 = 3, vs
4 = 2, vs

5 = 9, vs
6 = 8, vs

7 = 7.

db
j db

j = j .

λ 0.25

pr ob(R,C) 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0.

Iteration 100

3.6.1 Conditions

For conducting simulationsof tradedetermination, asimulationsoftwarefor our model wasdeveloped

with Java and lp_solve, which is an integer programming solver. Simulation experiments were

conducted with the condition described in Table 3.2. In the simulations, we assumed that each

consumer has the unique demand of electricity. Hence, the index of each consumer is set as the

 xed demand of theconsumer since the index is unique to each consumer. Since themodel structure

depends on pr ob(R,C), 100 times of iterations for every pr ob(R,C) and CPwereconducted.
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Table3.3: Capacity pattern (|B| = 10, 15, 30).

|B | 10

CP 1 2 3 4 5

PU 55 55 55 55 55

I PP 3 6 13 27 31

R 1 2 6 18 69

|B | 15

CP 1 2 3 4 5

PU 120 120 120 120 120

I PP 7 15 30 60 84

R 1 4 13 40 69

|B | 30

CP 1 2 3 4 5

PU 465 465 465 465 465

I PP 29 58 116 232 328

R 5 17 51 155 268

In deregulated electricity markets, newly joining participantsexpandstheir capacity for electricity

supply as the time elapses. Hence, di erent types of capacity of newly joining participants were set

in the simulations. Table 3.3 shows Capacity Patterns (CP), which are the conditions of capacity

of each seller. CP 1 indicates newly joining participants do not have large capacity because not a

long period has elapsed since the start of deregulation. In CP 2, more periods of time have passed

after the deregulation than CP 1, and the di  erence of capacity between market participants became

smaller than CP 1. In CP 3, 4, and 5, newly joining participants got more capacity as the index of

CP increases. For all CP, capacity of PU is is equal to the total of all demands, and all consumer can

purchase electricity from PU as theworst choice.
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Table3.4: Ask and bid prices obtained in asimulation.

(si , tk ) vs
i βk , i

(PU ′, PU ) 10.00 10.00
(R′

1, R1) 4.00 4.00
(R′

2, R2) 3.00 3.00
(I PP1, PU ) 9.00 12.67
(I PP1, R1) 9.00 12.67
(I PP1, R2) 9.00 12.67
(I PP2, PU ) 8.00 12.00
(I PP2, R1) 8.00 12.00
(I PP2, R2) 8.00 12.00

(tk, b j ) vb
j αk , j

(PU, C1) 20.00 14.67
(PU, C2) 20.00 16.00
(PU, C3) 20.00 16.00
(PU, C4) 20.00 16.00
(PU, C5) 20.00 16.00
(PU, C6) 20.00 16.00
(PU, C7) 20.00 14.67
(PU, C8) 20.00 16.00
(PU, C9) 20.00 16.00
(PU, C10) 20.00 16.00

(tk , b j ) vb
j αk, j

(R1, C1) 20.00 14.67
(R1, C2) 20.00 16.00
(R1, C4) 20.00 16.00
(R1, C7) 20.00 14.67
(R1, C9) 20.00 16.00
(R1, C10) 20.00 16.00

(tk , b j ) vb
j αk, j

(R2, C1) 20.00 14.67
(R2, C3) 20.00 16.00
(R2, C5) 20.00 16.00
(R2, C6) 20.00 16.00
(R2, C7) 20.00 14.67
(R2, C8) 20.00 16.00

1

PU
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R2

I PP1

I PP2

C2

C1

C3

C4

C5
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0

0
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Fig. 3.9: Determined trades on G.

3.6.2 Resultsand discussion

Determined electricity trades

First, the result of one of the iterations is focused on to examine determined electricity trades. In this

result, pr ob(R,C) = 0.3, and CP 3 was selected. Table 3.4 represents ask and bid prices determined

by Algorithm 1. All bid price βk,i weremore than valuation vs
i . Moreover, all ask price αk, j were less

than valuation vb
j . Based on the prices shown in Table 3.4, Procedure 1 determined electricity trades

xt . In Fig. 3.9, solid arcsdenote trades xt , and dotted arcsshow no electricity tradesareconducted on

thearcs.
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Table3.5: µ
!
tk, (i, j )

"
and wi, j of each determined trade.

Determined trade µ
!
tk, (i, j )

"
wi, j db

j wi, j db
j

R′
2  R2  C1 11.67 17 1 17

R′
1  R1  C2 12.00 16 2 32

R′
2  R2  C3 13.00 17 3 51

R′
1  R1  C4 12.00 16 4 64

I PP1  R2  C5 3.33 11 5 55
I PP2  PU  C6 4.0 12 6 72
I PP2  R2  C7 2.67 12 7 84
I PP1  R2  C8 3.33 11 8 88
PU′ PU  C9 6.00 10 9 90
PU′ PU  C10 6.00 10 10 100

W(xt ) 653

Table3.6: Payo rateof each participant.

Participant PR [%]

C1 0.82

C2 1.23

C3 1.84

C4 2.45

C5 3.06

Participant PR [%]

C6 3.68

C7 5.72

C8 4.90

C9 5.51

C10 6.13

Participant PR [%]

PU 21.13

R1 11.03

R2 17.26

I PP1 7.30

I PP2 7.96

Table3.5showsµ
!
tk, (i, j )

"
and tradevaluewi, j for eachdeterminedtrade. The rst columnat Table

3.5 representsdetermined tradesdescribedby thenotationsuchassi  tk  bj . Sinceµ
!
tk, (i, j )

"
 0 for

all tk, no-crossing tradeswereconducted in thissimulation. In termsof social welfare, W(xt) = 653.0,

and W(x) = 667.0. Therefore, ER(xt, x) = 97.9 % in this example. More detailed analysis on

ER(xt, x) ispresented in Section 3.6.2.

Table 3.6 shows PR of each participant in the simulation. As shown in Table 3.6, no participant

obtainszero payo sandacquiresalot of payo sexclusively. Allocationof PRof PU, IPP, and retailers

varied in each iteration since the number of trades that each participant involves in each iteration is

not thesameasother iterations. In Section 3.6.2, PR isexamined in moredetail with other simulation

conditions.
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Fig. 3.10: Averageof e ciency rate (|S| = 5, |B| = 10).

Analysisregardinge ciency rate

Our sequential solution method demonstrated high ER in thesimulation. Fig. 3.10 shows theaverage

of ER(xt, x) in the simulation with the model in which |S| = 5 and |B| = 10. In Fig. 3.10, the

horizontal axis denotes pr ob(R, C), and the vertical axis corresponds to the average of ER(xt, x) in

the simulation. The average of ER(xt, x) was larger than 90 % for all pr ob(R,C) and CP. This result

shows our solution method can be used to determine e cient trades of a multi-unit commodity such

as electricity.

For all CP, the average of ER became small as pr ob(R,C) increased. The reason for this decline

might relate to the number of possible trades on G. If pr ob(R,C) is high, each trader has a larger

number of possible trades on G. In this condition, however, demands of traders concentrate on

participants providing inexpensive electricity. Hence, our method determines trades satisfying all

capacity and demand, and thisdetermined trades demonstrates relatively lower ER.

Regarding CP, high ER was obtained when the capacity of IPP and retailers is relatively lower

than PU. Adversely, ER becameworsewhen thedi  erenceof capacity of participantsbecamesmaller.

Newly joining participantsalso have largecapacity similar to PU with CP5. Hence, many consumers

could purchasecheaper electricity from newly joining participants in thecondition.
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1

Fig. 3.11: Payo rateof each participants with each CP.

Analysisregardingpayo rate

Therelationbetweenpayo allocationandstructureof market network wereexaminedby investigating

PRof market participants. First, Fig. 3.11showssimulation result about PRof eachmarket participant

for each CP. In Fig. 3.11, the horizontal axis corresponds to the name of each participant, and the

vertical axis indicates PR of each participant. The parameters of G in this simulation were set to

|S| = 5, |B| = 10, and pr ob(R,C) = 0.5. Large part of PR was exclusively allocated to PU for CP 1.

For CP 2, PR of the PU decreased, and PR of newly joining participants increased. Furthermore, for

CP3, PR was fairly allocated to market participantscompared to other CP. However, largepart of PR

was adversely allocated to retailers for CP 4 and 5. Hence, if the valuation of market participants has

been  xed to the same value, large part of PR is exclusively allocated to retailers obtaining enough

capacity to supply electricity.
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Fig. 3.12: Standard deviation of payo rate (|S| = 5).
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Fig. 3.13: Standard deviation of payo rate (|S| = 7).

For examining the characteristics of PR with various structures of G, the standard deviation of

PR was analyzed. The standard deviation of PR indicates whether payo allocation is fair or not.

For instance, large standard deviation means payo is not allocated to participants evenly. Fig. 3.12

indicates thestandard deviation of PR with |S| = 5. Each of Fig. 3.12 (a), (b), and (c) show theresult

with the di erent setting of |B|. The horizontal axis denotes pr ob(R,C), and the vertical axis shows

the average of the standard deviation of PR in the 100 iterations. In terms of CP, Fig. 3.12 indicates

similar characteristics found in Fig. 3.11. The smallest standard deviation was obtained with CP 3,

and thestandard deviation became high with CP 1 and CP5.

With regard to the axis denoting pr ob(R,C), the number of buyers |B| a ected variation of the

standard deviation. In Fig. 3.12 (a), the standard deviation varies widely as pr ob(R,C) increases.

The variation of the standard deviation in Fig. 3.12 (b) is smaller than that of Fig. 3.12 (a). Besides,

the standard deviation of Fig. 3.12 (c) almost remains stable. Hence, the dispersion of the standard

deviation of PR will becomestable if thenumber of buyers increases.

Fig. 3.13 also demonstrated thecharacteristicsshown in Fig. 3.12. Since |S| = 7 in Fig. 3.13, the

number of sellers is larger than that of Fig. 3.12. The standard deviation in Fig. 3.13 is smaller than

that in Fig. 3.12. These results indicate thevariation of PR will decrease if there isa largenumber of

sellers in themodel.
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3.7 Summary of thischapter

Regarding deregulated electricity markets, this chapter proposed a market model to describe the

bene tsof market participantsandasequential solutionmethod todeterminee cient electricity trades

in the model. Social welfare and payo allocation on the electricity market model were investigated

by conducting simulation experiments. About the consumers’ choice over suppliers in simulation,

however, demonstrated thedi erencecompared to general situationsof electricity retail marketssince

simulation results indicated many consumerschoseasupplier that isnot thePU. Chapter 4 re nes the

electricity market model for theanalysisof theconsumers’ choiceof suppliers. Furthermore, Chapter

5 will integrate theconcepts of thedynamical transition of production and consumption of electricity

into the market model since the model explained in this chapter only represents a static situation of

trading.
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Chapter 4

Examiningswitchingbehavior of consumersin

electricity retail

This chapter introduces a mathematical modeling technique regarding Problem 3. As a supplement

for this chapter, Appendix A explains the proof about the transition of the strategy of consumers in

algorithmspresented in thischapter.

4.1 Introduction

4.1.1 Literaturereview

Many studies deal with analytical market models involving price competitions among suppliers with

consumers’ switching costs. Ruiz et al. [20] present agametheoretical model to investigatethee ects

of consumers’ switching costson competitionsof suppliers. Ruiz’smodel doesnot represent dynamic

interaction between market participants since the model has two suppliers and assumes two-stage

games. Biglaiser et al. analyzebene tsof suppliers in amodel whereconsumers haveheterogeneous

switching costs [21]. Though Biglaiser’s model related to a model for deregulated markets since

Biglaiser’s model assumes incumbents and entrants, this model also assumes only two-stage games.

Rhodes proposes adynamic model to examine the in uenceof switching costs on price competitions

and discussswitching costscan bebene cial for forward-looking consumers [82]. Consumers in real

electricity retail markets, however, arenot assumed to be forward-looking because they do not tend to

switch their seller while lower charges are available.

Asstudiesconsidering switching costsof consumersfocusing on electricity markets, Giuletti et al.

propose a model to explain the di erence in electricity prices observed in British electricity markets
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[55]. However, [55] considers only searching cost and does not focus on other kinds of switching

costssuch asburden on consumers for switching their supplier. Ruiz et al. present astatic model and

adynamical model to determine theequilibrium of electricity prices to enhance consumers’ behavior

to switch electricity retailer [54]. Though Ruiz’s model considers switching behavior of consumers

by using network structure, themodel does not assume interactions between consumers.

Related studies described above mainly focus on interactions among suppliers such as price

competition. Moreover, the related studies aim at promoting switching behavior of consumers by

changing charges. Nevertheless, if consumersarenot active in termsof switching sellers, suppliersdo

not seem to actively change their charges since theexpected outcomeby updating charges is obscure.

For promoting the switching behavior of consumers, this chapter focuses on interactions between

consumers under thesituation where suppliers do not change their charges.

As studies dealing with the interaction between agents, evolutionary game theory has been used

for promoting cooperative strategies among agents. Notably, network structure where agents placed

is important aspects for investigating the transition of thestrategies. For instance, scale-freenetworks

have degree distribution following a power law, which can be observed in real networks such as

the Internet, the network of acquaintance, and so on [83]. Durán et al. examine the evolution of

cooperation in evolutionary prisoner’s dilemma between agents on random graphs [84]. Lieberman

et al. introduce evolutionary graph theory, which deals with evolutionary dynamics of agents on

random graphs including scale-free networks [85]. Wu et al. explain that cooperation in a public

goods game was promoted by giving rewards or punishments to agents [86]. These studies cannot be

simply applied to express interaction among consumers in electricity marketssincethecharacteristics

of cooperators and defectors arenot de ned for electricity markets.

4.1.2 Contribution

This section lists contributions of proposals regarding each topic presented in Chapter 1 as follows.

First, main contributions regarding Problem 3 are itemized below.

• To express the irrational behavior of consumers, this chapter focuses on two types of switching

costs: (i) e ort at switchingsuppliersand(ii) searchingcosts. Whenaconsumer switchessuppliers,

an e ort is needed to cancel the contract with the previous supplier, create a new contract with a

new supplier, and so on. Moreover, costs to search for information on alternatives such as their

charges arealso required.
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• The preference of consumers over suppliers involving an e ort at switching is modeled as pref-

erence relation with interval order [87]. The preference relation describes a situation where

consumers do not switch suppliers unless the bene t of switching is more signi cant than the

e ort. Electricity charges o ered by suppliers are also modeled based on Japanese electricity

retail markets to determine thepreference relation of consumers.

• To describe interaction among consumers with searching costs, weproposean evolutionary game

on a network among consumers. The game expresses the dynamics of the share of two strategies

of consumers: searching alternatives actively (cooperators) and waiting for suggestions from the

other consumers (defectors).

• For promoting cooperation, thischapter focuseson giving rewards to consumers ascompensation

for searching costs by referring to [86]. Although [86] shows that punishments are moree ective

than rewards to promote cooperation, this thesis does not deal with punishments since it’s highly

unlikely that suppliers punish consumers. Simulation results of the evolutionary game show the

in uence of rewards on cooperation and switching behavior.

4.2 Model representation

4.2.1 Bipartitegraph denotingmarket participants

This section  rstly de nes consumer’s rational preference over suppliers as a simpler model than

irrational preference. The relationship between sellers and buyers in electricity market is modeled by

bipartite graph N (S∪B, E). Seller si ∈S (|S|  2, i = 1, 2, ..., |S|) denotes an electricity supplier,

and buyer bj ∈B ( j = 1, 2, ..., |B|) is a consumer. An edge between si and bj is denoted by e(si, bj ).

bj can purchase electricity from si if e(si, bj ) exists. N is a complete bipartite graph; therefore, bj

is connected to all seller si ∈S. si can be divided into two types: the incumbent and entrants. The

incumbent s1 isasupplier that hasprovided electricity to buyers for a long time. Besides, theentrants

si ∈S (i " 1) are suppliers newly entered into amarket after thederegulation.

Our model represents the situation in which only one supplier s1 provides electricity for all

consumers at the beginning. This is considered to be one of the features of electricity retail markets.

For acomparison, let usconsider cellular phoneservices, which havesimilar characteristicscompared

with electricity retail since theservices havemonthly chargesand several alternatives that consumers
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can choose. The statistics regarding the share of careers in Japan indicate that the maximum share

was about 60% when cellular phones started to be used widely [88]. Thus, users of cellular phone

services had multiple choices from the beginning, and it is di erent from the feature of electricity

retail markets.

Thecombination of electricity trades on N can bedenoted as matching M, which isasubset of E

based on graph theory. bj purchases electricity from only one seller si since bj is assumed to avoid

complicated contractswith multiple si . Conversely, si can supply electricity to multiplebj and satisfy

all demand of bj . Hence, M can be called many-to-one matching that is similar to the model for a

college admission problem [89]. Let δM (bj ) = {si | si ∈S, e(bj, si ) ∈E} be the neighbors of bj on

M. Besides, let δM (si ) = {bj | bj ∈B, e(si, bj ) ∈E} denote neighbors of si on M. Thus, δM(si ) and

δM(bj ) must satisfy 0  |δM(si )|  |B| and |δM(bj )| = 1.

4.2.2 Preferencerelation

Buyer bj must chooseonly onealternativeof seller si ∈Sto purchaseelectricity asadecision problem

of bj . Thissectionde nesrational preferencerelation that issimpler than irrational preferencerelation

presented in Section 4.3. Let Xj ⊆S be a set of alternatives for bj . Xj contains si if e(si, bj ) exists;

hence, Xj is denoted by Xj = {si | e(si, bj ) ∈E} . Adversely, Xj does not contain si if e(si, bj ) ! E.

M is determined after all bj ∈B obtain the solution for their decision problem. Let aj ∈Xj be an

alternative si chosen by bj . M is represented by M = {e(aj, bj ) | aj ∈Xj, bj ∈B} . Thepreference of

bj over every pair of alternatives sk, sl ∈Xj isexpressed aspreferencerelation explained in Chapter 2.

Thischapter dealswith two typesof preferencerelation: strongpreferencerelationand indi erence

relation. Strong preference relation P contains (sk, sl ) if bj prefers sk to sl . In other words, sk is

recognized as apreferred seller compared with sl for bj . skPsl denotes P contains (sk, sl ). P satis es

irre exivity and asymmetry. Indi erence relation I contains (sk, sl ) if bj is indi erent to sk and sl .

skI sl means I ∈(sk, sl ). If skI sl , both skPsl and sl Psk do not hold. I is an equivalence relation and

satis es re exivity and symmetry.

4.2.3 Utility function

Utility is a metric to represent the bene t of bj for choosing an alternative. Utility of bj to choose

alternative si is calculated by a utility function µj : Xj → R. Utility function and preference relation

are related each other. Considering P and I over the same set Xj , preference relation is rational if
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Fig. 4.1: Exampleof µj (si ) for alternative s1, s2, and s3.

P ∪I meets completeness and transitivity. Furthermore, if P ∪I satis es transitivity, each of P and

I is also transitive. When preference relation is rational, preference relation can be de ned by using

utility function µj as follows.

skPsl  ⇒ µj (sk) > µj (sl ). (4.1)

Fig. 4.1 depicts an example of the relationship between a utility function and preference relation.

µj (si ) gives di erent values over si , and P is set based on µj (si ).

As described in Chapter 2, this thesis only considers electricity charge as the factor of utility

function. Let ci ∈R be the charge o ered by seller si . Moreover, let vj ∈R be valuation for

purchasing electricity by bj . vj is considered to be the budget of bj for purchasing electricity.

µj (si )(si ∈Xj ) isde ned as µj (si ) = vj  ci . Weassumed bj switchesitspresent seller sl to alternative

si if si Psl . If si I sl , bj does not change its seller from sl to si .

4.2.4 Electricity charge

Electricity charge is one of the factors to determine preference relation over si by bj . Though many

types of service plans exist in Japan, this chapter considers the charges based on Meter-rate lighting

B, which is a common service plan o ered by a retailer that formerly supplied electricity as a PU in

Japan. Let H denote the set of months; for instance, we focus on the months from September 2017

to August 2018 as H = {Sep.2017, Oct.2017, ..., Aug.2018}. Let cm
i : H → R be the monthly charge

o ered by si at month h ∈H. cm
i (h) ismainly composed of two factors: basic charge βand electricity

amount chargeα. Hence, cm
i (h) = β+ α. β∈R isa xed chargedeterminedby theamperescontracted

by buyers. Besides, α∈R varies based on electricity demand of each buyer. Let dj : H → R denote

the demand of bj at h. αhave three tiered rate α1, α2, and α3 ∈R that are applied according to dj (h)
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Table4.1: βand αo ered by sellers.

si β α1 α2 α3

s1 842.4 19.52 26 30.02
s2 972 18.24 24.87 28.75
s3 842.4 23.24 23.45 25.93
s4 842.4 21.43 22.63 25.24
s5 842.4 20.76 22.62 25.31
s6 842.4 19.52 24.95 25.92
s7 842.4 19.52 24.09 25.75
s8 842.4 19.4 25.8 25.9
s9 842.4 19.43 24.81 25.99
s10 842.4 19.33 25.74 29.72
s11 800.28 18.54 24.7 28.51
s12 800.28 18.46 24.62 28.44
s13 780 18.07 24.07 27.79
s14 754.37 19.31 24.33 27.21
s15 421.2 24.03 24.03 24.03
s16 0 26 26 26
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Figure 1: Average monthly demand of consumers.
Fig. 4.2: Monthly electricity demand of consumers.

as follows.

α=

         

       
 

α1dj (h) (dj (h)  120),

120α1 + α2dj (h) (120 < dj (h)  300),

120α1 + 180α2 + α3dj (h) (300 < dj (h)).

To consider a model of the charges, we picked up Japanese electricity retailers o ering service

plans that are similar to Meter-rate lighting B. Table 4.1 shows the examples of βand α. Contracted

amperesareset to 30A todetermine βsince30A isthemost common contracted amperesinJapan. As

shown in Table4.1, each seller o ersdi erent patternsof βand α. Sincedemand in thefuturecannot

be determined in advance, bj calculates cm
i (h) by using dj (h) in the past. Fig. 4.2 shows the average

electricity demand of buyers in Japan from a report [90]. Fig. 4.2 indicates dj (h) varies month to

month, and cm
i (h) is also assumed to become di erent by thevariation of dj (h).
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Figure 2: Monthly charge of sellers (based on
monthly demand).

Fig. 4.3: Monthly ranking of sellers based on monthly demand.

4.2.5 Buyer’spreferenceover sellers

Preference relation over si is determined by the magnitude of ci as indicated by (4.1). To express

typical examples of preference relation, Fig. 4.3 shows the ranking of monthly charge cm
i (h) (h ∈H)

calculated by using dj (h) shown in Fig. 4.2. Thehighest rank isgiven to si o ering thehighest charge.

The ranking widely di  ers since dj (h) also di ers month to month. Hence, preference relation is

di cult to decide based on the ranking of cm
i (h).

To determine preference relation, we focused on the pattern of transitions of electricity de-

mand. Fig. 4.2 shows that the demand changing on an annual basis. The di erence over months

is assumed to decrease by considering the total charge through a year. Let ca
i : H → R be

the annual total charge at month k ∈ H. Furthermore, let Ha(k) represent twelve months by

k. For instance, when k = Aug. 2018, Ha(Aug. 2018) is de ned as Ha(Aug. 2018) = { h |

h is amonth from Sep. 2017 to Aug. 2018} . ca
i (k) isde ned by

ca
i (k) =

#

h∈Ha(k)

cm
i (h).

Fig. 4.4 shows the ranking of sellers based on the total of charges through a year. The horizontal

axisshowsmonth h, and thevertical axisindicatestherankingof sellersbasedon ca
i (k). Thedi erence

in ranking becomesnot so largecompared to Fig. 4.3. Let ci denoteachargeo ered by si . Weassume

bj uses the average of ca
i (Sep.2017), ca

i (Oct.2017), ..., and ca
i (Aug.2018) as ci to consider preference

relation over si and µj (si ).
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Figure 1: Monthly charge of sellers (based on annual
demand).

Fig. 4.4: Monthly ranking of sellers based on annual demand.

The feature of electricity charges described above is not common compared with other homoge-

neousproducts such as gasoline, which isalso an energy product [91]. Although charges for gasoline

are calculated based on demand, thecalculation isnot based on tiered rates in general.

4.3 Switchingcostsof buyers

4.3.1 Preferenceand utility consideringswitchingcosts

This section proposes a model to express irrational preference relation of consumers considering

switching costs. Considering the buyer’s e ort at switching, bj might not change its current seller sl

even if bj hasanother alternative that o ersa lower charge than sl . In thissituation, for an alternative

sk ∈Xj , skI sl holds even if ck < cl and µj (sk) > µj (sl ). Nevertheless, skPsl holds if the utility

obtained by switching is assumed to be larger than the e ort. Regarding preference relation denoted

by (4.1), skI sl holds only if ck = cl and µj (sk) = µj (sl ). Thus, (4.1) cannot represent preference

relation considering thee ort at switching.

To investigate the preference of buyers under switching costs, e ort at switching should be ex-

amined into preference relation described by (4.1). This modi cation enables preference relation to

describe the situation in which transitivity of an indi  erence relation does not hold. For instance, for

sk, sl, sm ∈Xj , let bj currently purchaseelectricity from sk, and each seller o ersdi erent charges. If

skI sl , sl I sm, and skPsm aresatis ed, transitivity of I doesnot hold since skPsm is satis ed instead of

skI sm.
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Fig. 4.5: Preference relation with µj (si ) and ε.

One of the methods to represent an indi erence relation with intransitivity is an interval order

[87]. An interval order is an irre exive binary relation and satis es the following condition for

sk, sl, sm, sn ∈Xj .

skPsl and smPsn ⇒ skPsn or smPsl . (4.2)

In an interval order, a threshold to switch from si by bj is integrated into the relationship between

a preference relation and utility function. Let function  j : Xj ⇒ R denote the threshold.  j (si )

indicates switching costs regarding e ort at switching from si . In this chapter,  j (si ) is assumed to

satisfy  j (si ) = ε(ε 0, ε∈R) for all bj ∈B and si ∈Xj . Thus, we use εinstead of  j (si ) in the

following discussion. Therelationship between apreferencerelation and utility function in an interval

order is denoted as

skPsl  ⇒ µj (sk)  µj (sl ) > ε. (4.3)

Let bj currently purchaseelectricity from sl . Basedon(4.3), bj switchesitsseller to sk if thedi erence

of utility between sk and sl is larger than ε. Adversely, bj doesnot switch itsseller if skI sl is satis ed

since µj (sk)  µj (sl )  ε. Fig. 4.5 shows the relationship between a preference relation and utility

function in an interval order. In Fig. 4.5, preference relation has intransitivity of an indi erence

relation sinces2I s1, s3I s2, and s3Ps1 aresatis ed. Thus, preferencerelation based on utility functions

with thee ort at switching can bede ned by an interval order.

4.3.2 Cooperatorsand defectorsamongbuyers

bj isassumed to switch itsseller if (4.3) issatis ed asdescribed in Section 4.3.1. However, bj cannot

switch itsseller toany alternativeif bj isnot abletodiscover an alternativesatisfying (4.3). Especially,
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Fig. 4.6: Exampleof graph G (|B| = 15, m = 1).

bj needs searching cost, which are costs to search for information on alternatives and charges. bj

might not search any sellers if searching costs are considered to be higher for bj , and bj cannot  nd

si satisfying (4.3) contained in Xj . In this situation, bj possibly expects the other buyers who had

already switched their seller to share the information about sellers. We de ne two strategies among

buyers as follows.

C: Exploring alternatives with searching cost

Strategy C (Cooperator) demonstrates cooperative activities. In addition to search for information

about alternatives, bj will suggest the alternative chosen by bj to the other buyers. bj with this

strategy will search for alternatives and decide whether bj should switch its seller or not based

on condition (4.3). This chapter analyzes the e ect of rewards given by entrants to buyers for

enhancing cooperation even though the rewards are costs for entrants. Hence, cooperators who

induced switching behavior of buyers can gain rewards.

D: Avoiding searching cost without exploration

This strategy is called D (Defector) since bj might obtain bene cial information on alternatives as

a free-rider. Though bj with strategy D does not search for alternatives in person, bj can obtain

knowledge from other buyer bk with strategy C. If an alternative suggested by bk meets (4.3), bj

will switch its seller without searching cost.

The interactions are conducted on graph G = (B, E′) where each edge in E′represents a pair of

neighbors of buyers that can share information each other. Thus, after sharing information on graph

G, bj  nally determines its seller on graph N. Since each buyer is assumed to interact with a limited

number of buyers, Barabasi-Albert (BA) model isused for G becauseBA model isutilized to represent

social networks in many studies [92]. In an algorithm to create G based on BA model, every newly

added vertex will be connected to theother m vertices already existed in G. BA model is a scale-free
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(a) Ascending pattern. (b) Descending pattern.

Fig. 4.7: Exampleof the initial assignment of strategy.

network in which each vertex has a di erent degree. Fig. 4.6 shows an example of G with |B| = 15

and m = 1. Dotted lines in Fig. 4.6 denote edges in E′.

4.4 Evolutionary game amongbuyers

4.4.1 Preliminaries

Thissection explainsan evolutionary gameusing graph N and G to investigatetransitionsof strategies

of buyers occurring from time to time. Algorithm 2 shows the overall process of the game based on

an agent-based approach. Due to searching costs, bj chooses one of the two strategies C and D. Let

σt
j ∈{C, D} be thestrategy chosen by bj at iteration t in a game. Based on σt

j , B can be divided into

two subsets: Bt
C = {bj | bj ∈B, σt

j = C} and Bt
D = {bj | bj ∈B, σt

j = D} . Σt = {σt
1, σ

t
2, ..., σt

|B|} is a

set of strategies of bj ∈B at t.

The initial condition of Σt is denoted by Σ0. Σ0 is determined by the initial assignment of the

strategy of buyers. Let the share of bj ∈Bt
C over B at iteration t be denoted by θt = |Bt

C|/ |B|. θ0

denotes the initial share of strategy C. θ0 is initialized according to either of two patterns: ascending

pattern and descending pattern. In ascending pattern, buyersaresorted by their degreewith ascending

order. Adversely, buyers are sorted by their degree in descending order with descending pattern. C

will be set to the  rst θ0% of buyers based on sorted order in each pattern. Fig. 4.7a and Fig. 4.7b

depict Σ0 ineachpattern. Shadowedverticesdenotebj ∈Bt
C, and theother verticesrepresent bj ∈Bt

D.
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4.4.2 Processof a game

At each iteration t, bj will decide one of the alternatives at
j ∈Xj . At = {at

1, at
2, ..., at

|B|} is a set of

alternatives chosen by bj at t. A0 is the initial condition of and At. Let T ∈N be the  nal iteration in

agame. AT is theset of sellers  nally chosen by buyers, and M is determined by AT.

bj ∈Bt
C searches for the other alternatives by Algorithm 3. sl is an alternative chosen by bj . Let

X′
j ⊂Xj denote a set of alternatives already searched by bj . At iteration t = 0, X′

j = {sl } . Since

bj is assumed not to have information about seller si ! X′
j in advance, a new alternative sk ! Xj is

randomly chosen and added to X′
j at line 3 and 8 of Algorithm 3. Then, bj will compare µj (sk) with

µj (sl ). To search for alternatives, bj needs a searching cost γt
j ∈R. All bj have the same constant

γ(γ 0, γ∈R) as γt
j . According to [93], searching activity for prices is assumed to continue if

the bene t from searching is larger than searching cost. Hence, bj is assumed to search for another

alternative if condition (4.3) holds between sk and sl . Otherwise, bj chooses an alternative that has

themaximum utility in X′
j .

Besides, based on Algorithm 4, the interaction between each pair of buyers on e(bj, bk) ∈

E′(bj, bk ∈Bt
C ∪Bt

D) will be conducted to share the information of alternatives with other neigh-

bors. The neighbors of bj on G is denoted by δG(bj ) = {bk | bk ∈B, e(bj, bk) ∈E′} . Algorithm

4 determines the sets of suggestions made for bj . The set of suggestions for bj is denoted by

Ψt
j = {at

k | at
k ∈Xj, µj (at

k)  µj (at
j ) > ε} . bj determines whether bj switches its seller from at

j to

one of the sellers in Ψt
j or not. If bj switching its seller according to the suggestion given by another

buyer bk ∈Bt
C, reward r (r  0, r ∈R) will begiven to bk who suggested theseller. Let Sr ⊆S\ {s1}

be the set of sellers who gives rewards. Let λ(0  λ 1) be the rate of si ∈Sr over S. Hence,

|Sr | = λ|S \ {s1} |. si ∈Sr is randomly selected at t = 0 in a game. r t
j indicates rewards obtained by

bj at iteration t. As a constraint, bk can get at most r as a reward at each iteration. Therefore, r t
j will

become 0 or r .

At the end of t, bj will update σt
j based on payo , which represents the bene t obtained by bj

considering µj (at
j ), γt

j , and r t
j . bj determinesσt

j by comparingownpayo withpayo of itsneighbors.

ρ: B → R is a function denoting payo of bj . Let bm be the buyer who has the maximum payo 

among δG(bj )∪bj . Besides, let ρmax denote ρ(bm). Thus, bj choosesitsstrategy σt
j considering ρmax.
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Algorithm 2 Process of an evolutionary game

Input: N, G, ε, γ, r, Σ0, A0,T, Xj = S, X′
j = {s1} (bj ∈B)

Output: ΣT, AT

1: t = 1
2: while t  T do
3: for each bj ∈B do
4: σt

j  σt 1
j

5: r t
j  0

6: Ψt
j   

7: vj  ci of at 1
j

8: if σt
j = C then

9: Determinesalternative at
j by Algorithm 3 using Xj and X′

j .
10: γt

j  γ
11: else
12: at

j  at 1
j

13: γt
j  0

14: end if
15: end for
16: Determines Ψt

j for all bj by Algorithm 4 for all e(bi, bj ) ∈E′.
17: for each bj ∈B do
18: if Ψt

j "  then
19: at

j  at
k o ering the lowest ci in all sellers in Ψt

j ∪{at
j } .

20: if r t
k = 0 then

21: r t
k  r .

22: end if
23: end if
24: end for
25: for each bj ∈B do
26: ρ(bj )  µj (at

j )  γt
j + r t

j .
27: end for
28: for each bj ∈B do
29: if ρmax < 0 then
30: if ρ(bj ) < 0 then
31: σt

j  D
32: end if
33: X′

j  X′
j ∪Ψt

j
34: else
35: if ρmax > ρ(bj ) then
36: if σt 1

m " σt 1
j then

37: σt
j  σt 1

m
38: end if
39: end if
40: end if
41: end for
42: t  t + 1
43: end while
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Algorithm 3 Process for searching for alternatives by bj

Input: Xj, X′
j

Output: at
j = si (si ∈Xj ), X′

j

1: sl  st 1
j

2: if X′
j " Xj then

3: sk  sk ∈Xj (sk ! X′
j )

4: if µj (sk)  µj (sl ) > εthen
5: sl  sk

6: X′
j  X′

j + {sk}
7: while X′

j " Xj do
8: sk  sk ∈Xj (sk ! X′

j )
9: if µj (sk)  µj (sl ) > εthen

10: sl  sk

11: X′
j  X′

j + {sk}
12: else
13: if µj (sk) > µj (sl ) then
14: sl  sk

15: break
16: else
17: break
18: end if
19: end if
20: end while
21: end if
22: end if
23: at

j  sl
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Algorithm 4 Interaction between buyers

Input: e(bi, bj ), Ψt
i , Ψ

t
j

Output: Ψt
i , Ψ

t
j

1: if σt 1
i = C then

2: if σt 1
j = C then

3: if µj (at
i )  µj (at

j ) > εthen
4: Add at

i to Ψt
j

5: else if µi (at
j )  µi (at

i ) > εthen
6: Add at

j to Ψt
i

7: end if
8: else if σt 1

j = D then
9: if µj (at

i )  µj (at
j ) > εthen

10: Add at
i to Ψt

j
11: end if
12: end if
13: else if σt 1

i = D then
14: if σt 1

j = C then
15: if µi (at

j )  µi (at
i ) > εthen

16: Add at
j to Ψt

i
17: end if
18: end if
19: end if
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Table 4.2: Thevalues used as parameters in simulation.

Parameter Value

|B| 1,000
|S| 16
m 1
a0

j s1

vj at t = 0 c1

ε 1000, 2000, 3000, 4000, 5000, or 6000
γ ε, 1.5ε, or 2ε
r γ
T 50

Table 4.3: Total monthly chargeof each seller si in simulation.

si ci [JPY] Rank si ci [JPY] Rank

s1 90,576 16 s14 87,262 8
s8 90,555 15 s13 86,352 7
s16 89,779 14 s11 86,292 6
s10 89,176 13 s3 86,040 5
s6 88,947 12 s4 85,768 4
s2 88,020 11 s5 85,668 3
s9 87,850 10 s12 85,384 2
s7 87,487 9 s15 83,852 1

4.5 Experimental results

4.5.1 Conditions

Thissection explainscomputational resultsabout simulation experiment of theproposed evolutionary

game. Table 4.2 shows values chosen for parameters in the simulation. Furthermore, Table 4.3

indicates the monthly charge ci o ered by sellers at every iteration in a game. As described in 4.2.5,

ci is the average of ca
i (Sep.2017), ca

i (Oct.2017), ..., and ca
i (Aug.2018). We conducted 10,000 sets of

theexperiment for each set of parameters since theprocess of thegamecontains random factors such

as thestructureof G, theassignment of strategy to buyers, and so on. In thesimulation, thefollowing

two metrics were investigated.

(I) Themaximum share of buyers with strategy C:

This metric indicates how the share of cooperators changed from the initial share θ0 through a

game. Let Θbetheset of θt for all iteration t beforeσt
j  nally becomes D for all bj ∈B. Hence, Θ

is represented as Θ= {θt | t = 0, 1, 2, ...,T} . θmax denotes the metric that indicates themaximum
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share of bj ∈Bt
C in B in a game. θmax is de ned as θmax = max Θ. If cooperation was not

enhanced through overall iterations, θmax = θ0.

(II) Switching rate:

Switching rate φindicates the share of buyers who switched their sellers from the incumbent to

entrants in M obtained at iteration T. φwill also converge as well as θmax since no switching

behavior will beobserved after iteration T.

To analyze thee ect of rewards for buyers,  xed values are chosen as several parameters to focus

on the di erent pattern of the other parameters. The simulation was conducted based on each of the

following two types of conditions.

(A) |Sr | = 0:

This condition examines the cooperation and switching rate of buyers in the case that no sellers

give reward to buyers since |Sr | = 0. The e ort to switch εand searching cost γare assumed to

a ect thesemetrics. Sinceno sellers give reward to buyers, |Sr | = 0 and λ= 0. θ0 ischosen from

0.1, 0.2, 0.3, 0.4, or 0.5.

(B) |Sr |  0:

Thiscondition investigates thesituation in which sellersgive reward to buyers for cooperation. In

this condition, θ0 = 0.1 to simplify the results for focusing on the rewards. |Sr | is set by using

λ= 0, 0.25, 0.5, 0.75, or 1.

4.5.2 Resultsand discussion

(A) Examiningbehavior if |Sr | = 0

(I) Maximum share of C (θmax):

Fig. 4.8a to Fig. 4.8f show θmax without rewards for buyers. Each  gure shows di erent conditions

based on εand ascending/descending pattern. For descending pattern shown in Fig. 4.8ato Fig. 4.8c,

θmax decreased as γincreased in almost every condition. If γ= ε, cooperation was well promoted

compared with the situation in which γ> ε. The reason might be that bj ∈Bt
C can obtain ρ(bj )  0

if γ ε. Interestingly, Fig. 4.8a indicates cooperation under ε> 5, 000 is promoted as much as

ε= 1, 000. Adversely, bj ∈Bt
C cannot obtain positive payo ρ(bj ) though they conduct switching if

γ> ε. Therefore, γis considered to bean important factor to promotecooperation.
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For ascending pattern indicated in Fig. 4.8d to Fig. 4.8f, θmax did not change even though εand

γwere di erent. Actually, θmax is the same value as θ0. These results indicate that the number of

neighbors of each buyer has a crucial role in promoting cooperation and switching behavior among

buyers. Conversely, if each buyer does not have many neighbors, large θmax is important because

cooperation among buyers isnot expected to be enhanced.

In all sets of simulation with thecondition |Sr | = 0, σt
j  nally became D for all buyers bj ∈B. In

other words, no buyers chosestrategy C at iteration T.

(II) Switching rate (φ):

The switching rate φis shown in Fig. 4.9a to Fig. 4.9f. All  gures indicate that the switching rate

became smaller as εincreased. Especially, when γ> ε, φbecame highly smaller with ε 5, 000.

Considering cooperation, Fig. 4.8b and Fig. 4.8c shows the cooperation is not actively promoted if

ε 5, 000. These results mean bj experienced di culty to discover any preferred seller si without

cooperation if ε 5, 000. Thus, φisalso promoted by cooperation under descending pattern.

For ascending pattern depicted in Fig. 4.9d to Fig. 4.9f, φwas not larger than descending pattern

and demonstrated almost the same value in every  gure regardless of γ. On the other hand, the

di erence between φunder ascending pattern and descending pattern became smaller if ε 5, 000.

This situation indicates that network structuredoes not a ect φwhen buyers have relatively large ε.
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(a) γ= ε, descending pattern.
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(b) γ= 1.5ε, descending pattern.
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(c) γ= 2ε, descending pattern.
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(d) γ= ε, ascending pattern.
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(e) γ= 1.5ε, ascending pattern.
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(f ) γ= 2ε, ascending pattern.

Fig. 4.8: The di erence of θmax.
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(a) γ= ε, descending pattern.
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(b) γ= 1.5ε, descending pattern.
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(c) γ= 2ε, descending pattern.
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(d) γ= ε, ascending pattern.
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(e) γ= 1.5ε, ascending pattern.
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(f ) γ= 2ε, ascending pattern.

Fig. 4.9: Switching rateof buyers.
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(B) Examiningbehavior if |Sr |  0

(I) Maximum shareof C (θmax):

Fig. 4.10a to Fig. 4.10f show θmax if |Sr |  0. For descending patternsdepicted in Fig. 4.10a to Fig.

4.10c, θmax basically increased as |Sr | expanded except thefollowing two situations. First, thee ect of

|Sr | was not signi cant for buyers with ε= 1, 000 since they actively switched sellers by their search,

and rewards are not necessary for these buyers. Those buyers did not need the suggestion from other

buyers, and the rewards did not a ect θmax. Besides, the e ect of giving rewards was not apparent if

ε 5, 000 especially with γ> ε. The reason is that buyers can rarely discover preferred sellers if

ε 5, 000. Except for the two situations, θmax was improved by giving rewards to buyers.

For ascending patterns depicted in Fig. 4.10d to Fig. 4.10f, θmax keeps almost the same value as

θ0. Thisresult indicatesthat strategy C might not bepropagated if buyersdo not havemany neighbors

even if sellers give rewards.

σt
j also  nally became D for all buyers bj ∈B in all sets of simulation with |Sr |  0. σt

j might

eventually converge to D, and this perspectiveshould beexamined in the future.

(II) Switching rate (φ):

In the results about descending pattern in Fig. 4.11a to Fig. 4.11c, φbasically increased according

to |Sr | as same as θmax. If γ> ε, however, switching behavior was not much enhanced whereas |Sr |

increased. This result means that φmight not be improved with higher εeven if rewards o set γ.

Since the rewards give little e ects to φwith relatively large ε, it is more important to relieve εof

buyers.

In Fig. 4.11d to Fig. 4.11f, thee ect of rewardswith ascending pattern cannot beobserved. Since

ascending pattern initially allocated strategy C to bj with a relatively smaller degree, the e ect of

promoting switching behavior was also small. Though the rewards for bj ∈Bt
C is considered to be a

factor to increase φ, it ismore important which buyers initially choosestrategy C in anetwork among

buyers. Furthermore, methods to increaseconnectionsamong buyers isalso bene cial to improvethe

switching rate.
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(a) γ= ε, descending pattern.
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(b) γ= 1.5ε, descending pattern.
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(c) γ= 2ε, descending pattern.
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(d) γ= ε, ascending pattern.
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(e) γ= 1.5ε, ascending pattern.
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Fig. 4.10: Thedi erence of θmax (θ0 = 0.1).
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Fig. 4.11: Switching rateof buyers with sellers giving reward (θ0 = 0.1).
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4.6 Summary of thischapter

Thischapter proposedanevolutionary gameonagraphtoanalyzetheswitchingbehavior of consumers.

Preference relation of consumers involving switching costs was de ned and expressed situations

where consumers do not tend to switch their suppliers though lower charges are available. We

examined the conditions to promote cooperation to search for alternatives and switching suppliers in

the computational experiment of the evolutionary game. The results demonstrated that the share of

cooperatorsand theswitching ratewerenot improved by simply giving rewardsfor cooperators. These

resultssuggest that thedegreeof cooperators in anetwork among consumersdemonstratesavital role

to increase theshare of cooperators and theswitching rate.
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Chapter 5

Describing fairnessamongprosumersin electricity

sharing

This chapter presents amathematical modeling technique for Problem 4.

5.1 Introduction

5.1.1 Literaturereview

Interaction between agents can be modeled as matching in graph theory. The concept of matching is

 rstly introduced by Gale and Shapley in [46]. In a college admission problem presented in [46], a

matching model can be represented by a bipartite graph consists of two types of nodes: colleges and

students. As one of the applications of matching, Easley and Kleinberg proposed matching market,

which determines matching between sellers and buyers as partners to trade a single indivisible item

[44]. A study in [17] proposes a matching problem to describe electricity retail markets to represent

trading for electricity as multi-unit items. Above studies on matching, however, only deal with static

aspects of markets and cannot describe interactions of trading varying with time.

A resource sharing model based on a multi-agent system is called El Farol Bar Problem (EFBP)

[94]. In the EFBP, thecapacity in a bar is considered as a resource shared among agents. Each agent

decideswhether theagent go to abar or not every week. To avoid congestion and enjoy thebar, agents

must achievecooperativebehavior without pursuing their sel sh goal. A potluck problem isproposed

as the generalized version of the EFBP [95]. In the potluck problem, each agent has time-varying

supply and demand for dinner in every week. The goal of the potluck problem is to minimize the

di erence between the total demand and total supply among all agents. The potluck problem only
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focuses on minimizing the di erence in total supply and demand as overall e ciency and does not

consider envy of each agent.

As a metric for envy of each agent, envy-freeness is considered in many resource allocation

problems. If the allocation is envy-free, every agent is satis ed with its allocation and does not

envy the allocation for other agents [96]. Problems about envy-freeness is classi ed into two types:

problems for indivisible goods and problems for divisible goods. As an example of studies for

indivisible goods, Netzer et al. propose a distributed algorithm for minimizing envy among agents

[97]. Asadynamic version of envy-freeallocation problems, onlinecake-cuttingproblem isdiscussed

in [98]. Though dynamic aspectsof resourceallocation problemsareconsidered in [98], theproblems

deal with only  xed amounts of resources over time. This chapter focuses on divisiblegoods such as

electricity.

Resourcesharing among prosumersmight beconducted with limited neighborsthat areconnected

to each other. Hence, resources and envy can be partially observable from a prosumer’s viewpoint.

The partial observation is considered in a resource allocation problem proposed in [99]. Even

though thisproblem dealswith dynamic settings, it considers indivisibleresourceallocation. Besides,

resourcesshared among agentsarenot changed dynamically in [99] though each agent cannot observe

all resources. Beynier also introduces methods for envy-free allocation in social networks, which

can describe a more realistic situation about partial observation of agents [100]. However, methods

proposed in [100] are tailored for theallocation for indivisible resources.

To represent conditions of prosumers varying with time, our model for resource sharing among

prosumers [101] utilizes Time-Varying Graph (TVG) [32]. TVG is also called temporal network.

On the temporal networks, community structures change with time [31]. For example, [31] explains

several events about communities such as growth, contraction, merge, split, and so on. Hence, it

is required to consider the time-varying structural change about networks of prosumers for resource

sharing.

Rossetti et al. proposed stream graphs, which is an extension of several concepts of graph theory

to analyze the temporal characteristics of networks. Especially, [102] de nes bipartite stream, which

is an extension of bipartite graphs to temporal networks. Although the bipartite stream can model

the appearance/disappearance of nodes and edges on a bipartite graph, every node belongs to the

samegroup in thebipartitegraphs through a timespan. Hence, thebipartitestreamscannot represent

periodical changes in the roleof nodes in bipartitenetworks.
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5.1.2 Contribution

Thischapter proposesamodel for analyzing envy in resourcesharing among prosumers in atemporal

network. Main contributionsof this chapter are itemized below.

• This chapter introduces a resource sharing model among prosumers in a social network. The

model deals with time-varying supply and demand of prosumers based on the model proposed in

our previousstudy [101]. Asan extensionof themodel in [101], therelationshipamongprosumers

for resource sharing is represented as social network. Thus, prosumers share their resources only

with their neighbors in a model of social network. As models of social network, this chapter

utilizes Barabasi-Albert (BA) model [92] and Watts-Strogatz (WS) model [103].

• The extended concepts of envy are introduced since resource sharing is conducted on a social

network in the proposed model. The envy in resource sharing discussed in related works is

de ned in the situation where all agents share the same resources each other over time. In our

assumption of resourcesharing in asocial network, however, theamount of resources to beshared

is di erent in each prosumer and varies with time. Therefore, this chapter de nes indices to

evaluateenvy-freeness among prosumers that focuseson aresourceallocation problem in asocial

network.

• Weformulateaminimumcost circulation problem to discover matching that maximizesutilization

of resources of prosumers and satis es the constraints of supply and demand of prosumers.

Furthermore, to reduce envy among prosumers in the circulation problem, this chapter discusses

the adjustment of weight assigned to arcs (directed edges) in a  ow network for the circulation

problem. Experimental results indicate that appropriate weight settings on arcs can decrease the

envy among prosumers over timewhilemaximizing theutilization of resources of prosumers.

Thischapter isstructured as follows. Section 5.2 explains fundamental de nitionsof our resource

sharing model used in thefollowing sections. Theconcept of envy of prosumers in asocial network is

also introduced in Section 5.2. Section 5.3 formulatesaminimum cost circulation problem to discover

matching in theresourcesharing model. Section 5.4 demonstratesexperimental resultsabout theenvy

among prosumers in thematching. Section 6.1 concludes thischapter and explains futureworks.
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Fig. 5.1: Exampleof graph N and G.

5.2 De nitionson temporal network

5.2.1 Model representation

Agents share their resources on a social network represented by undirected graph N (V ∪{v0}, E). V

is aset of node vi ∈V (i = 1, 2, ..., |V |), and each node vi denotes an agent of aprosumer. v0 is anode

to cover imbalance of resource sharing among agent vi ∈V. v0 does not denote a prosumer. E is a

set of undirected edge (vi, vj ) (vi, vj ∈V). Since N is undirected graph, both (vi, vj ) and (vj, vi ) are the

sameedge. Edge (vi, vj ) represents the relationship where vi isaneighbor of vj . Agentsarewilling to

share resources only with their neighbors. Adversely, vi and vj do not share their resources if (vi, vj )

does not exist. E also contain edges (v0, vi ) for any vi ∈V. Thus, arbitrary vi share resources with v0.

Fig. 5.1ashows an exampleof N.

In resource sharing, the amounts of available resources for each agent will vary with time. To

represent thevariation of resources, weutilizea temporal network constructed based on N. Temporal

network G (V ∪{ v0}, Et, T ) isan undirected graph that hasaset of agentsV, which is thesameasthe

agents in N. T is a timespan for G, and t ∈T (t = 1, 2, 3...,T) isa round to describeeach stateof G.

Et is a set of edges at t in G. Et does not contain (vi, vj ) if (vi, vj ) ! E. The set of agentsV does not

change through T .

5.2.2 Rolesof agentsbased on their production and demand

Every agent vi ∈V has itsown demand and production of resources at t. Thedemand of resources of

vi is δt
i , and the production of resources of vi is ρt

i . At each round t, vi uses ρt
i to cover its δt

i . Based

on thecondition about δt
i and ρt

i , vi will beassigned to oneof the following three roles.
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1. ρt
i > δt

i

Sincesurplus is more than de cit, vi has surplus resource indicated by pt
i = ρt

i  δt
i . vi will share

thesurplus as seller to theother agents. Theset of sellers isVt
S ⊆V.

2. δt
i > ρt

i

vi has the de cit of resource denoted by dt
i = δt

i  ρt
i since its de cit is more than its surplus. vi

will try to cover its de cit as buyer by getting surplus from other agents. The set of buyers is

Vt
B ⊆V.

3. δt
i = ρt

i

vi can cover its own demand δt
i by using its own production ρt

i at t. Regarding resource sharing,

vi hasno surplusand de cit for sharing at t. Hence, vi doesnot join theresourcesharing at t, and

roleof vi is called none at t.

Fig. 5.1b shows an example of production and demand of agents vi ∈V of G at t. Regarding v1,

production ρt
1 = 60, and demand δt

1 = 20. Thus, v1 is a seller at t with its surplus pt
1 = 40. About v4,

production ρt
4 = 20, and demand δt

4 = 50. Hence, v4 becomes abuyer at t with its de cit dt
4 = 30.

As aconstraint for resource sharing in our model, all surplus pt
i and de cit dt

i must beshared at t.

However, theimbalanceof surplusand de cit of resourceswill occur sinceevery agent vi individually

determinesdemand δt
i and production ρt

i without considering thebalanceamong other agents. Hence,

surplus pt
i and de cit dt

i arenot necessarily o set by resource sharing only among agents.

To o set the imbalance of the surplus and de cit, v0 has both surplus and de cit to o set the all

resources of vi . Let dt
0 be thede cit of v0 that is su cient for all surplus of vi ∈Vt

S. Pt represents the

total surplusof all vi ∈Vt
S. Thus, dt

0 isde ned as dt
0 = Pt . Pt is denoted by

Pt =
#

vi ∈Vt
S

pt
i . (5.1)

Regarding surplusof v0, let pt
0 be thesurplusof v0 that isenough for all de cit of vi ∈Vt

B. Dt denotes

the total of de cit of all vi ∈Vt
B. Therefore, pt

0 is de ned as pt
0 = Dt . Dt is represented as

Dt =
#

vi ∈Vt
B

dt
i . (5.2)
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5.2.3 Neighborsof each agent accordingto agent’srole

Agent vi ∈V shares its resources with its neighbors. To explain the relationship to describe resource

sharing with neighbors, we divide Et into three edge sets: Et
d, Et

s, and Et
0 (Et = Et

d ∪Et
s ∪Et

0). Fig.

5.2 shows an exampleof these edgesets. Thede nitionsof theedgesetsare as follows.

• Et
d containsedges with two agentswhich belong to di  erent sets. Thus, (vi, vj ) ∈Et

d (vi ∈Vt
S, vj ∈

Vt
B). Edges in Et

d describe theopportunity for resource sharing between vi and vj .

• Et
s contains edges between agents which belong to the same set. Hence, (vi, vj ) ∈Et

s (vi, vj ∈

Vt
S or vi, vj ∈Vt

B). No resource is shared on edges in Et
s that are used to describe envy among

agents. Thede nition of envy is explained in Section 5.2.6.

• Et
0 isaset of edgesbetween vi ∈V and v0. Therefore, (vi, v0) ∈Et

0 (vi ∈Vt
S ∪Vt

B). Edges in Et
0 can

beused to cover resources that are not o set by resource sharing only among vi .

The set of neighbors of vi ∈V over an edgeset Et is denoted by the following function.

adj (vi, Et) = {vj ∈V | (vi, vj ) ∈Et } . (5.3)

Similarly, the set of neighbors of vi ∈V over an edge set Et
d, Et

s, and Et
0 are represented by

adj (vi, Et
d), adj (vi, Et

s), andadj (vi, Et
0), respectively. For example, regardingv1 inFig. 5.2, adj (v1, Et

d) =

{v4, v5} and adj (v1, Et
s) = {v2} .
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5.2.4 Utility function

Bene t of vi ∈V for resource sharing is represented by utility function µt : V → R. This chapter

focuses on bene t of agents vi ∈V, and bene t of v0 is not considered. In G, v0 might need more

costs to o set the di erence than agents vi since v0 must prepare for pt
0 and dt

0 according to surplus

and de cit of vi every round. Hence, it is assumed that resources of v0 are more expensive than that

of other agents. Becauseof thiscondition, vi prefers resource sharing with vj ∈V to resourcesharing

with v0.

Utility function µt isde ned by bene t from resources and theamountsof resources in sharing at

round t. Let φand φ0 be the bene t for sharing one unit of resource with vj ∈V and v0, respectively.

Sinceresourcesof v0 ismoreexpensivethan vj , φand φ0 areconsidered to satisfy at least φ> φ0. Let

yt bethetotal amountsof resourcesobtained from all neighborsadj (vi, Et
d) at round t. For instance, in

Fig. 5.2, yt of v1 represents the amounts of resources shared with v4 and v5. Moreover, yt
0 represents

theamountsof resources obtained from v0. Thus, theutility of vi ∈Vt
S∪Vt

B at round t iscalculated by

µt(vi ) = φꞏ yt + φ0 ꞏ yt
0. (5.4)

For simplicity, weassume φ= 1 and φ0 = 0. Therefore, equation (5.4) can bedenoted as

µt(vi ) = yt . (5.5)

Since all surplus must be shared at t, for sellers vi ∈Vt
S, yt + yt

0 = pt
i . Likewise, for buyers vi ∈Vt

B,

yt + yt
0 = dt

i because all de cit dt
i must beshared.

To increase utility of agents, resource sharing among agents vi ∈V should be conducted as much

as possible since φ> φ0. In other words, resources of v0 should be utilized only if the amounts of

resourcesof vi arenot su cient to o set all surplusand de cit. Theconditionsfor resourceallocation

described abovecan bediscovered by maximizing the total of yt over all agents. Methods to discover

the resource allocation for the maximization will be presented in Section 5.3. Available resources of

vi means theamountsof resources of neighbors vj ∈adj (vi, Et
d).
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5.2.5 Utility rate

The size of utility is quite di erent in each agent since each agent has adi  erent amount of available

resources (surplus or de cit) of neighbors. Hence, utility µt(vi ) cannot be directly compared with

other agents. To compare the utility over agents, it is required to de ne a criterion to describe a

normalized measure of utility over agents. This chapter de nes utility rate ωt
i ∈[0, 1] that indicates

how much amount of agent’s resource isshared among agentsvi ∈V. De nitions to determineωt
i are

presented later in thissection.

The available resources for vi must be de ned to determine ωt
i . Seller vi ∈Vt

S share its resources

with buyers vj ∈Vt
B. Buyer vi ∈Vt

B share its resources with sellers vj ∈Vt
S. Thus, the available

resources of vi is de ned using the sum of resources of neighbors vj ∈adj (vi, Et
d). For instance, in

Fig. 5.1a, seller v1 recognizes thede cit of neighbors v5 and v4 as resources. For vi ∈Vt
S, the total of

de cit dt
j of neighbors vj ∈adj (vi, Et

d) is denoted by

Dt
i =

#

vj ∈adj (vi ,Et
d )

dt
j . (5.6)

Besides, as available resource for vi ∈Vt
B, the total surplus pt

j of neighbors vj ∈adj (vi, Et
d) is

represented by

Pt
i =

#

vj ∈adj (vi ,Et
d )

pt
j . (5.7)

Let αt
i represent the maximum amounts of available resources for vi at round t. αt

i is determined

as follows.

• For seller vi ∈Vt
S:

αt
i is obtained by either Dt

i or pt
i . If Dt

i > pt
i , αt

i = pt
i since vi can share resources up to its surplus

pt
i . This situation means vi can utilize only a part of Dt

i . Adversely, if pt
i > Dt

i , αt
i = Dt

i since

vi can only share resources up to Dt
i . Thus, surplus pt

i can be covered up to only Dt
i if pt

i > Dt
i .

Besides, surplus pt
i can be o set by Dt

i if Dt
i = pt

i . According to the conditions described above,

αt
i can bede ned as theminimum valueof Dt

i or pt
i .

• For buyer vi ∈Vt
B:

αt
i isdetermined by either Pt

i or dt
i , and conditionsto obtain αt

i issimilar to theconditionsof sellers

described above. If Pt
i > dt

i , αt
i = dt

i since vi can share resources up to its de cit dt
i . Conversely,
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if dt
i > Pt

i , αt
i = Pt

i since vi can only share resources up to Pt
i . If Pt

i = dt
i , de cit dt

i can be o set

by Pt
i . Hence, αt

i can bede ned as theminimum valueof Pt
i or dt

i .

Therefore, αt
i is calculated as follows.

αt
i =

     

   
 

min
!
Dt

i , pt
i

"
(vi ∈Vt

S),

min
!
Pt

i , dt
i

"
(vi ∈Vt

B).
(5.8)

All resources of αt
i are not necessarily allocated to vi because some resources in αt

i might also be

shared with the other agents and allocated to them. A part of αt
i allocated to vi can be denoted by

yt = µt(vi ) as equation (5.5). Thus, utility rateωt
i isobtained as follows.

ωt
i = µt(vi )/ αt

i . (5.9)

When αt
i = 0, vi has no resource to share, and ωt

i cannot be de ned. Besides, αt
i and ωt

i cannot

be de ned if |adj (vi, Et
d)| = 0. If one of the conditions described above holds, ωt

i is not de ned at t.

Hence, envy of vi explained in Section 5.2.6 is not de ned at t with theaboveconditions, either.

Fig. 5.3showsanexampleof theamountsof availableresourcesαt
i andutility rateωt

i . Theamounts

of resources shared on edges are denoted on each edge. Regarding v1, its surplus is represented by

pt
1 = 40. Moreover, thetotal of availablede cit of neighborsareobtained by Dt

1 = dt
4 + dt

5 = 50. Thus,

αt
1 = min(Dt

1, pt
1) = 40. In this example, v1 obtained 20 units of resources from v5. Hence, yt = 20,

and µt(v1) = 20. Therefore, utility rateωt
1 = 20/ 40 = 1/ 2.
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5.2.6 Envy amongagents

At every round t, vi possibly hasenvy to each of itsneighborsabout allocated resources. Envy exists if

vi and itsneighbor vj are in thesameset Vt
S or Vt

B. If vi, vj ∈Vt
S, both vi and vj arewilling to sharetheir

surplus to vk ∈Vt
B. Conversely, both of vi, vj ∈Vt

B will desire resources of the same agent vk ∈Vt
S.

Thus, vi has envy over vj if vj ∈adj (vi, Et
s).

The de nition of envy in this chapter is similar to [97]. However, this chapter de nes envy by

using utility rateeven though [97] utilizeutility function. Envy of vi to vj about utility rate isde ned

as local envy ξ: V ×V → [0, 1]. ξ(vi, vj ) isde ned as

ξ(vi, vj ) =

     

   
 

ωt
j  ωt

i (ωt
i < ωt

j ),

0 (ωt
i  ωt

j ).
(5.10)

wherevj ∈adj (vi, Et
s). Therangeof ξ(vi, vj ) is[0, 1] becausetheminimumof ωt

i iszero, andmaximum

valueof ωt
i isone. Becauseof thisde nition, ξ(vi, vj ) isnot de ned at round t if either of thefollowing

conditions is satis ed at t.

1. |adj (vi, Et
s)| = 0. (There is no neighbor to de ne envy.)

2. |adj (vi, Et
d)| = 0. (ωt

i cannot be de ned in thiscase.)

3. αt
i = 0. (ωt

i cannot bede ned in thiscase.)

Due to theabovecondition 1 and 2, ξ(vi, vj ) cannot bedetermined throughout T if vi ∈V has zero or

oneneighbor in N. Thus, weassume vi ∈V has two or more neighbors in N.

To compare envy among agents, envy of vi at t must be denoted as one value. However, ξ(vi, vj )

can be de ned for multiple neighbors vj ∈adj (vi, Et
s). Hence, for the comparison of envy among

agents, the maximum value of ξ(vi, vj ) is chosen as envy of vi at t. Envy of vi at t is represented by

ηt
i ∈[0, 1]. Ξi represents theset of ξ(vi, vj ) determined for vi and neighbors vj ∈adj (vi, Et

s). Since ηt
i

is themaximum value in Ξi , ηt
i is represented by

ηt
i = max Ξi . (5.11)

If |Ξi | = 0 at the round t, ηt
i is not de ned at t. Te ⊆T is the set of rounds in which ηt

i is de ned.

Sinceηt
i is not determined in some t as described above, |Te|  |T |.
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Fig. 5.4: Exampleof envy.

Fig. 5.4 showsexamplesof ξ(vi, vj ) and ηt
i in G at t. Utility rateωt

i is thesameasFig. 5.3. About

seller v2, ξ(v2, v1) = 1/ 6 and ξ(v2, v3) = 2/ 3. Thus, envy of v2 at t is ηt
2 = 2/ 3. Regarding sellers v1

and v3, ηt
1 = 0 and ηt

3 = 0 since both ωt
1 and ωt

3 are larger than ωt
2. For buyers v4 and v5, ηt

4 = 0 and

ηt
5 = 0 sinceωt

4 and ωt
5 have thesamevalue.

5.2.7 Index todenote envy of each agent

To describeenvy of eachagent through timespan T , thischapter de nestwo kindsof index asfollows.

1. Envy-freeamount index  a
i ∈[0, 1]:

 a
i indicates the envy of vi in terms of the amounts of resources that vi shared among agents.  a

i

is de ned as

 a
i =

/
#

k∈Te

ηk
i

0

/ |Te|. (5.12)

High  a
i means vi shared little amounts of resources among agents. Adversely, vi does not have

much envy if  a
i is low. Since  a

i is de ned by the actual amount of resources which vi obtained,

 a
i might not besuitablefor prosumersthat do not consider thedi  erenceof amountsof resources

in detail.

2. Envy-free round index  r
i ∈[0, 1]:

Envy-free round index  r
i indicates the number of rounds in which vi have envy to other agents.

 r
i will be used to examine only whether vi has envy or not at each round. To describe rounds at
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which vi has envy, r t
i is de ned as

r t
i =

     

   
 

1 (ηt
i > 0),

0 (ηt
i = 0).

(5.13)

vi has envy at round t if r t
i = 1. Hence,  r

i is de ned as

 r
i =

/
#

k∈Te

r k
i

0

/ |Te|. (5.14)

Considering bounded rationality, prosumers are possibly not sensitive to the di  erence in the

amounts of resources.  r
i is assumed to beutilized in theabovesituations.

5.3 Problem formulation

5.3.1 Bipartitegraph and matchingfor resource sharing

Resourceallocation among agentsat round t can berepresented asmatching M. Thissection explains

thede nition of M, and methods to discover M arepresented in Section 5.3.2 and 5.3.3. M isde ned

on G (V ∪{ v0}, Et), which isan undirected graph at t in G. M isdenoted as many-to-many matching

since each node in M has one or more edges. To determine M, G is converted to a directed bipartite

graph G′(St ∪Bt, At), which isadirected graph with two typesof nodesetsdenoted by St and Bt. For

every arc (v, w) ∈At, nodes v and w belong to St and Bt , respectively. Theexistenceof arc (v, w) ∈At

means v and w can share resources on thearc. Fig. 5.5 showsexamples of G and G′.

Nodes in G are mapped into nodes in G′. St contains all vi ∈Vt
S. Similarly, Bt includes all

vi ∈Vt
B. SinceG′has two typesof nodesets St and Bt, node v0 in G isdivided into two nodes: vs

0 and

vb
0 (vs

0 ∈St , vb
0 ∈Bt). vs

0 o sets the gap of all de cit of vj ∈Vt
B. Conversely, vb

0 covers the gap of all

surplus of vi ∈Vt
S. Therefore, St = Vt

S ∪{vs
0} and Bt = Vt

B ∪{ vb
0} . Fig. 5.5b depicts a bipartitegraph

G′converted from G shown in Fig. 5.5a. In Fig. 5.5a, Vt
S = {v1, v2, v3} and Vt

B = {v4, v5} . Hence,

St = {v1, v2, v3, vs
0} and Bt = {v4, v5, vb

0} in Fig. 5.5b.

Regarding edges and arcs, edges (vi, vj ) (vi ∈Vt
S, vj ∈Vt

B) in Et
d are converted to arcs (vi, vj ) ∈At.

For instance, G′in Fig. 5.5b has arcs converted from edges in G shown in Fig. 5.5a. Edges in Et
0 are

also converted to arcs in At. vs
0 are connected to all vj ∈Vt

B with arc (vs
0, vj ). Similarly, At has (vi, vb

0)
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Fig. 5.5: Exampleof G and G′.

(vi ∈Vt
S). On the other hand, any edges in Et

s are not converted to arcs in At because no resource

sharing isconducted on edges in Et
s.

By using resource allocation obtained as M, the value of utility function µt(vi ) can be calculated.

To obtain µt(vi ), variables yt and yt
0 areused asexplained in Section 5.2.4. M isdenoted by theset of

arcs and thevalues of  ow on thearcs in G′. The  ow corresponds to yt and yt
0 in equation (5.4). As

de ned in Section 5.2.4, yt is the total amounts of resources obtained by vi from all neighbors except

v0. Let adj (vi, At) denote neighbors of vi in G′except vb
0 and vs

0. adj (vi, At) is de ned according to

theset to which vi belongs in G′. If vi ∈St , adj (vi, At) = {vj ∈(Bt \ {vb
0} ) | (vi, vj ) ∈At } . Thus, when

vi ∈St, yt is de ned by using  ow as follows.

yt =
#

vj ∈adj (vi ,At )

x(vi, vj ). (5.15)

If vi ∈Bt , adj (vi, At) = {vj ∈(St \ {vs
0} ) | (vj, vi ) ∈At} . Hence, when vj ∈Bt , yt isobtained by

yt =
#

vj ∈adj (vi ,At )

x(vj, vi ). (5.16)

Besides, yt
0 is the total amountsof resources obtained from v0. By using  ow, yt

0 isde ned as follows

for vi ∈Vt
S ∪Vt

B.

yt
0 =

     

   
 

x(vi, vb
0) (vi ∈Vt

S),

x(vs
0, vi ) (vi ∈Vt

B).
(5.17)
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Fig. 5.6: Relationship between matching M and graph G.

Fig. 5.6a is an example of M determined in G′shown in Fig. 5.5b. The value of  ow is denoted

on each arc in Fig. 5.5b. As shown in Fig. 5.6a, M is represented by the set of arcs and the values

of  ow on the arcs. If the value of  ow on an arc is not zero, M contains the arc. An arc with zero

 ow is not included in M. Fig. 5.6b shows G that corresponds to M in G′. In Fig. 5.6b, the value

of resource shard on each edge is denoted on the edge. Thus, the allocation of resources in G can be

determined by M in G′. The allocation of resources determines variables yt and yt
0 to obtain utility

rate and the indices about envy for each agent. For instance, in both Fig. 5.6a and Fig. 5.6b, yt and

yt
0 of v1 are determined as yt = 20 and yt

0 = 20 since x(v1, v5) = 20 and x(v1, vb
0) = 20, respectively.
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Fig. 5.8: A directed graph H′to solvecirculation.

5.3.2 Circulation todiscover matching

Resources of agents vi should be e ciently shared in matching M. The most e cient resource

allocation in M can be achieved by maximizing  ow among vi in G′. We consider a minimum cost

circulation problem [27] to discover M that maximizes  ow among all agents. Fig. 5.7 shows a

directed graph H to de ne the circulation problem. In this circulation problem, the objective is to

discover the minimum cost feasible circulation, which satis es two constraints (2.1) and (2.2). The

circulation problem is di erent from general network  ow problems since thegraph H does not have

source and sink. Hence, constraint (2.2) must be satis ed in all nodes in the circulation problem. H

can be constructed from G′such as the graph depicted in Fig. 5.5b. G′can be converted to H by

adding node o and t and arcs explained in Table 5.1.

Matching M can beobtained astheminimum cost feasiblecirculation on H satisfying thecapacity

constraints shown in Table 5.1. Weights of arcs c(v, w) shown in Table 5.1 are set to maximize  ow

among vi . About  ow from source o, the weight of arcs for vi is set to c(o, vi ) = 0. The weight of an
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Table5.1: Arc (v, w) added to G′for constructing H.

v w l b(v, w) ub(v, w) c(v, w)

vi ∈Vt
S vj ∈Vt

B 0 max(pt
i, dt

j ) 0

vi ∈Vt
S vb

0 0 pt
i 0

vs
0 vj ∈Vt

B 0 dt
j 0

o vi ∈Vt
S pt

i pt
i 0

o vs
0 0 Dt

j z > 0
vj ∈Vt

B t dt
j dt

j 0

vb
0 t 0 Pt

i z > 0
t o max(Pt, Dt) max(Pt, Dt) 0

arc for vs
0, on the other hand, is set to c(o, vs

0) = z (z > 0). According to the minimum cost feasible

circulation, resourcesharing among vi isselected in preference to resourcesharing with vs
0. Likewise,

regarding  ow toward sink t, c(vj, t) = 0 and c(vb
0, t) = z (z > 0). Therefore,  ow from vj to t is

chosen in preference to  ow from vb
0 in theminimum cost feasiblecirculation.

Thecirculation problem on H can besolvedwithgeneral algorithmsfor aminimumcost maximum

 ow problem by changing arcs in H. We utilize H′which can be obtained by removing arc (t, o)

from H and adding arc (t′, o) to H. Fig. 5.8 shows an example of H′converted from H depicted

in Fig. 5.7. Flow bounds of (t′, o) are the same as the bounds of (t, o). Thus, l b(t′, o) = 0

and ub(t′, o) = max(Pt, Dt). Then, the minimum cost feasible circulation on H is obtained as the

minimum cost maximum  ow on t′-t path in H′.
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Table5.2: c(v, w) considering envy weight.

v w c(v, w)

o vi ∈Vt
S ψt

i ∈[0, 1]
o vs

0 z > 1
vj ∈Vt

B t ψt
j ∈[0, 1]

vb
0 t z > 1

5.3.3 Circulation consideringenvy amongparticipants

Asdescribed above, matching M maximizing resourcesharing among vi at round t can beobtained by

solving the circulation problem. However, that circulation problem does not consider the aspects of

envy-freenessamong prosumers. Furthermore, sincethecirculation problem focuseson the ow only

at round t, thecirculation problem needs amodi cation to realize desirable resource sharing through

timespan in a temporal network.

Envy weight isde ned for thecirculationproblem todiscover M with lower envy amongprosumers

whilemaximizing e ciency in resource allocation. Theenvy weight is theweight of arc that re ects

envy of prosumers to the resource allocation in future rounds. Thus, prosumers who have more envy

than otherswill bepreferentially allocated resources by using envy weight in thecirculation problem.

ψt
i denotes envy weight for vi at t. As the initial condition at t = 1, ψt

i = 0. T ′⊆T isa timespan

before round t (1 < t  T). For instance, for t = 4, T ′= {1, 2, 3} . As well as envy-free amount index

 a
i , ηt

i is used for ψt
i . T ′

e ⊆T ′denotes the set of rounds in which ηt
i is de ned. If |T ′

e | = 0, ψt
i = 0

sincethiscondition meansenvy doesnot exist beforeround t. By using thede nitiondescribed above,

ψt
i is de ned as

ψt
i = 1  

    

  
 

1
2

3

#

k∈T ′
e

ηk
i
4
5

6

/ |T ′
e |

    

  
 

. (5.18)

Therefore, ψt
i is in the interval [0, 1].

Table 5.2 shows weight of arcs c(v, w) modi ed from the de nition in Table 5.1 to the de nition

considering ψt
i . Low ψt

i makes the cost of  ow of vi high. Thus, in the minimum cost circulation

problem, the priority of vi in resource allocation will decrease compared to vj , which has ψt
j higher

than ψt
i . If ψt

i is used to calculate circulation, the value of z must be larger than ψt
i so that resource

sharing among prosumers will be preferentially selected rather than vs
0 and vb

0. Hence, z must satisfy

z > 1 since ψt
i ∈[0, 1] when ψt

i is applied.
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(a) BA model. (b) WSmodel

Fig. 5.9: Examples of social network models.

Table 5.3: Thevalues used as parameters in simulation.

Parameter Value

T 100
|V | 20, 40, 60, 80, or 100
ρt

i randomly chosen from { ρt
i ∈N0 | ρt

i ∈[0, 100)}
δt

i randomly chosen from {δt
i ∈N0 | δt

i ∈[0, 100)}
m (BA model) 2
k (WS model) 4

p (WSmodel)

0.2 (|V| = 20),
0.3 (|V| = 40),
0.35 (|V | = 60),

0.4 (|V | = 80, 100)

5.4 Experimental results

5.4.1 Conditions

To analyzeenvy among agents in e cient resourceallocation determined by theproposed circulation

problem, simulation experiments were conducted. As common models to construct social networks,

this chapter utilizes BA model and WS model in the simulation. Fig. 5.9a depicts an example of

the BA model. A graph constructed as BA model is called scale-free network in which only a small

part of nodeshas larger degreecompared to theother nodes. Wefocuson thischaracteristicsbecause

achieving lower envy might become di  cult if there is larger deviation about degree of nodes in a

graph. On theother hand, WSmodel doesnot havescale-freeproperty and relatively smaller deviation

of degree of nodes compared to BA model. Fig. 5.9b shows an example of WS model utilized for

comparison.
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Table 5.3 shows parameter conditions used in the simulation. T means the number of rounds in

a time span T as one set of the experiments. |V | was chosen from  ve values to analyze in uences

of the number of agents. Parameter m for BA model and parameter k for WS model were chosen so

that the similar number of edges are generated in both types of graphs. Parameter p for WS model

in uences clustering coe cient of graph, which indicates the existence of clustering in the graph. In

the simulation, p was set to make clustering coe cient of graphs of WS model closer to clustering

coe cient of graphs of BA model.

The simulation has ten patterns of parameter conditions since  vevalues of |V | were used for the

two types of graph structure: BA model and WS model. The simulation experiment is conducted

1,000 sets for each parameter condition since the parameters contains random factors such as graph

structure, production ρt
i , and demand δt

i . Hence, 1,000 instances of G were generated for each

parameter condition. To impartially compare the proposed problem with envy weight and without

envy weight, matching M was determined by using the same instance of G for both conditions every

round. According to thecondition of degreeof agent vi of N in Section 5.2.6, every instanceof graph

N used in thesimulation satis es that every agent vi in the instance has two or moreneighbors.

A simulation software was developed with Python. In the simulation, a python library called

NetworkX [104] was utilized for constructing graphs based on BA model and WS model. Moreover,

theproposed circulation problem issolved by using amethod to solveaminimum cost maximum  ow

algorithm de ned in NetworkX.

Asanevaluationmetric, theaverageof  a
i and  r

i over agentsiscalculated toexaminethemagnitude

of envy-freeness of overall agents. Moreover, the standard deviation of  a
i and  r

i for all agent vi ∈V

is obtained to investigate thesizeof variance in each index of envy-freeness over agents.
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5.4.2 Resultsand discussion

Following results and discussion explain how envy weight in uenced envy among prosumers in

matching, which represents e cient resource utilization determined by the proposed circulation

problem.

Averageof each index over agents

The average of  a
i among agents is shown in Fig. 5.10. The charts in this section depict the results

about 1,000 sets of experiments for each parameter condition. Fig. 5.10a shows the average of  a
i

regarding BA model. These results indicate that the di erence between the two weight conditions is

not so signi cant. If the number of agents increased, theaverageof  a
i of matching with envy weight

is slightly lower than matching without envy weight. Fig. 5.10b shows the average of  a
i about WS

model. The average value of  a
i regarding WS model is lower compared to that of BA model. Unlike

BA model, theaverageof  a
i in WS model slightly decreased as thenumber of agents increased.

The averageof  r
i is shown in Fig. 5.11. Fig. 5.11a shows theaverageof  r

i regarding BA model.

The characteristics of the di erence of  r
i between two weight conditions are similar to that of  a

i .

With almost every condition, the average value of  r
i is relatively larger than that of  a

i . Besides, Fig.

5.11b shows the average of  r
i about WS model. Similar to the results about  a

i , the average of  r
i in

WS model was lower compared to  r
i in BA model. About WS model, the value of  r

i is also slightly

larger than  a
i .
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(a) Averageof  a
i (BA model). (b) Averageof  a

i (WS model).

Fig. 5.10: Averageof envy-free amount index  a
i .

(a) Averageof  r
i (BA model). (b) Averageof  r

i (WS model).

Fig. 5.11: Averageof envy-free round index  r
i .
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Standard deviation of each index over agents

Thestandard deviationof  a
i over agentsisshown inFig. 5.12. Fig. 5.12ashowsthestandard deviation

of  a
i in BA model. Thestandard deviationof  a

i with envy weight wasrelatively lower than  a
i without

envy weight. Fig. 5.12b shows the standard deviation of  a
i in WS model. By comparing Fig. 5.12b

with Fig. 5.12a, thedeviation of  a
i in WSmodel isclearly lower than that in BA model. Thestandard

deviation of  a
i with envy weight wasalso lower than  a

i without envy weight in WSmodel. However,

the di erence of the standard deviation of  a
i of two conditions in WS model was smaller than that

of BA model. Therefore, although themagnitudeof improvement is di erent according to BA model

and WSmodel, thematching with lower standard deviation of  a
i wasdiscovered by using envy weight

for both models.

Fig. 5.13showsthestandarddeviationof  r
i amongagents. Fig. 5.13ashowsthestandarddeviation

of  r
i in BA model. Asshown in Fig. 5.13a,  r

i in BA model demonstrated similar characteristicsof  a
i

shown in Fig. 5.12a. There is no large di  erence between the values of  a
i and  r

i . Fig. 5.13b shows

the standard deviation of  r
i in WS model. As well as BA model, the characteristics of the standard

deviation of  r
i shown in Fig. 5.13b isalmost similar to that of  a

i demonstrated in Fig. 5.12b. Hence,

as well as  a
i , thematching with lower standard deviation of  r

i was found by applying envy weight in

thecirculation problem.
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(a) Standard deviation of  a
i (BA model). (b) Standard deviation of  a

i (WS model).

Fig. 5.12: Standard deviation of envy-free amount index  a
i .

(a) Standard deviation of  r
i (BA model). (b) Standard deviation of  r

i (WS model).

Fig. 5.13: Standard deviation of envy-free round index  r
i .
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5.4.3 Discussions

Regarding weight conditions, envy weight contributed to improve both  a
i and  r

i mainly in terms of

variance of the indices over agents for both BA model and WS model. By integrating envy weight

into theminimum cost circulation problem, envy among agents can bereduced in resource allocation

determined as matching compared to matching obtained without considering envy weight. However,

the magnitude of di  erence in each index between two weight conditions is not so large especially

regarding  a
i . Since the proposed circulation problem determines matching maximizing e ciency of

resourceutilization of agents, thecirculation problem with envy weight demonstrates theexistenceof

matching that representsresourceallocation improving fairnesswhilemaximizinge ciency. Because

our proposed approach to  nd matching is heuristics, considering theoretical bounds for the value of

each index is an interesting future topic.

Comparing  a
i with  r

i , the average of each index demonstrates the di  erence in both BA model

and WS model. Results indicate the average of  r
i is relatively larger than the average of  a

i . Thus,

prosumerswill feel larger envy with  r
i asametricof equity compared to  a

i at least by usingconditions

in Table5.3. Simulation experimentswith additional parameter conditions will giveus more insights

about thedi erence in  a
i and  r

i .

The standard deviation of  a
i and  r

i , on the other hand, does not demonstrate a large di erence

between  a
i and  r

i for eachof BA model andWSmodel. Theseresultsindicatethat bothof thematching

determined with two weight conditionshavealmost thesameperformanceabout thevarianceof envy

among agents. Regarding the results of BA model with those of WS model, the results indicate that

the di erence of envy over prosumers in BA model might be larger than that of WS model since the

standard deviation of  a
i and  r

i in BA model is greater than WS model. Therefore, the structure of a

social network might also a ect thesizeof envy for each prosumer.
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5.5 Summary of thischapter

This chapter proposed model deals with resource sharing among agents representing prosumers. To

evaluateenvy-freenessfor resourcesharingamongagentsinasocial network, weproposedtwoindices:

envy-free amount index and envy-free round index. Simulation results demonstrated theenvy among

agentsisreduced by using theproposedminimumcost circulation problem and theconditionof weight

onarcsina ow network for theproblem. Additionally, thesimulationresultsdemonstrated that agents

will face the di erent magnitude of unfairness in each index of envy. Although the concept of envy-

freeness for resourcesharing wasproposed in thischapter, morerealistic datasetsof electricity should

beused in simulation experiments to obtain practical insightsabout thebene ts of prosumers.
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Chapter 6

Concludingremarks

6.1 Conclusion

The results of studies on four problems contextualize the objective of this thesis, which is to analyze

consumers’ bene ts in electricity markets to consider successful mechanisms. Regarding Problem

1, concepts of graph theory were utilized to propose market models for electricity markets, which

represent both bene ts of participants and constraints on supply and demand. A market model to

represent deregulated electricity markets was presented for Problem 2, and this study explained the

relationship between the bene ts of participants and electricity prices in energy trading. About

Problem 3, consumers’ switching behavior was modeled as an evolutionary game. The results

demonstrated that both thenetwork structureand theexistenceof consumersactiveto switch suppliers

becomeimportant factors to promoteswitching behavior. Furthermore, in theresourcesharing model

presented for Problem 4, envy-freenesswasutilized asoneof themetricsof electricity sharing among

prosumers.

Considering theaboveexamplesof results, themarket modelspresented in thisthesisdemonstrated

several insights about consumers’ bene ts in liberalized electricity markets. Therefore, these models

are expected to contribute to providing insights for considering and examining market mechanisms

that will be developed in the transformation of electricity markets from now on. The advanced

understanding of the bene ts of consumers will contribute to decision making by both supply-side

and demand-side of themarkets.
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6.2 Limitationsand futureworks

The proposed modeling techniques have several limitations regarding the detailed characteristics of

electricity marketsthat havenot currently been integrated into themodels. Toenhancetheapplicability

of themodelsfor real-world problemsand obtain sophisticated insightsfrom themodels, thefollowing

topics are left as future works.

1. Usingdatasetsabout electricity production and consumption in experiments:

To construct more realistic electricity market models and validate the models e ectively, ex-

periments should use datasets of production and consumption of electricity. Many modeling

teamshavetraditionally restrictedaccessfor dataabout electricity productionanddemand [105].

Fortunately, there has been the movement toward opening up energy related data for improv-

ing reproducibility and transparency of energy modeling research recently [106]. Open Power

System Data is a platform of power data (including conventional and renewable plants) for

electricity system researchers [107]. Besides, Renewable.ninja provides simulation data about

the hourly output of worldwide solar and wind generation plants [108]. Regarding consumers’

behavioral data, however, havebeen still treated asclosed datasinceactual behavioral dataabout

consumers can be considered as sensitive data [109]. Thus, it is important to consider what

kindsof dataare available to improve the insights obtained from themodels.

2. Consideringdetailed time intervalsin time-varyingelectricity trading:

Regarding Problem 3 and 4, detailed time intervals in time-varying trading models should be

de ned to clarify the characteristics of electricity markets that the models represent. Focal

points will be di  erent according to the size of the time intervals represented by the models

(e.g. hourly, daily, monthly, and yearly basis) [110]. For instance, short-term time intervals

mainly focusonaspectsregardingcontrolson supply and demand inevery second, minute, hour,

etc. Besides, long-term time intervals can be utilized for planning over a few months about

generation combination, legislation, and so on.
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3. Integratingmultiple factorsof theutility of consumers:

Although the utility function in this thesis only considers electricity charges as the factor of

consumers’ utility, the other factors should be considered in the utility function according to

future transitionsof electricity markets. Especially, it is inevitable to address theenvironmental

concerns regarding electricity generation and consumption worldwide for sustainable develop-

ment. Moreover, sincechoices for consumers in electricity marketsmight increase and change,

novel factors of theutility will beenabled by new market mechanisms in the future.

4. Increasingthenumber of nodesin network models:

For all of the four problems presented in this thesis, expanding scales of the market models is

important since the number of nodes used in the simulation experiments is considered to be

smaller than that in the real world. For thispurpose, algorithms to determine trading should be

improved to solve larger sizes of problems e ectively.

5. Assumingheterogeneousswitchingcostsof consumers:

Regarding themodel for analyzing the switching behavior of consumers for Problem 3, adding

heterogeneity of switching costs of consumers might provide additional insights about the

behavior of consumers. This topic requires extensive numerical experiments since the number

of patterns in parameter conditionswill considerably increase if consumers’ switching costsare

heterogeneous.

6. Addingdynamical transitionsof electricity prices:

Adjusting prices in the market model for Problem 3 and Problem 4 will demonstrate more

practical information than current models. Sinceelectricity pricesareassumed tobe xed in the

proposed modelsin thisthesis, market modelsshouldbeextended toallow changesinelectricity

prices.
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Appendix A

Convergenceof consumers’ strategiesin algorithmsfor

Problem 3

In theprocess of theevolutionary game for Problem 3 explained in Chapter 4, strategies of all buyers

will converge to D. Weshow theconvergence of thestrategies as follows.

Lemma 1 Each buyer bj will eventually discover only indi  erent sellers after a su cient number of

iterations if Xj and preference relation of bj over si do not change.

Proof: Suppose bj can  nd a preferred seller at every iteration. For iteration t (t = 1, 2, ...), let

at 1
j ∈Xj betheseller from which bj purchaseselectricity at iteration t  1. bj can divide Xj into two

subsets: theset of preferred sellers P t
j = {sk | µj (sk)  µj (at 1

j ) > ε} and theset of indi erent sellers

I t
j = Xj \ P t

j (P t
j ∩I t

j =  ). For only bj ∈Bt
C, bj conducts the search for new alternatives at line 3

and 8 of Algorithm 3. For bj with both C and D, bj compares its current alternative with the other

alternatives suggested by theother buyers at line3, 5, 9, and 15 of Algorithm 4.

Therelationship between I t
j , P t

j , and I t+1
j can beexplained asfollows. In thisproof, it isassumed

that bj can  nd preferred seller every iteration t. In this case, for at 1
j discovered at t  1 and

at
j (at

j " at 1
j ) found at t, the following condition must besatis ed.

µj (a
t
j )  µj (a

t 1
j ) > ε. (A1.1)

Let P t
j = {sm ∈Xj | µj (sm)  µj (at 1

j ) > ε} and I t
j = {sm ∈Xj | µj (sm)  µj (at 1

j )  ε} . The

relationship between P t
j and I t

j can be represented as P t
j ∪I t

j = Xj and P t
j ∩I t

j =  . Thus, at
j is

contained in either P t
j or I t

j . When condition (A1.1) is satis ed, at
j ∈P t

j .

Weshow that I t
j ⊂I t+1

j if (A1.1) issatis ed. In other words, weexplain sm ∈I t+1
j if sm ∈I t

j .
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Since I t
j = {sm ∈Xj | µj (sm)  µj (at 1

j )  ε} , µj (sm)  µj (at 1
j )  ε. Therefore,

µj (sm)  µj (a
t 1
j ) + ε. (A1.2)

Moreover, because I t+1
j = {sm ∈Xj | µj (sm)  µj (at

j )  ε} , µj (sm)  µj (at
j )  ε. Thus,

µj (sm)  µj (a
t
j ) + ε. (A1.3)

Furthermore, by (A1.1),

µj (at 1
j ) + ε< µj (at

j ). (A1.4)

Since ε 0, even by adding εto right sideof (A1.4), the following condition issatis ed.

µj (at 1
j ) + ε< µj (at

j ) + ε. (A1.5)

By (A1.2) and (A1.5),

µj (sm)  µj (at 1
j ) + ε< µj (at

j ) + ε. (A1.6)

Condition (A1.6) means µj (sm) satis es (A1.3) if µj (sm) satis es (A1.2). Thus, if sm ∈I t
j based

on (A1.2), sm ∈I t+1
j is also satis ed based on (A1.3). Therefore, I t

j ⊂I t+1
j .

Because at
j ∈P t

j , at
j ! I t

j . Furthermore, since I t
j ⊂I t+1

j and at
j ! I t

j , at
j ∈(I t+1

j \ I t
j ). Let

sq ∈(I t+1
j \ I t

j ). Since sq ∈I t+1
j , µj (sq)  µj (at

j )  ε. Moreover, since sq ! I t
j , sq ∈P t

j . Hence,

(I t+1
j \ I t

j ) can bedenoted as follows by using sq.

(I t+1
j \ I t

j ) = {sq | µj (sq)  µj (at
j )  ε, sq ∈P t

j } .

Therefore, weobtain the following relationship between I t+1
j and I t

j .

I t+1
j = I t

j ∪(I t+1
j \ I t

j ),

= I t
j ∪{sq | µj (sq)  µj (a

t
j )  ε, sq ∈P t

j } .
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In thecomparison of sellers, bj can  nd apreferred seller sk only if compared seller sk iscontained

in P t
j . For at 1

j discovered at t  1, if seller sk (sk ∈Xj ) chosen at t isapreferred seller, the following

condition is satis ed based on condition (4.1) in Chapter 4.

µj (sk)  µj (at 1
j ) > ε.

Theset of preferred seller sk over at 1
j is denoted by P t

j = {sk ∈Xj | µj (sk)  µj (at 1
j ) > ε} .

at
j at the start of Algorithm 4 can be considered as follows to clarify the relationship between

Algorithm 4 and P t
j .

• If σt 1
j = D :

at
j = at 1

j at thestart of Algorithm 4 sinceat
j is initially set asat

j = at 1
j at line12, Algorithm 2.

• If σt 1
j = C :

If bj ∈Bt
C, Algorithm 3 will beexecuted at line9, Algorithm 2. At iteration t, at

j is initially set

as at
j = at 1

j at line1, Algorithm 3. However, if sm(sm ∈Xj, sm " at 1
j ) satisfying

µj (sm)  µj (a
t
j ) > ε(at

j = at 1
j ) (A1.7)

was discovered as a result of Algorithm 3, at
j = sm. Therefore, at

j = at 1
j or at

j = sm at the start

of Algorithm 4.

As described above, at
j = at 1

j or at
j = sm at the start of Algorithm 4. We will show preferred

seller sk ∈Xj over at
j is contained in P t

j in each case of at
j = at 1

j or at
j = sm as follows.

• If at
j = at 1

j :

If sk ∈Xj satis es the following condition, sk ∈P t
j .

µj (sk)  µj (a
t 1
j ) > ε. (A1.8)
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• If at
j = sm :

Let sk ∈Xj beaseller satisfying the following condition.

µj (sk)  µj (sm) > ε.(sm ∈Xj, sm " at 1
j ) (A1.9)

Since µj (sk) > µj (sm) + εby (A1.9) and ε 0, the following condition is satis ed.

µj (sk) > µj (sm). (A1.10)

By subtracting µj (at 1
j ) from both sides of (A1.10),

µj (sk)  µj (a
t 1
j ) > µj (sm)  µj (a

t 1
j ). (A1.11)

Condition (A1.7) indicates that

µj (sm)  µj (a
t 1
j ) > ε. (A1.12)

By (A1.11) and (A1.12),

µj (sk)  µj (a
t 1
j ) > µj (sm)  µj (a

t 1
j ) > ε. (A1.13)

Therefore, the relationship between µj (sk) and µj (at 1
j ) can bedenoted as

µj (sk)  µj (a
t 1
j ) > ε. (A1.14)

Because (A1.14) is thesameas (A1.8), theseconditions indicate sk ∈P t
j .

Based on the conditions described above, we will show that preferred sellers contained in P t
j in

line3, 5, 9, and 15 of Algorithm 4.
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• line3, Algorithm 4 (σt 1
j = C, σt 1

i = C)

bj regards at
i ∈Xj asapreferred seller if at

i satis es µj (at
i )  µj (at

j ) > ε, which is thecondition

of line 3. Since σt 1
j = C, at

j satis es at
j = at 1

j or at
j = sm(sm " at 1

j ). If at
j = at 1

j , since the

condition of line3 is identical to µj (at
i )  µj (at 1

j ) > ε, it becomesthesameas(A1.8). Besides,

if at
j = sm, thecondition of line3 can bedescribed as µj (at

i )  µj (sm) > ε. Let at
i = sk, and the

condition of line3 is identical to (A1.10) in thiscase. Thus, at
i ∈P t

j if thecondition of line3 is

satis ed.

• line5, Algorithm 4 (σt 1
j = C, σt 1

i = C)

bi regards at
j ∈Xi as apreferred seller if at

j satis es µi (at
j )  µi (at

i ) > ε, which is thecondition

of line 5. Since σt 1
i = C, at

i satis es at
i = at 1

i or at
i = sm(sm " at 1

i ). If at
i = at 1

i , since the

condition of line5 is identical to µi (at
j )  µi (at 1

i ) > ε, it becomesthesameas(A1.8). Besides,

if at
i = sm, the condition of line 5 can be described as µi (at

j )  µi (sm) > ε. Let at
j = sk, and

the condition of line 5 is identical to (A1.10). Therefore, at
j ∈P t

i if the condition of line 5 is

satis ed.

• line9, Algorithm 4 (σt 1
j = C, σt 1

i = D)

bj regards at
i ∈ Xj as a preferred seller if at

i satis es µj (at
i )  µj (at

j ) > ε, which is the

condition of line 9. Since σt 1
j = D, at

j = at 1
j . Because the condition in line 9 is identical to

µj (at
i )  µj (at 1

j ) > ε, at
i ∈P t

j as thesameas condition (A1.8).

• line15, Algorithm 4 (σt 1
j = D, σt 1

i = C)

bi regards at
j ∈Xi as apreferred seller if at

j satis es µi (at
j )  µi (at

i ) > ε, which is thecondition

of line 15. Since σt 1
i = D, at

i = at 1
i . Because the condition in line 15 is identical to

µi (at
j )  µi (at 1

i ) > ε, at
j ∈P t

i as thesameas condition (A1.8).

Otherwise, bj discovers sk ∈I t
j , which is an indi  erent seller. The following discussion is based

on the iteration t at which thecondition |P t
j | > 0 issatis ed. Let at

j ∈Xj beaseller chosen by bj at t.

For iteration t + 1, I t+1
j can be de ned as I t+1

j = {sm | µj (sm)  µj (at
j )  ε} . For I t

j , P t
j , and I t+1

j ,

I t+1
j = I t

j ∪{sq | µj (sq)  µj (at
j )  ε, sq ∈P t

j } . Sinceat
j isat least contained in I t+1

j , thesizeof I t+1
j

will be denoted by |I t+1
j |  |I t

j | + 1. Adversely, |P t+1
j |  |P t

j |  1 because P t+1
j = {sk | S \ I t+1

j } .

Thus, |P t
j | decreases at every iteration. Since |P t

j | is  nite, there must be an iteration u that satis es

|Pu
j | = 0 after the su ciently large number of iterations. However, this contradicts the assumption

since there must be sk ∈Pu
j in thesearch of bj according to theassumption.  
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Lemma 2 With  xed Xj and preference relation of bj over si , |Bt
C| becomes 0 if I t

j steadily enlarges.

Proof: Let usexplain bj must reach iteration t at which bj can only  nd at
k ∈I t

j . Asexplained above,

I t
j increases if at

j is updated due to the discovery of preferred seller in P t
j . From the assumption of

Lemma1, |Xj | is  xed. Moreover, P t
j ∪I t

j = Xj , and P t
j ∩I t

j =  . Thus, P t
j decreases if I t

j increases.

If I t
j continues increasing,  nally I t

j becomes I t
j = Xj . In thiscase, bj must discover only at

j ∈I t
j in

Algorithm 3 and Algorithm 4.

However, even if I t
j " Xj , bj can reach the situation in which bj only  nd at

j ∈I t
j . In this case,

I t
j does not increase. Thus, Algorithm 2 can terminate without satisfying I t

j = Xj . Besides, by the

assumption of Lemma 1, ci is  xed for all si ∈Xj . Hence, µj (si ) is also  xed. Thus, if si ∈I t
j at t,

there is no iteration t′at which si ∈P t′

j after t. Therefore, bj must reach the iteration t at which bj

can only  nd at
k ∈I t

j .

We show that ρ(bj ) < 0 only if σt
j = C. As described in line 26 of Algorithm 2, the de nition of

ρ(bj ) isas follows.

ρ(bj ) = µj (a
t
j )  γt

j + r t
j . (A2.1)

Since µj (at
j )  0, r t

j  0, and γt
j  0, (A2.1) becomes ρ(bj ) < 0 only if γt

j > 0.

• If σt
j = C :

By line10 of Algorithm 2, γt
j > 0. By (A2.1), ρ(bj ) can be ρ(bj ) < 0.

• If σt
j = D :

By line13 of Algorithm 2, γt
j = 0. By (A2.1), if σt

j = D, ρ(bj ) must satisfy ρ(bj )  0.

Therefore, ρ(bj ) < 0 is satis ed only if σt
j = C.
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Next, weshow that ρ(bj ) < 0 if bj can only  nd at
j ∈I t

j at t. At iteration t, if bj  nd only at
j ∈I t

j ,

at
j = at 1

j in Algorithm 3 and Algorithm 4. In this case, µj (at
j ) = 0. Moreover, because Ψt

j =  in

Algorithm 2 and Algorithm 4 in this case, the procedures of line 18-23 of Algorithm 2 will not be

executed. Therefore, r t
j = 0. Furthermore, since σt

j = C, γt
j > 0 according to line10 of Algorithm 2.

By (A2.1), ρ(bj ) < 0. Therefore, for bj with σt
j = C,  nally ρ(bj ) < 0.

Finally, let us consider the transition of σt
j in the situation where ρ(bj ) < 0 for all bj ∈Bt

C. σt
j is

determined after theprocess from line28 to line41 of Algorithm 2.

• If ρmax < 0 :

Since ρmax < 0, for bj and all buyer bk adjacent to bj , ρ(bj ) < 0, ρ(bk) < 0. Thus, σt
j = C and

σt
k = C. σt

j will bechanged to σt
j = D by line29-31, Algorithm 2.

• If ρmax  0 :

σt
j will be determined to either C or D according to the condition of line 35-37 of Algorithm

2. Since ρ(bj ) < 0 for bj with σt
j = C, σt

m = D for bm with ρmax  0. Because ρ(bj ) < 0 and

σt
m = D, theconditionsof line35, 36 of Algorithm 2 aresatis ed. Thus, strategy of bj becomes

σt
j = D in this case.

As described above, sinceall buyer bj ∈Bt
C  nally decide σt

m = D,  nally |Bt
C| = 0.  
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Theorem 1 After su ciently large number of iterations, all buyer bj ∈B eventually choose σt
j = D

at an iteration t if Xj and preference relation of bj over si do not change.

Proof: Suppose |Bt
C| > 0 at every iteration t. As shown in Lemma 1, bj ∈B can only  nd si ∈I t

j

after asu cient number of iterations. For bj ∈Bt
C, µ(bj ) = 0 since si ∈P t

j cannot be found.

Suggestion conducted by bj cannot be succeeded because any other bk ∈B do not have si ∈P t
j .

Asdescribed above, at
j ∈P t

i holds if each of conditions in line5 and 15 of Algorithm 4 ismet. Then,

at
j will be added to Ψt

i in line6 and 16 in Algorithm 4. Similarly, at
i ∈P t

j holds if each of conditions

in line3 and 9 of Algorithm 4 ismet. at
i will beadded to Ψt

j in line4 and 10 in Algorithm 4.

Conversely, conditionsof line5 and 15 in Algorithm 4 arenot met if at
j ∈I t

i . Sinceno seller will

be added to Ψt
i in this case, Ψt

i =  . Likewise, conditions of line 3 and 9 in Algorithm 4 are not met

if at
j ∈I t

j . Becauseno seller will be added to Ψt
j in this case, Ψt

j =  .

If P t
j =  for bj , Ψt

j =  as described abovesince I t
j = Xj and at

j ∈I t
i . The condition of line18

in Algorithm 2 is not met in this condition. Therefore, line 19 of Algorithm 2 will not be reached in

thiscase.

Hence, r t
j = 0, and ρ(bj ) =  γt

j . Therefore, ρ(bj ) < 0. Considers the following two cases divided

according to |Bt
D |.

Case1. |Bt
D | " 0:

Both of strategies C and D remain at any iteration t in this case. For bk ∈Bt
D, ρ(bk)  0 since

r t
k = 0 due to σt

k = D. Thus, for bj ∈Bt
C and bk ∈Bt

D, ρ(bk) > ρ(bj ). As described in line 29-31

in Algorithm 2, bj changeσt
j from C to D. Hence, |Bt

C|  nally becomeszero at an iteration t. This

contradicts theassumption.

Case2. |Bt
D | = 0:

In thiscase, all buyerschoosestrategy C at any iteration. Since|Bt
C| = |B|, ρ(bj ) < 0and ρ(bk) < 0

for any pair of buyers bj, bk ∈Bt
C. As described in line 29-31 in Algorithm 2, bj ∈Bt

C change σt
j

from C to D if ρ(bj ) < 0. Thus, |Bt
C|  nally becomes zero at an iteration t. This contradicts the

assumption.  
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