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Chapter 1

Introduction

This chapter provides the introduction of the studies presented in this thesis. Firstly, backgrounds
regarding the recent transformation of electricity markets will be explained. Secondly, research
objectives of the studies will be presented. Finally, problems addressed in this thesis are presented

after introducing research fields related to the studies.

1.1 Backgrounds

For a long time, many countries have vertically integrated electricity markets for ensuring a stable
supply of electricity. In the vertically integrated electricity markets, a limited number of power
companies have conducted generation, transmission, and retail of electricity. Nevertheless, those
electricity markets with centralized structure mainly have issues on electricity charges and services
offered by the suppliers [1, 2]. First, consumers cannot recognize whether current electricity charges
are appropriate or not since they do not have any suppliers for the comparison. Second, electricity
suppliers do not seem to actively improve their services since no competition occurs among a limited
number of suppliers.

Structural transformation in electricity markets has emerged in many countries to ameliorate
the services in electricity markets. As the first step of the transformation, traditionally centralized
electricity markets have been deregulated and divided into several sectors. The deregulation aims at
the participation of various electricity suppliers in the markets and enhancing competition among the
suppliers. Electricity retail markets have been gradually liberalized to provide consumers with choices
among electricity suppliers. As described above, power companies provide electricity to consumers at

relatively higher charges due to no competition among the companies. Recently, many countries have



deregulated their electricity markets to offer lower charges to consumers. For instance, the Japanese
government has gradually deregulated their electricity markets. The deregulation has allowed various
companies to enter electricity retail for all consumers in Japan since 2016.

As modernization of power grids, smart grids have been considered to increase reliability, re-
siliency, sustainability, and energy efficiency by using advanced metering and communication tech-
nologies [3]. The anticipated smart grid benefits are improving power reliability and quality, accom-
modating distributed power sources, improving resilience to disruption by natural disasters, and so on.
Bidirectional power flow realized in smart grids might transforms the structure of electricity markets
than ever. The expected benefits of smart grids in terms of consumers are (i) to provide consumers
with actionable and timely information about consumers’ energy usage and (ii) to increase consumers’
choice and enable new products, services, and markets [3].

From the consumers’ viewpoint, the roles of consumers in electricity markets have been greatly
changed with the transformation. In traditionally centralized electricity markets, consumers do not
have any alternatives to their electricity suppliers. After the deregulation of centralized electricity
markets, on the other hand, consumers will have alternatives for their electricity suppliers. Moreover,
consumers will possibly have chances to provide surplus electricity to its neighbors in future smart
grids. Thus, consumers’ choices are not only purchasing electricity from suppliers but also providing

surplus electricity to others in the future.

1.2 Research objective

Although new types of trading will be available in the transformation of electricity markets, liber-
alization might pose issues regarding consumers’ viewpoints. Consumers do not necessarily act in
liberalized electricity markets as expected. For instance, many consumers have not switched their
suppliers in many countries though consumers can choose electricity suppliers after the deregulation
of electricity retail [4]. This trend might not lead to reduce electricity charges even though relatively
lower charges is one of the expected outcomes of the deregulation. Besides, if consumers will not
actively participate in electricity sharing markets in smart grids similar to the cases in electricity
retail, mechanisms for electricity sharing might also fail since active participation of end-users is an
inevitable factor for the success of resource sharing [5, 6]. Characteristics regarding the deregulated
markets should be examined carefully to avoid causing large impacts to society such as California

electricity crisis in 2001 [7].



The objective of the studies presented in this thesis is to analyze consumers’ benefits in electricity
markets to consider successful market mechanisms. These studies provide opportunities to understand
consumers’ benefits and provide insights for the mechanism design of electricity markets. These studies
clarify the benefits of consumers about their decision in electricity trading. An example of insights is
information about the decision making of consumers in electricity markets. One of the applications
of these studies is a tool for the “proof of concept” of operations regarding electricity markets. For
electricity suppliers, the tool can be used to check the effects on the settings of their electricity services.
Besides, for policymakers such as governments or public offices, the tool gives insights to understand

the characteristics of consumers such as their benefits, behaviors, etc.

1.3 Related works

Mechanisms for electricity markets require consideration in many factors such as engineering, eco-
nomics, social and political aspects. Since electricity markets have transformed into a more complex
style than ever, many kinds of problems must be addressed to provide desirable benefits for consumers.

This section introduces related studies on the problems as an overview of research fields.

Managing production and demand of electricity

Matching production and demand for electricity in a particular time interval is inevitable to avoid power
failure. These kinds of problems must be solved to continuously provide electricity to consumers
as infrastructure for their daily life. Thus, managing production and demand is the fundamental
constraints on electricity provided in electricity markets.

To determine electricity distribution according to constraints on production and demand, mathe-
matical modeling techniques such as linear programming are utilized. For instance, Georgiou presents
a mixed integer linear programming model for the long-term energy planning of power systems in
[8]. Regarding deregulated electricity markets, Sen et al. introduce algorithms for multi-objective

optimization about transmission line congestion, line loss, and price volatility [9].

Integrating energy storage to realize stable supply of electricity

Production from renewable energy cannot be controlled since the amounts of electricity production

depend on uncertain conditions such as wind, solar, wave, and so on. Energy storage might facilitate



this problem since energy storage can offset the gap between production and demand. Although a
number of energy storage technologies have already been available, they need more advancements
than ever since energy storage for electricity markets requires large-scale capacity [10].

Researchers propose models to assess the way to integrate energy storage systems into electricity
networks. Babrowski et al. introduce a model to analyze the allocation and amount of energy storage
systems required in Germany considering transmission from renewable energy supply to the storage
systems [11]. Velik er al. present an architecture for managing prosumers’ PV systems and battery

storage in microgrids [12].

Designing mechanisms for electricity markets

Electricity markets require mechanisms to match suppliers and consumers by economic perspectives
in addition to methods for distribution of electricity. Hence, mechanism design becomes an important
process to realize successful electricity markets. In addition to consideration of the characteristics of
electricity described above, economic aspects are involved in the mechanism design.

There are a variety of mechanisms for each type of electricity market. A typical example is
auction mechanisms to determine electricity trading by adjusting electricity prices based on rules of
the auction. Karaca et al. introduce a game theoretic approach to examine auction mechanisms for
electricity markets to realize truthful bids and prevent strategic manipulations by participants [13].
Another example is the mechanism of Demand Response (DR), which mainly aims at reducing peak

demand. In [14], Reka et al. propose a DR scheme for smart grids using game theory.

Forecasting production and demand of electricity

Demand forecasting will become more complex after the deregulation of electricity markets. For in-
stance, DR might increase difficulty in forecasting demand [15]. Furthermore, forecasting is inevitable
to utilize renewable energy since production from renewable energy is considered to be uncontrol-
lable as noted above. Hence, forecasting technologies become crucial for the successful utilization of
demand participation and renewable energy. These technologies are also related to the mechanism
design of markets.

Regarding renewable energy, forecasting models are examined for each type of energy source. In
[16], Bacher er al. present a method for online forecasting of production from PV systems based on

data collected from PV systems on rooftops in Denmark. Wang et al. present a review of forecasting



models of wind power in [17]. Reikard ef al. present test results about the accuracy of forecasting

models for ocean wave energy [18].

Analyzing characteristics of participants in electricity markets

The characteristics of participants are one of the crucial factors to design mechanisms for electricity
markets. Regarding supply side, technologies for forecasting production are used for a stable supply
of electricity. Similarly, mechanism design must address the characteristics of consumers at demand
side. The insights of characteristics of consumers will improve the quality of mechanisms to induce
desirable actions from demand side.

To examine consumers’ behaviors, many studies consider modeling techniques about bounded
rationality, which explains behaviors that do not aim at maximizing benefits [19]. For electricity
consumers, Ruiz et al. [20] present a game theoretical model to investigate the effects of consumers’
switching costs on competition of suppliers. Besides, Biglaiser et al. analyze the benefits of suppliers

in a model where consumers have heterogeneous switching costs [21].

1.4 Problem statement

This thesis focuses on problems in modeling techniques for analyzing consumers’ benefits in liberalized
electricity markets. Behavior and decision of demand-side are equally or even more important
than supply-side to deploy new technology even though many related studies have mainly focused
on technology and cost-effectiveness of supply-side [22]. If proposed methods in this thesis can
obtain insights about consumers’ benefits, the insights will contribute to the effective mechanism
design of electricity markets since consumers demonstrate vital roles in liberalized electricity markets.
Moreover, methods to analyze the characteristics of consumers can be applied for both improving
current situations and examining future novel mechanisms of electricity markets. This thesis deals

with the following four problems about the analysis of consumers’ benefits.

Problem 1. Constructing a modeling framework for electricity trading

Structure of electricity markets has became complex after liberalization. Especially, the networked
structure will become important aspect since deregulation increases the number of participants in

electricity networks. For extensive analysis of benefits for consumers in electricity trading, this thesis



proposes a mathematical modeling framework. This approach is applied to electricity market models

for Problem 2, Problem 3, and Problem 4.

Problem 2. Representing electricity trading in deregulated electricity markets

This problem aims at modeling participants in deregulated electricity markets to examine the benefits of
them. Since there are multiple types of participants in the deregulated electricity markets, combinations
of electricity trading among participants increase than ever. This thesis focuses on representing
the deregulation of electricity retail since this kind of deregulation is closely related to electricity
consumers. This problem is the first application of the model considered in Problem 1 for modeling

benefits, prices, and trading of market participants.

Problem 3. Examining switching behavior of consumers in electricity retail

As the third problem, this thesis proposes a market model focusing on switching costs to analyze the
behavior of consumers in electricity retail markets. Enhanced understanding of the switching behavior
is crucial to improve the switching rate of consumers in electricity retail. Electricity retail markets in
many countries see inactive switching behavior, which means the action of consumers to change their
supplier. This topic aims at providing insights for promoting the switching behavior of consumers by
modeling consumers’ decision making. This approach is different from that in Problem 2 since the

model in Problem 2 does not focus on the behavior of each participant.

Problem 4. Describing fairness among prosumers in electricity sharing

The fourth problem defines fairness measures for time-varying electricity sharing to decrease envy
among prosumers about their allocation of electricity. This study examines electricity trading among
prosumers, which has roles varying between suppliers or consumers from time to time. Electricity
consumers do not necessarily act to maximize their benefits as considered in Problem 3. This problem
focuses on envy-freeness, which is one of the fairness measures for resource allocation. This measure
is selected since it is considered to be important even for irrational consumers. Since this problem
deals with the time-varying roles of prosumers, this problem is considered to be a successor for

Problem 2.



1.5 Thesis structure

The remaining chapters of this thesis are structured as follows. Chapter 2 presents mathematical
modeling techniques for Problem 1 to represent electricity markets using graph theory. Chapter 3
proposes a market model to describe the benefits of participants in deregulated electricity markets for
Problem 2. Chapter 4 introduces a model about Problem 3, which is to analyze the switching behavior
of consumers. Chapter 5 introduces a model to examine envy-free allocation in electricity sharing
among consumers for Problem 4. Chapter 6 concludes this thesis and future works regarding this

study.



Chapter 2

Constructing a modeling framework for electricity

trading

This chapter introduces a mathematical modeling framework about trading in electricity markets for
Problem 1. Firstly, related works about mathematical modeling are introduced. Secondly, the proposed

mathematical modeling framework for electricity markets is explained.

2.1 Related works

2.1.1 Overview of mathematical modeling

Mathematical modeling is a fundamental concept to describe a real-world problem as a mathematical
problem and to acquire a solution for the real-world problem [23]. In [24], Meerschaert explains the
process of mathematical modeling can be described as 5 step method. The 5 step method includes the
following steps.

Step 1. Focus on a real-world problem

Step 2. Define a mathematical model from the real-world problem

Step 3. Formulate an optimization problem on the mathematical model

Step 4. Solve the optimization problem

Step 5. Consider the relation between the results and the real-world problem

In this process, Step 5 is the most important step since the result of the formulated mathematical
problem cannot be considered for the real-world problem without Step 5.
One of the key objectives of mathematical modeling is to consider the characteristics of the real-

world problem. However, because the real-world problem is complex in many cases, all characteristics

8



cannot be included in a solvable mathematical problem. Hence, proposed mathematical models should

focus on the limited number of characteristics of the real-world problem.

2.1.2 Research fields related to mathematical modeling

Electricity market models presented in this thesis are composed of several approaches used in Op-
erations Research (OR). As a research field to support appropriate decision making, OR deals with
mathematical modeling techniques for decision making in many industries. Mathematical modeling
in OR utilizes approaches proposed in various study areas: combinatorial optimization, graph theory,
game theory, economics, etc. The rest of this section introduces an overview of the main research

fields related to mathematical models proposed in this thesis.

Combinatorial optimization

Many real-world problems can be formulated as abstract combinatorial optimization problems [25].
The combinatorial optimization problem is described as a problem to select optimal elements in a set.
The feasibility of computation for the problems is dependent on their search space. If a problem has a
large search space, relatively longer computation time is required to obtain an optimal solution. Hence,
the time complexity is important concepts to consider the computational efficiency of algorithms for

combinatorial optimization [26].

Graph theory

Graph theory is one of the mathematical modeling techniques to solve problems. In graph theory, a
graph is denoted by a set of vertices and edges. Many combinatorial optimization problems can be
modeled and solved by graph theoretic approaches such as network flows, matching, and so on [27].
The complex structure and characteristics of electrical power networks have been represented and
analyzed by using graph theory [28, 29]. In addition to the applications for conventional electricity
grids, graph theory has been applied to methods for controlling future smart grids [30].

Recent applications on graph theory have focused on dynamical changes of the graph structure
even though graph theory has originally dealt with the static structure of graphs. Temporal network
theory appeared as an application of graph theory. The temporal network theory integrates time series
of graph structure into classical graph theory [31]. Temporal network is also known as Time-Varying

Graph (TVG) [32]. In studies about social networks, connections of vertices in a graph are focused on



examining the characteristics of interactions among vertices (e.g. propagation of information, rumor,
epidemic, and so on [33].

Regarding algorithms to solve problems about graphs, machine learning techniques have been
adopted to improve the performance of the algorithms. In [34], Dai ef al. introduce reinforcement
learning is utilized to design algorithms to solve graph problems. He er al. propose a learning
mechanism to improve branch-and-bound for mixed integer programs [35]. Although these studies
improve the performance of algorithms for graph problems, machine learning techniques in these
studies do not describe how real-world problems can be represented by graph problems. This thesis

mainly focuses on the description of real-world problems using graph theory.

Game theory

Game theory analyzes the strategy of individuals in a situation where multiple players interact with
each other. In [36], the concept of game theory is explained as follows; “game theory studies situations
of competition and cooperation between several involved parties by using mathematical methods.” A
popular example of game theory is called prisoners’ dilemma. This game can be utilized to consider
the possible outcomes of each prisoner’s strategy (either cooperation or defect) by examining each
prisoner’s benefit determined by the combination of the strategies. Besides, evolutionary game theory
is considered as an extension of game theory [36]. An evolutionary game mainly focuses on the
player’s population in dynamical systems. For example, the transition of the share of strategy in the

overall population is investigated by the techniques of evolutionary game theory.

Agent-based modeling

In agent-based modeling (ABM), a model of the real world is described by the set of autonomous
agents and interaction between them [37, 38, 39, 40]. By conducting simulations with ABM, the
behavior of a modeled system can be observed. One of the advantages of ABM simulations is the
observation for emergent behavior in a model [41]. As a consequence of micro interactions between
agents in a model, some macro features of the model are revealed by ABM simulations. Hence,
the ABM simulations are used as a complement for analytical methods traditionally used to analyze
real-world problems. If temporal networks and evolutionary games are mainly utilized to model
interactions of individuals, they might be considered as ABM.

Reinforcement learning in multi-agent simulation is expected to discover adaptive solutions for

10



problems that have uncertainty. However, although an agent learns appropriate actions against the
environment, the environment is dependent on other agents’ actions [42]. Hence, agents are more dif-
ficult to achieve better actions by reinforcement learning techniques through multi-agent environment

compared to reinforcement learning with a single agent.

Social and economic network

Social and economics network is a relatively new research field to investigate economic behavior in
a network representing a market [43]. This theory is also called network market [44]. Compared
to microeconomics, network market has one simple advantage; a typical market network is assumed
in a problem of network market. Ordinary microeconomics assumes an anonymous network as a
market. However, this assumption cannot match with the actual environment of markets. Hence,
network market is better in terms of the utilization of the market structure compared to the anonymous
network. This type of research field is also known as Agent-based Computational Economics (ACE)

[45].

Matching and buyer-seller network

In 1962, Gale and Shapley discussed stable marriage problem and college admissions problem in
[46]. The stable marriage problem is a classic problem of matching, and this type of matching is
classified into one-to-one matching; moreover, when the number of elements is the same on both sides
of matching, the matching is called perfect matching. An objective of the college admissions problem
is the construction of the matching between colleges and students. Colleges can accommodate some
students, and, on the other hand, students must be linked to only one college; thus, this type of matching
is called many-to-one matching [47]. Thus, matching has variation according to modeling targets.
Matching market is a method for constructing the matching between sellers and buyers in a
networked market with a pricing mechanism [44, 48]. By changing the prices offered by sellers in
a market model, demand of buyers in the model is changed, and the optimal distribution of sellers’
items is realized if the prices of sellers are appropriate for buyers’ demand for the items. The network
structure used in matching market can be described as a buyer-seller network that is discussed in
[49, 50]. The utilization of buyer-seller network provides two advantages. First, a buyer can choose
a seller independently based on its evaluation to the seller, this is practical for the use in real markets

because the markets do not ever have the central coordination of the choice of buyers. Second, the

11



efficiency of the market can be examined by social welfare, which is the total of utilities of all market

participants [51].

2.2 Mathematical modeling framework based on graph theory

This section explains concepts for mathematical modeling of electricity markets. After explaining the
basic notation of graph theory, this section proposes a modeling framework for electricity markets.
Though this section proposes concepts of the framework, detailed notation specialized for each problem

of this thesis is defined in subsequent chapters.

2.2.1 Fundamental concepts of graph theory
Undirected and directed graph

An undirected graph G consists of two sets: node set N and edge set E. G can be represented by
G = (N, E). Nodes are also called vertices. Every edge in E exists between two nodes in N. For
instance, when E contains an edge between two nodes v and w, this edge can be denoted by (v, w) or
(w, v). Both (v, w) and (w, v) represent the same edge because every edge in E has no direction. Fig.
2.1a shows an example of undirected graph G. In this Fig., an edge between v; and v4 is denoted by
(01, v4) Or (v4, V7).

A directed graph H is composed of a node set N and an arc set A. H is represented by H = (N, A).
An arc in A can be considered as a directed edge in H. An arc from v to w is represented as (v, w).
Adversely, (w, v) denotes an arc with the direction opposite to (v, w). Fig. 2.1b is an example of

directed graph H. In Fig. 2.1b, an arrow between v4 and v, represents an arc (vg, v7).

(O8] Vg
(a) Undirected graph. (b) Directed graph.

Fig. 2.1: Example of undirected graph and directed graph.
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(a) Undirected path (v;-ve path). (b) Directed path (v2-vs path).

Fig. 2.2: An undirected path and a directed path.

Path

In an undirected graph, a path is a sequence of edges. A path represents a route from the start node
to the terminal node. In the sequence of edges of a path, the same node must appear only once. If a
path has the start node s and the terminal node 7, the path is called s-f path. In Fig. 2.2a, v;-ve path
(v — v — v4 — V3 — U5 — Vg) is denoted by the dotted line. Of course, the number of v,-vg paths in the
graph shown in Fig. 2.2a is not necessarily only one. For example, a path v, — v4 — v3 — vg is also
U2-ve path. On the other hand, there is no v;-ve path in the directed graph in Fig. 2.2b since no path

can reach vg from v;.

Degree

In graph theory, degree indicates the number of edges connected to a node. For undirected graphs,
degree of node v is simply denoted by deg(v). About a directed graph, two types of degree can be
considered: in-degree and out-degree. For example, deg;,(v) indicates in-degree of node v. Besides,

deg,u:(v) denotes out-degree of node v.

Multipartite graph

A multipartite graph is a graph that consists of n partite sets of nodes [52]. For instance, for node set N
of multipartite graph G, there are node sets V; (i = 1,2, 3, ..., n) that satisfy N = NJUN, UN3U...UN,,.
There is no edge between two nodes which belong to the same partite set of nodes. Hence, v and w
must belong to the different type of node set each other about an arc (v, w) in a multipartite graph.

A bipartite graph has two types of node sets since a bipartite graph is a multipartite graph in which
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(a) Undirected bipartite graph. (b) Directed bipartite graph.

Fig. 2.3: An undirected bipartite graph and a directed bipartite graph.

n = 2. For example, let N, and N;, be two node sets of a bipartite graph. The bipartite graph has nodes
a; € N, (i = 1,2,..,|Ny|) and b; € N, (j = 1,2,...,|Np|). Thus, an undirected bipartite graph has
edges represented by (a;, bj) or (b, a;). Examples of undirected bipartite graph and directed bipartite

graph are shown in Fig. 2.3.

2.2.2 Electricity market model represented by graphs

This thesis focuses on the following three aspects representing characteristics of trading in proposed
models of electricity markets.
1. Representing network structure among market participants:
As described in Section 1, the networked structure evolving after the deregulation of electricity
markets has become an important aspect. Using graph theoretical concepts, the market models
denote relationships of trading among participants in electricity markets.
2. Satisfying constraints on production and demand of electricity:
Production and demand of electricity must be balanced in electricity trading to realize a stable
supply of electricity to consumers. This thesis focuses on the constraints on the production and
demand of market participants.
3. Describing benefits for consumers in markets:
In the networked markets, consumers will face different benefits according to determined elec-
tricity trading since choices of consumers about suppliers increase than ever. Proposed market
models define the benefit of consumers from electricity trading in the networked structure

without violating the constraints on the production and demand of electricity.

The rest of this section presents mathematical modeling concepts for each aspect as the modeling

framework.
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(a) One-to-one matching. (b) Many-to-one matching.

Fig. 2.4: Examples of matching.

1. Matching in buyer-seller networks

The concept of matching is used for the first aspect of electricity markets. A bipartite graph in Fig.
2.4a is a one-to-one matching but not a perfect matching because one node in the black nodes is not
assigned to any node in the white nodes; oppositely, a graph in Fig. 2.4b is a perfect one-to-one
matching. By using the bipartite graph models of matchings, some researchers consider the matching
problems based on the methods of graph theory.

Even though both matching market and general economics deal with markets, matching market
does not use anonymous networks but given specified networks in which there are some buyers,
sellers, and links between them. Therefore, matching market shows how market participants affect
each other in the network that has the specified structure, and this attempt cannot be realized by general
economics using the anonymous networks. An ordinary method of matching market assumes that
sellers and buyers in a market deal with a single item, and an algorithm of matching market constructs

only perfect one-to-one matching.

2. Network flows

As the second aspect of electricity markets, network flow [53] can be utilized to determine resource
allocation in matching satisfying constraints on supply and demand of electricity. A directed graph
(V, A)is used in a network flow problem. Arc (v, w) € A is a directed edge from v to w (v, w € V).
x(v, w) represents a nonnegative value of flow on (v, w) € A. c¢(v, w) denotes weight on arc (v, w). The
cost of flow on arc (v, w) is calculated by x(v, w) - c(v, w). Fig. 2.5 shows the notation for the value of
flow x(v, w) between v and w.

A directed path is a set of arcs, which represents a route from the source to the sink in a graph.

The route of a path must not pass through the same nodes that are already visited in the path. o-t path
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z(v,w)

O—®

Fig. 2.5: Example of flow model on arc (v, w).

Fig. 2.6: A sample model with two o-7 paths.

means a path which has the source o and the sink 7. For instance, Fig. 2.6 shows a directed graph that
has two o-t paths.

The main goal of a network flow problem is to find flows on o-t paths to optimize objective
functions (e.g. maximizing amounts of flow, minimizing costs of flow, and so on). In a network flow
problem, flow x(v, w) must satisfy two constraints. One of the constraints is the capacity constraint
on every arc in A, and the other is the mass-balance constraint on every node in V. For the capacity
constraint, every arc (v, w) € A has capacity of flow x(v, w). Let ub(v, w) and [b(v, w) be upper bound

and lower bound of x(v, w), respectively. As the capacity constraint, x(v, w) must satisfy
[b(v,w) < x(v,w) < ub(v, w). 2.1

Besides, difference function d : V — R is utilized to define the mass-balance constraint. d(v)

describes difference in flow of input and output for v. d(v) is calculated by

d(v) = Z x(v, w) — Z x(w, v). (2.2)
{w:(v,w)eA} {w:(w,v)eA}

In general, mass-balance constraint means d(v) = 0 except source and sink since structure of
source and sink are different from the other nodes. let o and ¢ represent source and sink, respectively.

In terms of a source, d(0) must satisfy

d(o) = Z x(o,w) = 0> 0. 2.3)

{w:(o,w)eA}
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Table 2.1: Properties of a binary relation R.

Property ‘ Description

reflexivity (sk,sk) €R

irreflexivity (Sk, k) € R

symmety Sk Rs; = s;Rsy

asymmetry SgRs; = ;R sy,
transitivity sy Rs; and s;Rs,, = sk Rsy,
intransitivity | sgRs; and s;Rs,,;, = sgR sy,
completeness | (sg, ;) € Ror (57, 5) € R

Moreover, d(t) must satisfy

d(t) =0 - Z x(w, 1) < 0. 2.4)
{w:(w,)eA}
For example, in the directed graph shown in Fig. 2.6, (2.2) must be satisfied in d(v), d(w), and d(u).
Likewise, (2.3) and (2.4) must be satisfied in d(0) and d(¢), respectively.

3. Preference relation and utility function

The third aspect of electricity markets, which is to describe benefits for consumers, is represented
by using concepts of preference and utility. Preference relation describes preference of a market
participant over its alternatives to chose. For instance, let buyer b; choose seller s; based on preference
over its alternatives of sellers. b; is likely to choose an alternative that is more preferred than
the current seller. The preference of b; over every pair of alternatives s, s; € X; is expressed as
preference relation, which is based on binary relation. Binary relation R is a subset of Cartesian
product X; X X;. For si, 57 € X, let (sg, 1) € Xj X X; be a pair of alternatives. R can be denoted as
R = {(sk,51) | sk, 51 € Xj}. Let sgRs; be (sx, 51) € R, and 53R s; denote (sg, s;) € R. R has properties
shown in Table 2.1 based on (s, s;) contained in R. In Table 2.1, sy, sy, 5;, are alternatives arbitrarily
chosen from X;.

Utility function is used as a metric to represent the benefit of a participant in a model. For instance,
utility of buyer b; to choose alternative s; is calculated by a utility function yu; : X; — R. Utility
function and preference relation are related each other. Considering P and I over the same set X;,
preference relation is rational if P U I meets completeness and transitivity. Furthermore, if P U I

satisfies transitivity, each of P and / is also transitive. When preference relation is rational, preference
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relation can be defined by using utility function y; as follows.

skPsp & wi(sk) > wi(so).

Although p;(s;) might contain many types of factors to determine utility obtained from each
alternative, this thesis focuses on electricity charges as the factor of utility. Electricity is an almost
homogeneous product since the function of electricity does not differ with suppliers from consumers’
point of view [54, 55]. In general, the main factor for a comparison of homogeneous products is the
charge of products. The definition of utility function is also based on the charge of product in game
theory in some cases [56].

In addition to electricity charges, the other factors of consumers’ utility can also be considered

such as the environmental effects of energy sources, reliability of electricity supply, and so on.

* Rowlands et al. investigated several factors of consumers’ decision making about choosing
electricity suppliers [57]. Their results indicate consumers recognized electricity charges and
environmental effects as important factors. Some electricity consumers prefer renewable energy
due to its smaller environmental effects. Although consumers who prefer renewable energy are
possibly willing to pay higher costs than conventional plants, the consumers’ willingness to pay

for renewable energy differs across countries [58].

* Some consumers might feel anxious about the reliability of new retailers in the markets. The
consumers are willing to pay costs to avoid electric outages [59]. However, the reliability is
not different across retailers if divisions for managing stable electricity supply have not been

deregulated even after the liberalization of electricity retail (for example in Japan) [60].

Hence, this thesis assumes electricity charges are considered to be the common characteristics of
consumers’ utility compared to environmental effects and reliability described above. In other words,
this thesis mainly focuses on economic benefits in the definition of utility functions in proposed
electricity market models.

Utility function u;(s;) can be used to represent the concept of consumer surplus widely used in
microeconomics. Let v; represent reservation price, which is willingness to pay of b; for purchasing

electricity from s;. Besides, let p; be an electricity price offered by s; for one unit of electricity. If b;
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purchases d; units of electricity, u;(s;) is determined as follows in our modeling framework.
pi(si) = (vj = pi) dj. 2.5)

Using network flow, d; can be determined by the amount of flow between b; and s; in electricity
trading. Since the amount of network flow must satisfy constraints on production and demand of
electricity, network flow can be utilized to determine d; without violating the constraints on electricity
trading. Although utility functions defined in subsequent chapters are specialized for each problem,
the values given by the utility functions commonly represent the benefit of consumers in matching in

proposed market models.

2.3 Summary of this chapter

This chapter introduces a mathematical modeling framework to represent trading in electricity markets
as an extension of the concept of matching market. By using concepts of graph theory, relationships
about trading among market participants (e.g. suppliers, consumers) can be described. Network
flow can denote the quantity of supply and demand of electricity in trading. Furthermore, as a
method considered in social and economic networks, utility function can describe the benefits of each
participant in electricity trading. This chapter explains the concepts of the modeling framework, and
solutions for Problem 2, Problem 3, and Problem 4 are considered in the subsequent chapters based

on the proposed modeling framework.
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Chapter 3

Representing electricity trading in deregulated

electricity markets

This chapter introduces a mathematical modeling technique regarding Problem 2. In this chapter, the
mathematical modeling framework proposed will be utilized for describing consumers’ benefits in

deregulated electricity markets.

3.1 Introduction

3.1.1 Literature review

Numerous studies have been conducted to consider modeling techniques for deregulated electricity
markets [61, 62]. Grine et al. present a multi-layer model to consider electricity prices with another
energy commodity [63]. Triki et al. consider an optimal capacity allocation problem to maximize
profits of electricity sellers [64]. Hussein et al. formulate an optimization problem for forecasting
prices in day-ahead electricity markets [65]. Corchero et al. present a stochastic programming model
for the Spanish electricity market [66].

Moreover, there are various studies on efficiency, which means the optimal allocation of the
electricity with appropriate prices [67]. Efficiency can be measured by social welfare that is the sum
of payoffs of all market participants [68]. Stern et al. consider the relation between market clearing
price mechanisms and the maximization of social welfare in deregulated electricity markets [69].
Mechanism designs to maximize social welfare in double-sided electricity markets are presented in
[70, 71]. Nicolaisen et al. propose a price setting problem in a double-price auction for wholesale

markets by implementing a reinforcement learning algorithm [72]. Swami considers social welfare
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maximization with considering congestion of transmission lines [51]. As one of the research topics on
market efficiency, network market based on graph theory is proposed in [49]. This model is considered
to be more realistic than anonymous networks because actual trades occur between participants that
can interact with each other. Since electricity trades also take place between participants connected
by transmission lines, we proposed an algorithm to find optimal matchings in an electricity market
model based on network market [73].

However, the previous works have not focused on electricity retailers, because the previous market
models contain only suppliers and consumers, not a retailer. In [74], Babic notes advantages of an
agent-based modeling technique for electricity retail markets; however, no characteristics regarding
retailers are demonstrated in the thesis. To model activities of retailers in network markets, Blume
et al. considers optimal price setting on a tripartite graph by utilizing a game theoretical approach
[75]. However, the method cannot deal with a multi-unit commodity such as electricity because
it is assumed that participants trade only a single-unit commodity. Besides, Nava introduces the
competition model utilizing network flows in oligopolistic markets [76]. Although the model of Nava
can cope with participants including retailers dealing with multi-unit commodities, the model cannot
be applied to electricity markets because the roles of participants in electricity markets are determined

before equilibrium prices are discovered.

3.1.2 Contribution

This thesis proposes a sequential solution method to determine prices and efficient trades in an
electricity market model with electricity retailers. In this thesis, we formulated a determination
problem for efficient electricity trades on a model with electricity as a multi-unit commodity, not a
single-unit commodity. To solve the problem, we constructed the sequential solution method to choose
electricity trades in the market model. In our solution method, a price setting algorithm extended
from a price setting mechanism proposed in [75]. Moreover, to determine electricity trades on the
model, a determination problem is formulated by utilizing integer programming and unsplittable
flow [77]. Simulation results demonstrate the characteristics in deregulated electricity markets about
efficiency in terms of social welfare and payoff allocation of each market participant. Although the
simulation results about efficiency are similar to the result presented in [78], the parameter conditions
about capacity of electricity sellers are different in this thesis. Moreover, the results regarding payoff

allocation indicate that important factors for the payoff allocation are the market structure and the
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period of time having elapsed since the deregulation.

3.2 Electricity market model with agents

This section introduces our electricity market model based on graph theory. The model denotes three

types of agents and electricity trades conducted between them.

3.2.1 Tripartite network representing electricity markets

Our electricity market model is represented by tripartite network G = (SU BU T, A). Fig. 3.1 shows

an example of G. G is composed of three types of agents: buyer b; € B, seller s; € S, and trader

Fig. 3.1: Tripartite network G composed of agents.

ty € T. Each arc indicates that agents at endpoints of the arc can conduct electricity trades between

them. Arc set A contains arcs (s;, t) or (#, b;) due to following three constraints.

1. Each arc connects two agents not belonging to the same type of agents.
2. bj must be provided electricity from #;.

3. t; must purchase electricity from s;.

3.2.2 Notation of electricity flow on market model

In the model, each seller has a capacity of electricity, and each buyer has a demand of electricity. The
capacity of s; and the demand of b; are denoted by ¢ and djl? respectively. Let cpin be the minimum
capacity of all ¢/, and let dy;, be the minimum demand of all b;. Since a seller in our model can
supply electricity to at least one buyer via a trader, i, must satisfy ¢min = dmin.

To denote electricity trades in the model, the notation of network flow is utilized. Integer x(b, a) is

the quantity of electricity flow on arc (b, a). Lower bound and upper bound of x(b, a) are represented
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Ib(a,b)/ub(a,b)

Fig. 3.4: Flow constraints on arcs in G.

by [b(b, a) and ub(b, a), respectively. If x(b,a) > 0, electricity currents on (b, a); otherwise, there is
no electricity flow on (b, a).

In addition, unsplittable flow is utilized to avoid determining complicated electricity trades satis-
fying the demand of a buyer. In Fig. 3.2 and 3.3, solid arcs represent electricity flow to satisfy dé’ .
Electricity flow in Fig. 3.2 is considered as splittable flow. The type of flow in Fig. 3.3 is called
unsplittable flow. Only one s,-b3 path is selected as unsplittable flow, and splittable flow adversely
needs a larger number of arcs than unsplittable flow. Hence, our model uses unsplittable flow to
determine electricity trades with a simple structure.

Unsplittable flow is realized by flow constraints on the model. s; can supply electricity flow
up to ¢;. There is no electricity flow if s; does not trade any electricity. Hence, [b(s;, tx) = 0, and
ub(s;, ty) = c;. Besides, b; purchases d; units of electricity, and flow constraints on (#, b;) are denoted

by Ib(ty, b;) = djl.’ and ub(t, b;) = djl.’. Fig. 3.4 indicates these capacity constraints.

3.3 Price setting game on market model

Agents in the model have property called valuation and payoff. The property is utilized in mechanisms

for determining efficient electricity trades.
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ﬂk: O, j »: Bid price offer
I:'|> : Ask price offer

Fig. 3.5: Ask and bid prices.

3.3.1 Valuation and trade value

Electricity prices offered by traders are determined by a price setting game. Each seller and buyer in
the model has valuation, which describes the utility for trading one unit of electricity. vj’.’ indicates the
valuation of b; for purchasing one unit of electricity. v denotes the valuation of s; for supplying one

unit of electricity. The sets of each valuation are defined by
Vg = {vls | s; € S,v] > 0},Vb = {v;’ | bj € B,vf7 >0}.

Electricity trades occur between seller s; and buyer b; via trader 7. About the electricity trades
among them, each agent obtains payoff. The total of the payoff regarding the trade is called trade
value. Since we assume that costs for supplying electricity through arcs between s; and b; are zero

regardless of #;, trade value for djl? units of electricity is described by
wij = (vf — vls) dy. (3.1

When #; conducts a trade between b; and s;, 7; has its own strategy denoted by (ax.j, B,i). This
strategy consists of two types of prices called ask price ay ; and bid price By ;. t offers ay ; to b;
adjacent to #;. Besides, By ; is offered to s; adjacent to #;. In Fig. 3.5, t; offers ay ; to b; and Sy ; to
s;. Since there will be traders who lost money if g; > ay j, the strategy of 7 must be a no-crossing

strategy [19] represented by Bi; < ai ;.

3.3.2 Payoff of each participant

b; must purchase djl? units of electricity from one of the traders to satisfy its demand. The payoft of b;

for trading with #; can be denoted by the following utility function (7).

(o) = (o - ) . (32)

Since this chapter assumes each buyer purchases electricity from only one trader, the total payoff
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Fig. 3.6: Trade value and payoffs of agents.

of b; for purchasing electricity from #; is represented by

P (bj) = ,uj(tk). 3.3)

About sellers, s; is offered Sy, by #x. To provide electricity, s; will choose #; offering S ; that

maximizes payofl of s;. Payofl of s; for supplying dj’.’ units of electricity to b; through 7 is denoted by

p(sir (k. j)) = (Bri = v}) d} (3.4)

s; can provide electricity to one or more buyers if the total of demands do not exceed c;. Therefore, s;

can obtain the total payoff represented by

Ps)= > plsi(k ) (3.5)

(tr.b;)epair(s;)

where pair(s;) denotes the set of pairs of b; and #; provided electricity from s;.

tx obtains payoff for trading dj.’ units of electricity between s; and b;, which is denoted by

w1 G ) = (anj = Bri) d} - (3.6)

Let S(1) be the set of s; adjacent to f, and let B(#;) be the set of b; adjacent to ;. The total payoft of

tx is represented by

P(y) = Z i (tes (s J)) Xicij- 3.7

s; €S (1 ),bj €B(t)

Fig. 3.6 shows the relation between the trade value and payoffs of s;, ¢, and b;.
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Algorithm 1 Price setting (G, vg, vp, 1)

for j < 1to |B| do
if ladj(b;)| = 1 then
q(bj) =0.
else
Find §; with the minimum valuation 9.
g(bj) = (0 — 0.
while g(b;) = (uj? =03 A(s; # 8,07 2 07) do
Decrease q(bj).
end while
end if
end for
fori < 1to|S|do
if |adj(s;)| = 1 then
gq(si) = 0.
else
Find b 7 with the maximum valuation ﬁjl? .
q(si) = (87 = v)A.
while g(s;) = (67 — ) (b; # by, 67 < 07) do
Increase ¢g(s;).
end while
end if
end for
for k — 1to|T| do
return ay ; = uj? —q(bj) (b; € B(tx)).
return Sy ; = v7 + q(s;) (si € S(t)).
end for

3.4 Procedure to determine electricity trades

To determine electricity trades on the model, we propose a sequential solution method. The method
firstly calculates equilibrium electricity prices, and then the method determines electricity trades by

using the prices.

3.4.1 Price setting algorithm

Algorithm 1 shows a price setting algorithm that calculates equilibrium prices. In this algorithm, each
seller and buyer discovers its maximum payoff for trading electricity by considering the valuation of
the other agents. This algorithm is based on price setting mechanism explained in [75]. We extend
the algorithm to adjust payoffs of participants for ensuring no participant exclusively obtains larger
payoff than other agents.

The process of Algorithm 1 is as follows. First, each buyer b; € B calculates g(b;), which is the
payoff of b; for trading one unit of electricity. g(b;) is used to obtain ask prices a; ;. Foralla € SUB,

let adj(a) be the set of #; connected to a. If |adj(b;) = 1|, there is only one trader f; adjacent to b;.
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There is no competition between b; and #; in this case, and thus g(b;) = 0. If |adj(b;) > 1|, two or
more traders f; are connected to b;. Let §; be a seller adjacent to #; € adj(b;). §; has the valuation 0}
that is the minimum in the valuation of sellers adjacent to #; € adj(b;). In our price setting algorithm,
a real number A (0 < A < 0.5) is incorporated into the algorithm as a parameter that is used to adjust
payoffs of sellers and buyers. The range of A is set to realize the no-crossing strategy, explained in
Section 3.3.1. With this notation, g(b;) is firstly set as g(b;) = (vf — 07)A. Then, ¢(b;) is decreased
until g(b;) becomes equal to (vj.’ — 07)A, where §; # §; is one of the sellers adjacent to #; € adj(b;) and
has valuation ¢ > 97

Second, each seller s; € S determines g(s;), which is the payoff of s; for trading one unit of
electricity. By setting g(s;), bid prices S can be determined. The process to set g(s;) is similar to the
process to calculate g(b;). If |adj(s;) = 1], there is no competition between s; and #;, and g(s;) = 0.
If |adj(s;) > 1], let bAj be a seller adjacent to 7, € adj(s;), and 15j has the valuation ﬁf that is the
maximum in the valuation of buyers adjacent to #; € adj(s;). q(s;) is firstly set as g(s;) = (f)_;’ - ).
Then, ¢(s;) is increased until g(s;) becomes equal to (15}1.’ - v7)A, where b’j +b ; is one of the buyers
adjacent to 7; € adj(s;) and has valuation 15;’ < ﬁ}‘.’ .

Finally, ask price @y ; and bid price By ; of each trader #; are set based on ¢(b;) and g(s;) for all b;

and s;. These ask and bid prices finally determined are equilibrium prices on the market model.

3.4.2 Optimization problem for trade determination
Maximization of payoff for each trader

To determine electricity trades, each trader solves a maximization problem of payoft by using prices
calculated by Algorithm 1. In this problem, trades are greedily chosen by each trader to maximize
its payoff. This problem is formulated as an integer program similar to the generalized assignment
problem [80].

The maximization problem is formulated as follows. Let x;; ; € [0, 1] denote the electricity trades
on s;-b; path via ;. xi;; = 1 means electricity trades are conducted on the s;-b; path. Adversely,
trades on the s;-b; path is not conducted if x;;; = 0. The condition of network flow on the model

determines x; ;, and the condition is represented by

1 (x(sitk) >0 N x(tx, bj) > 0),
Xkij =
0 (x(si, Z‘k) =0 U x(t, bj) = 0).
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By using xi; ; and u(fx, (i, j)), the maximization problem of 7 is described as the following integer

program.

max P(1) = Z p(tks G ) X (3.3
SiES(Zk),bjEB(tk)

0 < xpij <1,
(s G ) =0,
Zb‘,-eB(tk) Xk.i,j djl.? < lev.

In (3.8), x;; = 1 means trades on s;-b; path are selected to maximize payoff of #.

Trades satisfying all capacity and demand

Even though every trader determines all trades by (3.8), demands for some sellers might exceed their
own capacity. This situation means some consumers cannot purchase electricity from a seller who
does not have enough capacity to satisfy all demands. Hence, electricity trades satisfying all capacity
and demand should be independently chosen from the electricity trades which each trader selected by
solving (3.8). To choose the electricity trades considering capacity, a maximization problem of social
welfare is utilized in this thesis.

To describe the maximization problem, a maximum unsplittable flow problem is utilized. In the
problem, bipartite network Gy; = (S U B, Ap;) is constructed. Arc set Ap; corresponds to the set of
possible trades x;. Thus, for all #; € T, Ay,; contains (s;, b;) if x;;; = 1 in (3.8). The capacity of flow
on (s;, b;) is denoted by 0 < x;; < 1. s; can supply flow up to ¢, and demand of flow of b; is dﬁ’

Finally, the following integer program gives W(x;) that is the maximum social welfare on Gy,.

max W(x,) = Z Xi jWi,j- (39)
(si,b;)€Abi

Xij 2 0,
Zsfeadj(b_i) Xij < L,

.. b s
ijeadj(si)xl,_/ dj < G -
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3.4.3 Overall procedure for trade determination

The overall procedure of our solution method to determine efficient trades is described in Procedure
1. First, equilibrium prices are calculated by Algorithm 1. Then, every trader discovers trades
maximizing payoff of the trader. After that, efficient trades x; will be determined in all trades that the

traders want to conduct. Finally, social welfare W(x;) can be calculated.

Procedure 1 trade determination

Input: G, vg, vp, A.
Output: W(x;), xs,.

Four steps of the procedure:

1. Price setting (G, Vg, Vp, A).
2. For all ., determine xy; ;(s; € S(#), b;j € B(tx)) by (3.8).
3. Construct Gp; by using xi; j(tx € T, s; € S,bj € B).

4. Obtain W(x;) and x; by solving (3.9) with Gy,.

3.5 Market participants assigned to model

By setting conditions of the network and agents in the model, four types of market participants can
be considered. Those participants can be utilized to reveal characteristics of deregulated electricity

markets.

3.5.1 Participants in deregulated electricity markets

In this thesis, a day-ahead electricity market is focused on as deregulated electricity markets. Prices
in the day-ahead markets are determined hourly or half hourly [81]. Participants supposed in this
thesis are classified into four types: the public utility, independent power producers, retailers, and

consumers. The participants are described by agents explained in Section 3.2.1.

1. Public utility (PU) conducts electricity generation and supply. The PU is a large firm that has

conducted generation and supply since the market was regulated. In the deregulated market, the
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PU can purchase electricity from another generator. The PU is denoted by a pair of seller and

trader.

2. Retailer (R) conducts electricity trades with consumers. A retailer is described by one pair of a

trader and a seller if the retailer has its own generator. Otherwise, one trader denotes a retailer.

3. Independent power producer (1P P) has its own generator to sell its electricity to customers. An

IPP is assigned to one of the sellers, and it can supply electricity to PU and retailers.

4. Consumer (C) is an end-user of electricity. A consumer purchases electricity from one of the

best suppliers connected to the consumer. The consumer is assigned to one of the buyers.

3.5.2 Constraints on network structure

To describe market participants, network G is constructed with following constraints. G has only
one PU, and PU is connected to all consumers in G since PU existed in an electricity market before
deregulation. The market model contains some IPP and retailers that have newly joined the market
after deregulation. For simplicity, the model contains the same number of IPP and retailers. Each IPP
is connected to all retailers and PU.

After the deregulation, a consumer cannot choose a retailer if the consumer does not know
the retailer. To describe this situation, R is connected to C with the probability represented by
prob(R,C) € (0, 1]. If prob(R, C) = 1, all arcs between retailers and a consumer are constructed. As
the time has elapsed since the deregulation, each consumer will increase the number of retailers which
the consumer know. Hence, long time has passed since the deregulation if prob(R, C) is high. Fig.
3.7 and Fig. 3.8 show example models with prob(R, C) = 0.2 and prob(R, C) = 0.8, respectively. In
these figures, R’ and R denote seller s; and trader #; of a retailer respectively. Besides, PU’ and PU

represent s; and #; of PU respectively in the figures.

3.5.3 Constraints on parameters of participants

The capacity of newly joining participants, such as IPP and retailers, is relatively lower than the
capacity of PU in deregulated electricity markets. The capacity of PU is enough to supply electricity
to all consumers since PU was responsible for electricity supply before deregulation. In this thesis,

capacity of sellers is set according to the following constraint.

Cr < cipp < Cpy- (3.10)
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Fig. 3.7: Sample model with prob(R,C) = 0.2.  Fig. 3.8: Sample model with prob(R, C) = 0.8.

With regard to valuation of sellers, newly joining participants have lower valuation than PU in this
thesis. This condition means newly joining participants can offer low-cost electricity than PU. Besides,
valuation of all buyers is fixed to the same value for simplicity. The valuation of buyers is enough to

purchase electricity from any sellers. Following constraint indicates the conditions described above.

VR < Urpp < Upy < Uc. (311)

3.5.4 Metrics indicating characteristics of markets

To evaluate trades determined by our method, two kinds of the metrics are considered in this thesis.

Efficiency rate

Although W(x;) is the maximum social welfare on Gy, W(x;) does not necessarily correspond to W(x)
that is the upper bound of social welfare on G. W(x) can be obtained by constructing bipartite network
G, = (SUB, A, from G. A, is the set of possible trades x on G.. If s; can trade with b; through
at least one trader in G, arc set Aj, contains an arc (s;, b;). With Gi,, the following integer program

gives W(x).

max W(X) = Z X, jWij (312)
(S[,bj)EA{)i

0<x;<1,
wj, j >0,
b s
ijeB Xi,j dj <¢-
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Table 3.1: Payoft of market participants and agents.

Participant H Agent ‘ Payoff of participant
PU s;and ty | P(PU) = P(s;) + P(ty).
R siand f | P(R) = P(si) + P(t).
IPP S P(IPP) = P(s;).
c b; P(C) = P(b;).

W (x;) is not necessarily the same as W(x) since the calculation of W(x) does not consider electricity
price setting. However, the difference between W (x;) and W(x) should be small to keep high efficiency.
Hence, the performance regarding efficiency of our sequential method can be evaluated by comparing
W (x;) with W(x). The comparison between W(x;) and W(x) can be conducted by examining Efficiency
Rate (ER), such that

ER(x;, x) = {W(x,)/W(x)} x 100 [%]. (3.13)

Payoff rate

In regulated electricity markets, PU is responsible for providing electricity to consumers. Hence, PU
exclusively obtains payoff for supplying electricity. On the other hand, payoff for providing electricity
is also allocated to newly joining market participants in deregulated electricity markets. Therefore, it
is important to analyze who can acquire how much payoff to trade electricity in deregulated electricity
markets.

In this thesis, Payoff Rate (PR) is utilized to indicate the rate of payoff of each participant in social
welfare. The payoff of each participant can be described by using the payoff of agents. Table 3.1
shows the relation between the payoff of each participant and agents. In Table 3.1, P(a) denotes payoft
of market participant a € (PU U RU IPP U C). PR for a is denoted by

PR(a) = {P(a)/W(x;)} x 100 [%]. (3.14)
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3.6 Experimental results

This section demonstrates simulation results of our sequential solution method. After simulation

conditions are introduced, results regarding efficiency rate and payoff rate are presented.

Table 3.2: Conditions of parameters in simulations.

Parameter ‘ Assigned value

# of agents

|S|=5 or 7, |T|=3 or 5, |B|=10,15, or 30.

# of participants (|S|=5)

PU: 1,R: 2, IPP: 2, C: 10, 15, or 30.

# of participants (|S]=7)

PU: 1,R: 4,1PP: 4, C: 10, 15, or 30.

4
i

20 for all b;.

vl (IS]=5) vy = 10,05 =403 =3,v; =9,v; =8.
vl (IS =7) vi = 10,05 =403 =3,y =2,0f =9,vf =8,v7 =7.
" &=,
pl 0.25
prob(R,C) 0.1,0.2,0.3,0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0.
Iteration 100

3.6.1 Conditions

For conducting simulations of trade determination, a simulation software for our model was developed
with Java and lp_solve, which is an integer programming solver. Simulation experiments were
conducted with the condition described in Table 3.2. In the simulations, we assumed that each
consumer has the unique demand of electricity. Hence, the index of each consumer is set as the
fixed demand of the consumer since the index is unique to each consumer. Since the model structure

depends on prob(R, C), 100 times of iterations for every prob(R, C) and CP were conducted.
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Table 3.3: Capacity pattern (|B| = 10, 15, 30).

El 10

ce [ 1 [2]3]4]s
PU [[55]55]55[55]55
PP || 3|6 | 13]27] 3

R 1|26 18] 69
El 15
ce [ 1 [ 2]3]4a]s

PU 120 | 120 | 120 | 120 | 120
I1PP 7 15 30 60 84

R 1] 4 [13] 40 [ e
1B | 30
ce [ 1 J2]3]47]s5

PU 465 | 465 | 465 | 465 | 465
IPP 29 58 116 | 232 | 328
R 5 17 51 155 | 268

In deregulated electricity markets, newly joining participants expands their capacity for electricity
supply as the time elapses. Hence, different types of capacity of newly joining participants were set
in the simulations. Table 3.3 shows Capacity Patterns (CP), which are the conditions of capacity
of each seller. CP 1 indicates newly joining participants do not have large capacity because not a
long period has elapsed since the start of deregulation. In CP 2, more periods of time have passed
after the deregulation than CP 1, and the difference of capacity between market participants became
smaller than CP 1. In CP 3, 4, and 5, newly joining participants got more capacity as the index of
CP increases. For all CP, capacity of PU is is equal to the total of all demands, and all consumer can

purchase electricity from PU as the worst choice.
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Table 3.4: Ask and bid prices obtained in a simulation.

Got) [ of | Bri
(PU’, PU) 10.00 | 10.00
(R, R1) 400 | 4.00
(R, R>) 3.00 | 3.00
(IPP,, PU) || 9.00 | 12.67
(IPPy, Ry) 9.00 | 12.67
(IPP,Ry) 9.00 | 12.67
(IPP,, PU) || 8.00 | 12.00
(IPPy, R)) 8.00 | 12.00
(IPPy, Ry) 8.00 | 12.00
(b)) || of | any
(R, C1) || 20.00 | 14.67
(R, C2) || 20.00 | 16.00
(R, Ca) || 20.00 | 16.00
(R, C7) || 20.00 | 14.67
(Ry, Cy) 20.00 | 16.00
(R1, Cio) || 20.00 | 16.00

3.6.2 Results and discussion

(tk, hj) H Ujl.; ‘ g, j
(PU, Cy) 20.00 | 14.67
(PU, Cy) 20.00 | 16.00
(PU, C3) 20.00 | 16.00
(PU, Cy) 20.00 | 16.00
(PU, Cs) 20.00 | 16.00
(PU, Cg) 20.00 | 16.00
(PU, Cq) 20.00 | 14.67
(PU, Cg) 20.00 | 16.00
(PU, Cy) 20.00 | 16.00
(PU, Cyp) 20.00 | 16.00

o [ o
(R, Cy) 20.00 | 14.67
(R, C3) 20.00 | 16.00
(R, Cs) 20.00 | 16.00
(R, Cg) 20.00 | 16.00
(Ry, C7) 20.00 | 14.67
(R, Cy) 20.00 | 16.00

Fig. 3.9: Determined trades on G.

Determined electricity trades

First, the result of one of the iterations is focused on to examine determined electricity trades. In this
result, prob(R, C) = 0.3, and CP 3 was selected. Table 3.4 represents ask and bid prices determined
by Algorithm 1. All bid price Bi; were more than valuation v;'. Moreover, all ask price @y, ; were less
than valuation vjl.’ . Based on the prices shown in Table 3.4, Procedure 1 determined electricity trades

x;. In Fig. 3.9, solid arcs denote trades x;, and dotted arcs show no electricity trades are conducted on

the arcs.
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Table 3.5: u(f, (i, j)) and w; ; of each determined trade.

Determined trade H ultx, G, ) H w, j ‘ djl-) H Wi, j df

R,—R, - C 11.67 17 [ 1 17
R -R -G 12.00 16 [ 2 32
R, —R,—C; 13.00 1713 51
R -R -C4 12.00 16 | 4 64
IPP — Ry — Cs 333 1|5 55
IPP,— PU -G 4.0 1216 72
IPP,— R, - G 2.67 1217 84
IPP| — Ry — Gy 333 11 ]38 88
PU’' - PU -Gy 6.00 10 |9 90
PU’' - PU - Cyo 6.00 10 | 10 || 100
W(x,) | 653

Participant | PR [%]
Cy 0.82
C 1.23
C3 1.84
Cy 2.45
Cs 3.06

Table 3.5 shows u (tk, (@, j)) and trade value w; ; for each determined trade. The first column at Table
3.5 represents determined trades described by the notation such as s; —#; — b;. Since u(#. (i, j)) > 0 for
all 7, no-crossing trades were conducted in this simulation. In terms of social welfare, W(x;) = 653.0,

and W(x) = 667.0. Therefore, ER(x;, x) = 97.9 % in this example. More detailed analysis on

Table 3.6: Payoff rate of each participant.

ER(x;, x) is presented in Section 3.6.2.

Table 3.6 shows PR of each participant in the simulation. As shown in Table 3.6, no participant
obtains zero payoffs and acquires a lot of payoffs exclusively. Allocation of PR of PU, IPP, and retailers
varied in each iteration since the number of trades that each participant involves in each iteration is

not the same as other iterations. In Section 3.6.2, PR is examined in more detail with other simulation

conditions.

Participant ‘ PR [%]

Cq 3.68
C7 5.72
Cg 4.90
Cy 5.51
Cio 6.13
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Participant

PR [%]

PU 21.13
R 11.03
R, 17.26

IPP, 7.30

IPP, 7.96
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Fig. 3.10: Average of efficiency rate (|S| = 5, |B| = 10).

Analysis regarding efficiency rate

Our sequential solution method demonstrated high ER in the simulation. Fig. 3.10 shows the average
of ER(x;, x) in the simulation with the model in which |S| = 5 and |B| = 10. In Fig. 3.10, the
horizontal axis denotes prob(R, C), and the vertical axis corresponds to the average of ER(x;, x) in
the simulation. The average of E R(x;, x) was larger than 90 % for all prob(R, C) and CP. This result
shows our solution method can be used to determine efficient trades of a multi-unit commodity such
as electricity.

For all CP, the average of ER became small as prob(R, C) increased. The reason for this decline
might relate to the number of possible trades on G. If prob(R, C) is high, each trader has a larger
number of possible trades on G. In this condition, however, demands of traders concentrate on
participants providing inexpensive electricity. Hence, our method determines trades satisfying all
capacity and demand, and this determined trades demonstrates relatively lower ER.

Regarding CP, high ER was obtained when the capacity of IPP and retailers is relatively lower
than PU. Adversely, ER became worse when the difference of capacity of participants became smaller.
Newly joining participants also have large capacity similar to PU with CP 5. Hence, many consumers

could purchase cheaper electricity from newly joining participants in the condition.
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Fig. 3.11: Payoft rate of each participants with each CP.

Analysis regarding payoff rate

The relation between payoff allocation and structure of market network were examined by investigating
PR of market participants. First, Fig. 3.11 shows simulation result about PR of each market participant
for each CP. In Fig. 3.11, the horizontal axis corresponds to the name of each participant, and the
vertical axis indicates PR of each participant. The parameters of G in this simulation were set to
|S| = 5,|B| = 10, and prob(R, C) = 0.5. Large part of PR was exclusively allocated to PU for CP 1.
For CP 2, PR of the PU decreased, and PR of newly joining participants increased. Furthermore, for
CP 3, PR was fairly allocated to market participants compared to other CP. However, large part of PR
was adversely allocated to retailers for CP 4 and 5. Hence, if the valuation of market participants has
been fixed to the same value, large part of PR is exclusively allocated to retailers obtaining enough

capacity to supply electricity.
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Fig. 3.13: Standard deviation of payoff rate (|S| = 7).

For examining the characteristics of PR with various structures of G, the standard deviation of
PR was analyzed. The standard deviation of PR indicates whether payoff allocation is fair or not.
For instance, large standard deviation means payoff is not allocated to participants evenly. Fig. 3.12
indicates the standard deviation of PR with |S| = 5. Each of Fig. 3.12 (a), (b), and (c) show the result
with the different setting of |B|. The horizontal axis denotes prob(R, C), and the vertical axis shows
the average of the standard deviation of PR in the 100 iterations. In terms of CP, Fig. 3.12 indicates
similar characteristics found in Fig. 3.11. The smallest standard deviation was obtained with CP 3,
and the standard deviation became high with CP 1 and CP 5.

With regard to the axis denoting prob(R, C), the number of buyers |B| affected variation of the
standard deviation. In Fig. 3.12 (a), the standard deviation varies widely as prob(R, C) increases.
The variation of the standard deviation in Fig. 3.12 (b) is smaller than that of Fig. 3.12 (a). Besides,
the standard deviation of Fig. 3.12 (c) almost remains stable. Hence, the dispersion of the standard
deviation of PR will become stable if the number of buyers increases.

Fig. 3.13 also demonstrated the characteristics shown in Fig. 3.12. Since |S| = 7 in Fig. 3.13, the
number of sellers is larger than that of Fig. 3.12. The standard deviation in Fig. 3.13 is smaller than
that in Fig. 3.12. These results indicate the variation of PR will decrease if there is a large number of

sellers in the model.
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3.7 Summary of this chapter

Regarding deregulated electricity markets, this chapter proposed a market model to describe the
benefits of market participants and a sequential solution method to determine efficient electricity trades
in the model. Social welfare and payoff allocation on the electricity market model were investigated
by conducting simulation experiments. About the consumers’ choice over suppliers in simulation,
however, demonstrated the difference compared to general situations of electricity retail markets since
simulation results indicated many consumers chose a supplier that is not the PU. Chapter 4 refines the
electricity market model for the analysis of the consumers’ choice of suppliers. Furthermore, Chapter
5 will integrate the concepts of the dynamical transition of production and consumption of electricity
into the market model since the model explained in this chapter only represents a static situation of

trading.
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Chapter 4

Examining switching behavior of consumers in

electricity retail

This chapter introduces a mathematical modeling technique regarding Problem 3. As a supplement
for this chapter, Appendix A explains the proof about the transition of the strategy of consumers in

algorithms presented in this chapter.

4.1 Introduction

4.1.1 Literature review

Many studies deal with analytical market models involving price competitions among suppliers with
consumers’ switching costs. Ruiz et al. [20] present a game theoretical model to investigate the effects
of consumers’ switching costs on competitions of suppliers. Ruiz’s model does not represent dynamic
interaction between market participants since the model has two suppliers and assumes two-stage
games. Biglaiser et al. analyze benefits of suppliers in a model where consumers have heterogeneous
switching costs [21]. Though Biglaiser’s model related to a model for deregulated markets since
Biglaiser’s model assumes incumbents and entrants, this model also assumes only two-stage games.
Rhodes proposes a dynamic model to examine the influence of switching costs on price competitions
and discuss switching costs can be beneficial for forward-looking consumers [82]. Consumers in real
electricity retail markets, however, are not assumed to be forward-looking because they do not tend to
switch their seller while lower charges are available.

As studies considering switching costs of consumers focusing on electricity markets, Giuletti et al.

propose a model to explain the difference in electricity prices observed in British electricity markets
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[55]. However, [55] considers only searching cost and does not focus on other kinds of switching
costs such as burden on consumers for switching their supplier. Ruiz er al. present a static model and
a dynamical model to determine the equilibrium of electricity prices to enhance consumers’ behavior
to switch electricity retailer [5S4]. Though Ruiz’s model considers switching behavior of consumers
by using network structure, the model does not assume interactions between consumers.

Related studies described above mainly focus on interactions among suppliers such as price
competition. Moreover, the related studies aim at promoting switching behavior of consumers by
changing charges. Nevertheless, if consumers are not active in terms of switching sellers, suppliers do
not seem to actively change their charges since the expected outcome by updating charges is obscure.
For promoting the switching behavior of consumers, this chapter focuses on interactions between
consumers under the situation where suppliers do not change their charges.

As studies dealing with the interaction between agents, evolutionary game theory has been used
for promoting cooperative strategies among agents. Notably, network structure where agents placed
is important aspects for investigating the transition of the strategies. For instance, scale-free networks
have degree distribution following a power law, which can be observed in real networks such as
the Internet, the network of acquaintance, and so on [83]. Durdn ef al. examine the evolution of
cooperation in evolutionary prisoner’s dilemma between agents on random graphs [84]. Lieberman
et al. introduce evolutionary graph theory, which deals with evolutionary dynamics of agents on
random graphs including scale-free networks [85]. Wu et al. explain that cooperation in a public
goods game was promoted by giving rewards or punishments to agents [86]. These studies cannot be
simply applied to express interaction among consumers in electricity markets since the characteristics

of cooperators and defectors are not defined for electricity markets.

4.1.2 Contribution

This section lists contributions of proposals regarding each topic presented in Chapter 1 as follows.

First, main contributions regarding Problem 3 are itemized below.

» To express the irrational behavior of consumers, this chapter focuses on two types of switching
costs: (i) effort at switching suppliers and (ii) searching costs. When a consumer switches suppliers,
an effort is needed to cancel the contract with the previous supplier, create a new contract with a
new supplier, and so on. Moreover, costs to search for information on alternatives such as their

charges are also required.
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* The preference of consumers over suppliers involving an effort at switching is modeled as pref-
erence relation with interval order [87]. The preference relation describes a situation where
consumers do not switch suppliers unless the benefit of switching is more significant than the
effort. Electricity charges offered by suppliers are also modeled based on Japanese electricity

retail markets to determine the preference relation of consumers.

* To describe interaction among consumers with searching costs, we propose an evolutionary game
on a network among consumers. The game expresses the dynamics of the share of two strategies
of consumers: searching alternatives actively (cooperators) and waiting for suggestions from the

other consumers (defectors).

 For promoting cooperation, this chapter focuses on giving rewards to consumers as compensation
for searching costs by referring to [86]. Although [86] shows that punishments are more effective
than rewards to promote cooperation, this thesis does not deal with punishments since it’s highly
unlikely that suppliers punish consumers. Simulation results of the evolutionary game show the

influence of rewards on cooperation and switching behavior.

4.2 Model representation

4.2.1 Bipartite graph denoting market participants

This section firstly defines consumer’s rational preference over suppliers as a simpler model than
irrational preference. The relationship between sellers and buyers in electricity market is modeled by
bipartite graph N (S U B, E). Seller s; € S (|S| > 2,i = 1,2,...,|S]) denotes an electricity supplier,
and buyer b; € B (j = 1,2,...,|B|) is a consumer. An edge between s; and b; is denoted by e(s;, b;).
b; can purchase electricity from s; if e(s;, b;) exists. N is a complete bipartite graph; therefore, b;
is connected to all seller s; € S. s; can be divided into two types: the incumbent and entrants. The
incumbent s; is a supplier that has provided electricity to buyers for a long time. Besides, the entrants
s; € S (i # 1) are suppliers newly entered into a market after the deregulation.

Our model represents the situation in which only one supplier s; provides electricity for all
consumers at the beginning. This is considered to be one of the features of electricity retail markets.
For a comparison, let us consider cellular phone services, which have similar characteristics compared

with electricity retail since the services have monthly charges and several alternatives that consumers
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can choose. The statistics regarding the share of careers in Japan indicate that the maximum share
was about 60% when cellular phones started to be used widely [88]. Thus, users of cellular phone
services had multiple choices from the beginning, and it is different from the feature of electricity
retail markets.

The combination of electricity trades on N can be denoted as matching M, which is a subset of E
based on graph theory. b; purchases electricity from only one seller s; since b; is assumed to avoid
complicated contracts with multiple s;. Conversely, s; can supply electricity to multiple b; and satisfy
all demand of b;. Hence, M can be called many-to-one matching that is similar to the model for a
college admission problem [89]. Let dy(b;) = {s; | s; € S, e(bj,s;) € E} be the neighbors of b; on
M. Besides, let 6y(s;) = {b; | b; € B, e(s;, b;) € E} denote neighbors of s; on M. Thus, dy(s;) and
om(b;) must satisfy 0 < [6p(s;)| < |B| and [op(b;)| = 1.

4.2.2 Preference relation

Buyer b; must choose only one alternative of seller s; € S to purchase electricity as a decision problem
of b;. This section defines rational preference relation that is simpler than irrational preference relation
presented in Section 4.3. Let X; C § be a set of alternatives for b;. X; contains s; if e(s;, b;) exists;
hence, X; is denoted by X; = {s; | e(s;, b;) € E}. Adversely, X; does not contain s; if e(s;, b;) ¢ E.
M is determined after all b; € B obtain the solution for their decision problem. Let a; € X; be an
alternative s; chosen by b;. M is represented by M = {e(a;, b;) | a; € Xj, b; € B}. The preference of
b; over every pair of alternatives sy, s; € X is expressed as preference relation explained in Chapter 2.

This chapter deals with two types of preference relation: strong preference relation and indifference
relation. Strong preference relation P contains (si, s;) if b; prefers si to s;. In other words, si is
recognized as a preferred seller compared with s; for b;. s;Ps; denotes P contains (sk, s;). P satisfies
irreflexivity and asymmetry. Indifference relation I contains (s, s;) if b; is indifferent to s and s;.
sils; means I € (sg, s7). If si1s;, both si Ps; and s;Psy; do not hold. 7 is an equivalence relation and

satisfies reflexivity and symmetry.

4.2.3 Utility function

Utility is a metric to represent the benefit of b; for choosing an alternative. Ultility of b; to choose
alternative s; is calculated by a utility function u; : X; — R. Utility function and preference relation

are related each other. Considering P and I over the same set X, preference relation is rational if
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Fig. 4.1: Example of u;(s;) for alternative sy, s, and s3.

P U I meets completeness and transitivity. Furthermore, if P U [ satisfies transitivity, each of P and
[ is also transitive. When preference relation is rational, preference relation can be defined by using

utility function y; as follows.

skPs; & wj(sk) > pji(s). 4.1)

Fig. 4.1 depicts an example of the relationship between a utility function and preference relation.
i (s;) gives different values over s;, and P is set based on u;(s;).

As described in Chapter 2, this thesis only considers electricity charge as the factor of utility
function. Let ¢; € R be the charge offered by seller s;. Moreover, let v; € R be valuation for
purchasing electricity by b;. v; is considered to be the budget of b; for purchasing electricity.
pj(si)(s; € X;)is defined as p(s;) = vj — ¢;. We assumed b; switches its present seller s; to alternative

s; if s;Ps;. If s;1s;, b; does not change its seller from s; to s;.

4.2.4 Electricity charge

Electricity charge is one of the factors to determine preference relation over s; by b;. Though many
types of service plans exist in Japan, this chapter considers the charges based on Meter-rate lighting
B, which is a common service plan offered by a retailer that formerly supplied electricity as a PU in
Japan. Let H denote the set of months; for instance, we focus on the months from September 2017
to August 2018 as H = {Sep.2017, Oct.2017, ..., Aug.2018}. Let ¢/" : H — R be the monthly charge
offered by s; at month 4 € H. c}"(h) is mainly composed of two factors: basic charge 8 and electricity
amount charge . Hence, c!"(h) = B+a. B € Ris a fixed charge determined by the amperes contracted
by buyers. Besides, @ € R varies based on electricity demand of each buyer. Let d; : H — R denote

the demand of b; at h. « have three tiered rate @, @, and @3 € R that are applied according to d;(h)
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Table 4.1: 8 and « offered by sellers.

‘ Si ‘ ‘ ﬂ ‘ ‘ [e3} ‘ [¢%) ‘ 3 ‘
S1 842.4 19.52 26 30.02
52 972 18.24 | 24.87 | 28.75

53 842.4 2324 | 2345 | 2593
S4 842.4 21.43 | 22.63 | 25.24
S5 842.4 20.76 | 22.62 | 2531
S6 842.4 19.52 | 2495 | 25.92
57 842.4 19.52 | 24.09 | 25.75
53 842.4 19.4 25.8 259
S9 842.4 19.43 | 24.81 | 25.99
S10 842.4 19.33 | 25.74 | 29.72

S11 800.28 18.54 24.7 28.51
S12 800.28 18.46 | 24.62 | 28.44
S13 780 18.07 | 24.07 | 27.79

S14 754.37 19.31 | 2433 | 27.21
S15 4212 24.03 | 24.03 | 24.03

St6 0 26 26 26
J— 450 I I I I I I I I I I I I I I I I
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Month
Fig. 4.2: Monthly electricity demand of consumers.
as follows.
a1d;(h) (dj(h) < 120),
@ =1120a; + azd;(h) (120 < d;(h) < 300),

120a; + 180as + aad;(h) (300 < d;(h)).

To consider a model of the charges, we picked up Japanese electricity retailers offering service
plans that are similar to Meter-rate lighting B. Table 4.1 shows the examples of 8 and «. Contracted
amperes are set to 30A to determine S since 30A is the most common contracted amperes in Japan. As
shown in Table 4.1, each seller offers different patterns of S and «. Since demand in the future cannot
be determined in advance, b; calculates c!"(h) by using d;(h) in the past. Fig. 4.2 shows the average
electricity demand of buyers in Japan from a report [90]. Fig. 4.2 indicates d;(h) varies month to

month, and ¢!"(h) is also assumed to become different by the variation of d;(h).
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Fig. 4.3: Monthly ranking of sellers based on monthly demand.

4.2.5 Buyer’s preference over sellers

Preference relation over s; is determined by the magnitude of ¢; as indicated by (4.1). To express
typical examples of preference relation, Fig. 4.3 shows the ranking of monthly charge c¢!"(h) (h € H)
calculated by using d;(h) shown in Fig. 4.2. The highest rank is given to s; offering the highest charge.
The ranking widely differs since d;(h) also differs month to month. Hence, preference relation is
difficult to decide based on the ranking of ¢!"(h).

To determine preference relation, we focused on the pattern of transitions of electricity de-
mand. Fig. 4.2 shows that the demand changing on an annual basis. The difference over months
is assumed to decrease by considering the total charge through a year. Let ¢! : H — R be
the annual total charge at month k € H. Furthermore, let H,(k) represent twelve months by
k. For instance, when k = Aug.2018, H,(Aug.2018) is defined as H,(Aug.2018) = {h |
h is a month from Sep. 2017 to Aug. 2018}. ¢{(k) is defined by

(k) = Z c"(h).
heHy (k)

Fig. 4.4 shows the ranking of sellers based on the total of charges through a year. The horizontal
axis shows month £, and the vertical axis indicates the ranking of sellers based on ¢{'(k). The difference
in ranking becomes not so large compared to Fig. 4.3. Let ¢; denote a charge offered by s;. We assume
bj uses the average of ¢{'(Sep.2017), ¢{(Oct.2017), ..., and c{'(Aug.2018) as ¢; to consider preference

relation over s; and p;(s;).
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Fig. 4.4: Monthly ranking of sellers based on annual demand.

The feature of electricity charges described above is not common compared with other homoge-
neous products such as gasoline, which is also an energy product [91]. Although charges for gasoline

are calculated based on demand, the calculation is not based on tiered rates in general.

4.3 Switching costs of buyers

4.3.1 Preference and utility considering switching costs

This section proposes a model to express irrational preference relation of consumers considering
switching costs. Considering the buyer’s effort at switching, b; might not change its current seller s;
even if b; has another alternative that offers a lower charge than s;. In this situation, for an alternative
sk € Xj, sgls; holds even if ¢ < ¢; and p;j(sx) > pj(s;). Nevertheless, sxPs; holds if the utility
obtained by switching is assumed to be larger than the effort. Regarding preference relation denoted
by (4.1), sils; holds only if ¢, = ¢; and pj(sk) = p;(s;). Thus, (4.1) cannot represent preference
relation considering the effort at switching.

To investigate the preference of buyers under switching costs, effort at switching should be ex-
amined into preference relation described by (4.1). This modification enables preference relation to
describe the situation in which transitivity of an indifference relation does not hold. For instance, for
Sk» 81, sm € Xj, let b; currently purchase electricity from sy, and each seller offers different charges. If
silsy, silsy, and s; Ps,, are satisfied, transitivity of I does not hold since s Ps,, is satisfied instead of

Silsy,.
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Fig. 4.5: Preference relation with 1;(s;) and &.

One of the methods to represent an indifference relation with intransitivity is an interval order
[87]. An interval order is an irreflexive binary relation and satisfies the following condition for

Sks SI Sm» Sn € Xj.

sgPs; and s,,Ps, = siPs, or s,,Ps;. “4.2)

In an interval order, a threshold to switch from s; by b; is integrated into the relationship between
a preference relation and utility function. Let function €; : X; = R denote the threshold. €;(s;)
indicates switching costs regarding effort at switching from s;. In this chapter, €;(s;) is assumed to
satisfy €;(s;) = € (¢ > 0,& € R) for all b; € B and s5; € X;. Thus, we use ¢ instead of €;(s;) in the
following discussion. The relationship between a preference relation and utility function in an interval

order is denoted as

skPs; &= pi(sk) — pj(s)) > e. 4.3)

Let b; currently purchase electricity from s;. Based on (4.3), b; switches its seller to sy if the difference
of utility between s, and s; is larger than &. Adversely, b; does not switch its seller if sy s; is satisfied
since p;(sx) — pj(s;) < e. Fig. 4.5 shows the relationship between a preference relation and utility
function in an interval order. In Fig. 4.5, preference relation has intransitivity of an indifference
relation since s,1s1, 53157, and s3Ps| are satisfied. Thus, preference relation based on utility functions

with the effort at switching can be defined by an interval order.

4.3.2 Cooperators and defectors among buyers

b; is assumed to switch its seller if (4.3) is satisfied as described in Section 4.3.1. However, b; cannot

switch its seller to any alternative if b; is not able to discover an alternative satisfying (4.3). Especially,
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b; needs searching cost, which are costs to search for information on alternatives and charges. b;
might not search any sellers if searching costs are considered to be higher for 5;, and b; cannot find
s; satisfying (4.3) contained in X;. In this situation, b; possibly expects the other buyers who had
already switched their seller to share the information about sellers. We define two strategies among

buyers as follows.

C: Exploring alternatives with searching cost

Strategy C (Cooperator) demonstrates cooperative activities. In addition to search for information
about alternatives, b; will suggest the alternative chosen by b; to the other buyers. b; with this
strategy will search for alternatives and decide whether b; should switch its seller or not based
on condition (4.3). This chapter analyzes the effect of rewards given by entrants to buyers for
enhancing cooperation even though the rewards are costs for entrants. Hence, cooperators who

induced switching behavior of buyers can gain rewards.

D: Avoiding searching cost without exploration

This strategy is called D (Defector) since b; might obtain beneficial information on alternatives as
a free-rider. Though b; with strategy D does not search for alternatives in person, b; can obtain
knowledge from other buyer by with strategy C. If an alternative suggested by b, meets (4.3), b;

will switch its seller without searching cost.

The interactions are conducted on graph G = (B, E’) where each edge in E’ represents a pair of
neighbors of buyers that can share information each other. Thus, after sharing information on graph
G, b; finally determines its seller on graph N. Since each buyer is assumed to interact with a limited
number of buyers, Barabasi-Albert (BA) model is used for G because BA model is utilized to represent
social networks in many studies [92]. In an algorithm to create G based on BA model, every newly

added vertex will be connected to the other m vertices already existed in G. BA model is a scale-free
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Fig. 4.7: Example of the initial assignment of strategy.

network in which each vertex has a different degree. Fig. 4.6 shows an example of G with |B| = 15

and m = 1. Dotted lines in Fig. 4.6 denote edges in E’.

4.4 Evolutionary game among buyers

4.4.1 Preliminaries

This section explains an evolutionary game using graph N and G to investigate transitions of strategies
of buyers occurring from time to time. Algorithm 2 shows the overall process of the game based on
an agent-based approach. Due to searching costs, b; chooses one of the two strategies C and D. Let
0']’. € {C, D} be the strategy chosen by b; at iteration ¢ in a game. Based on a']f. , B can be divided into

two subsets: B = {b; | b; € B, 0']‘. =C}and B}, = {b; | b; € B, 0']‘. = D}. X' = {0}, 0} }isa

IBI
set of strategies of b; € B at r.

The initial condition of X is denoted by X% X is determined by the initial assignment of the
strategy of buyers. Let the share of b; € Bl over B at iteration ¢ be denoted by 6, = |B|/|B].
denotes the initial share of strategy C. 6 is initialized according to either of two patterns: ascending
pattern and descending pattern. In ascending pattern, buyers are sorted by their degree with ascending
order. Adversely, buyers are sorted by their degree in descending order with descending pattern. C

will be set to the first 6% of buyers based on sorted order in each pattern. Fig. 4.7a and Fig. 4.7b

depict X in each pattern. Shadowed vertices denote b; € By, and the other vertices represent b; € BY,.
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4.4.2 Process of a game

At each iteration ¢, b; will decide one of the alternatives a;. €X;. A= {atl, ag, ey al’ BI} is a set of
alternatives chosen by b; at 7. AV is the initial condition of and A’. Let T € N be the final iteration in
a game. AT is the set of sellers finally chosen by buyers, and M is determined by A

b; € By searches for the other alternatives by Algorithm 3. s; is an alternative chosen by b;. Let
Xj’. C X; denote a set of alternatives already searched by b;. At iteration = 0, XJ’. = {s;}. Since
b; is assumed not to have information about seller s; ¢ X ]’ in advance, a new alternative s; ¢ X; is
randomly chosen and added to XJ’. at line 3 and 8 of Algorithm 3. Then, b; will compare ;(sx) with
u;j(s;). To search for alternatives, b; needs a searching cost 7;. € R. All b; have the same constant
vy(y =20,y €R)as yj.. According to [93], searching activity for prices is assumed to continue if
the benefit from searching is larger than searching cost. Hence, b; is assumed to search for another
alternative if condition (4.3) holds between s; and s5;. Otherwise, b; chooses an alternative that has
the maximum utility in X ]’

Besides, based on Algorithm 4, the interaction between each pair of buyers on e(bj, by) €
E' (bj, by € B’C U B’D) will be conducted to share the information of alternatives with other neigh-
bors. The neighbors of b; on G is denoted by 66(b;) = {bi | by € B,e(bj, by) € E’'}. Algorithm
4 determines the sets of suggestions made for b;. The set of suggestions for b; is denoted by
‘I’; = {a} | a}, € Xj,u;(a}) - p j(aj.) > g}. bj determines whether b; switches its seller from a; to
one of the sellers in ‘Pj or not. If b; switching its seller according to the suggestion given by another
buyer by € BL., reward r (r > 0,r € R) will be given to b; who suggested the seller. Let S, € S\ {s}
be the set of sellers who gives rewards. Let 4 (0 < 4 < 1) be the rate of s; € S, over S. Hence,
IS;| = A |S\ {s1}]. s; € S, is randomly selected at ¢ = 0 in a game. rj’. indicates rewards obtained by
b; at iteration 7. As a constraint, by can get at most r as a reward at each iteration. Therefore, r]t. will
become 0 or r.

At the end of 7, b; will update (Tj’. based on payoff, which represents the benefit obtained by b;
considering ,u_,-(a;.), y;., and r} . bj determines O'J[. by comparing own payoff with payoff of its neighbors.
p : B — Ris a function denoting payoff of b;. Let b, be the buyer who has the maximum payoff

among 6(b;)Ub;. Besides, let pmax denote p(b,,). Thus, b; chooses its strategy (rjt. considering pmax.
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Algorithm 2 Process of an evolutionary game

Input: N,G,e,y,r,2% AT, X; = S,X] = {s1}(b; € B)
Output: X7, AT

1:t=1

2: whiler < T do

3: foreachb; € Bdo

4: ol < ot!
J J
5: r]l. <=0
6: \I’; =g
7: vj & ¢ of @'
J
8: if (fj’. = C then
9: Determines alternative a; by Algorithm 3 using X; and X J’
10: Vi ey
11: else
12: a < a'!
J J
13: y’;. =0
14: end if
15:  end for

16:  Determines ‘I’; for all b; by Algorithm 4 for all e(b;, b;) € E’.

17:  for each b; € B do

18: if \I’; # & then

19: a; & aj offering the lowest ¢; in all sellers in ‘I’; U {a;.}.
20: if r; = 0 then

21: r]’( =r.

22: end if

23: end if

24:  end for

25:  for each b; € B do

26: p(b)) <= ,uj(a;.) - y;. + rj’..
27:  end for

28: foreach b; € B do

29: if pmax < 0 then

30: if p(b;) < 0 then

31: o'Jt. <D

32: end if

33: X/’ = X/’ U \P;

34: else

35: if pmax > p(b;) then
36: if o' # o!”! then
37: o &0y !

38: end if

30: end if

40: end if

41: end for
42: te=t+1
43: end while
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Algorithm 3 Process for searching for alternatives by b;

Input: X;, Xj’.

Olltpllt: a;. = (S,' € Xj), XI/
l: 57 & sl

2: if XJ'. # X; then

3 SkCSkEXj(Sk $Xj’)

40 if pi(s) — pj(sy) > € then

5: S| <= Sk

6 XJ’. = X]'- + {5k}

7 while X/’ # X; do

8 SkCSkEXj(Sk¢X;.)

9: if 11;(sx) — pj(s;) > & then
10: S| < Sk

11: XJ’ <=XJ’.+{S1<}
12 else

13: if 11j(sx) > pj(s;) then
14: S| <= Sk

15: break

16: else

17: break

18: end if

19: end if

20: end while

21:  end if

22: end if

23: aj. &= 5
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Algorithm 4 Interaction between buyers

Input: e(b;, b;), ¥, ‘I‘;
Output: ¥/, ‘Pj

I: if o!~! = C then

2. if a-jt.‘1 = C then

3: if p;(al) - uj(a;.) > ¢ then
4: Add a! to ‘I’;

5: else if ,u,-(a;.) — pi(al) > & then
6: Add a;. to !

7: end if

8. elseif ajt.‘l = D then

9: if pj(al) - uj(a;) > ¢ then
10 Add a! to ‘Pj
11: end if
12:  endif
13: else if o/~' = D then
14: if a-}t.‘1 = C then
15: if ,u,~(a;.) — pi(a}) > & then
16: Add a;. to !
17: end if
18:  end if
19: end if
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Table 4.2: The values used as parameters in simulation.

‘ Parameter ‘ Value
|B| 1,000
|S] 16
m 1
a;) S
viatt =0 c1
£ 1000, 2000, 3000, 4000, 5000, or 6000
0% g, 1.5¢, or 2¢
r Y
T 50

Table 4.3: Total monthly charge of each seller s; in simulation.

| si | ¢ JPY][Rank | s; | ¢ [JPY] | Rank |
sl | 90576 | 16 || s14| 87,262 | 8
s8 | 90,555 | 15 | s13| 86,352
s16 | 89,779 | 14 || s11 | 86,292
s10 | 89,176 | 13 || s3 | 86,040
s6 | 88947 | 12 || s4 | 85768
s2 | 88,020 | 11 || s5 | 85668
s9 | 87,850 | 10 | s12| 85384
s7 | 87487 | 9 | s15]| 83,852

— N W s N

4.5 Experimental results

4.5.1 Conditions

This section explains computational results about simulation experiment of the proposed evolutionary
game. Table 4.2 shows values chosen for parameters in the simulation. Furthermore, Table 4.3
indicates the monthly charge c¢; offered by sellers at every iteration in a game. As described in 4.2.5,
c; is the average of c¢{(Sep.2017), ¢{'(Oct.2017), ..., and c{'(Aug.2018). We conducted 10,000 sets of
the experiment for each set of parameters since the process of the game contains random factors such
as the structure of G, the assignment of strategy to buyers, and so on. In the simulation, the following

two metrics were investigated.

(D The maximum share of buyers with strategy C:
This metric indicates how the share of cooperators changed from the initial share 6y through a
game. Let O be the set of 6, for all iteration ¢ before (rjt. finally becomes D for all b; € B. Hence, ©

isrepresented as @ = {6, | r =0, 1,2,...,T}. Omax denotes the metric that indicates the maximum
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share of b; € B’C in B in a game. 6.y is defined as O.x = max ©. If cooperation was not

enhanced through overall iterations, O.x = 6p.

(IT) Switching rate:
Switching rate ¢ indicates the share of buyers who switched their sellers from the incumbent to
entrants in M obtained at iteration T. ¢ will also converge as well as O« since no switching

behavior will be observed after iteration 7.

To analyze the effect of rewards for buyers, fixed values are chosen as several parameters to focus
on the different pattern of the other parameters. The simulation was conducted based on each of the

following two types of conditions.

(A) [S:]=0:
This condition examines the cooperation and switching rate of buyers in the case that no sellers
give reward to buyers since |S,| = 0. The effort to switch & and searching cost y are assumed to
affect these metrics. Since no sellers give reward to buyers, |S,| = 0 and A = 0. 6y is chosen from

0.1,0.2,0.3,0.4, or 0.5.

B) IS:] = 0:
This condition investigates the situation in which sellers give reward to buyers for cooperation. In
this condition, 6y = 0.1 to simplify the results for focusing on the rewards. |S;,| is set by using

1=0,0.25,0.5,0.75, or 1.

4.5.2 Results and discussion
(A) Examining behavior if |S,| = 0

(I) Maximum share of C (Omax):

Fig. 4.8a to Fig. 4.8f show 0,,x without rewards for buyers. Each figure shows different conditions
based on £ and ascending/descending pattern. For descending pattern shown in Fig. 4.8a to Fig. 4.8c,
Omax decreased as vy increased in almost every condition. If y = &, cooperation was well promoted
compared with the situation in which y > &. The reason might be that b; € B’C can obtain p(b;) > 0
if y < e. Interestingly, Fig. 4.8a indicates cooperation under £ > 5,000 is promoted as much as
g = 1,000. Adversely, b; € ch cannot obtain positive payoff p(b;) though they conduct switching if

v > &. Therefore, v is considered to be an important factor to promote cooperation.
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For ascending pattern indicated in Fig. 4.8d to Fig. 4.8f, 6hax did not change even though ¢ and
v were different. Actually, 6. is the same value as 6. These results indicate that the number of
neighbors of each buyer has a crucial role in promoting cooperation and switching behavior among
buyers. Conversely, if each buyer does not have many neighbors, large 6, is important because
cooperation among buyers is not expected to be enhanced.

In all sets of simulation with the condition |S,| = 0, 0';. finally became D for all buyers b; € B. In

other words, no buyers chose strategy C at iteration 7.

(IT) Switching rate (¢):
The switching rate ¢ is shown in Fig. 4.9a to Fig. 4.9f. All figures indicate that the switching rate
became smaller as £ increased. Especially, when v > &, ¢ became highly smaller with & > 5, 000.
Considering cooperation, Fig. 4.8b and Fig. 4.8c shows the cooperation is not actively promoted if
€ > 5,000. These results mean b; experienced difficulty to discover any preferred seller s; without
cooperation if & > 5,000. Thus, ¢ is also promoted by cooperation under descending pattern.

For ascending pattern depicted in Fig. 4.9d to Fig. 4.9f, ¢ was not larger than descending pattern
and demonstrated almost the same value in every figure regardless of y. On the other hand, the
difference between ¢ under ascending pattern and descending pattern became smaller if € > 5, 000.

This situation indicates that network structure does not affect ¢ when buyers have relatively large €.
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(B) Examining behavior if |S,| > 0

(I) Maximum share of C (01ax):

Fig. 4.10a to Fig. 4.10f show Oy if |S,| > 0. For descending patterns depicted in Fig. 4.10a to Fig.
4.10c, Omax basically increased as |S, | expanded except the following two situations. First, the effect of
|S,| was not significant for buyers with & = 1,000 since they actively switched sellers by their search,
and rewards are not necessary for these buyers. Those buyers did not need the suggestion from other
buyers, and the rewards did not affect 0,,x. Besides, the effect of giving rewards was not apparent if
g > 5,000 especially with y > &. The reason is that buyers can rarely discover preferred sellers if
g > 5,000. Except for the two situations, fnax Was improved by giving rewards to buyers.

For ascending patterns depicted in Fig. 4.10d to Fig. 4.10f, 6, keeps almost the same value as
0p. This result indicates that strategy C might not be propagated if buyers do not have many neighbors
even if sellers give rewards.

(ij also finally became D for all buyers b; € B in all sets of simulation with |S,| > 0. (TJt. might

eventually converge to D, and this perspective should be examined in the future.

(IT) Switching rate (¢):

In the results about descending pattern in Fig. 4.11a to Fig. 4.11c, ¢ basically increased according
to |S,| as same as Omax. If ¥ > &, however, switching behavior was not much enhanced whereas |S, |
increased. This result means that ¢ might not be improved with higher € even if rewards offset y.
Since the rewards give little effects to ¢ with relatively large &, it is more important to relieve & of
buyers.

In Fig. 4.11d to Fig. 4.11f, the effect of rewards with ascending pattern cannot be observed. Since
ascending pattern initially allocated strategy C to b; with a relatively smaller degree, the effect of
promoting switching behavior was also small. Though the rewards for b; € By. is considered to be a
factor to increase ¢, it is more important which buyers initially choose strategy C in a network among
buyers. Furthermore, methods to increase connections among buyers is also beneficial to improve the

switching rate.
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4.6 Summary of this chapter

This chapter proposed an evolutionary game on a graph to analyze the switching behavior of consumers.
Preference relation of consumers involving switching costs was defined and expressed situations
where consumers do not tend to switch their suppliers though lower charges are available. We
examined the conditions to promote cooperation to search for alternatives and switching suppliers in
the computational experiment of the evolutionary game. The results demonstrated that the share of
cooperators and the switching rate were not improved by simply giving rewards for cooperators. These
results suggest that the degree of cooperators in a network among consumers demonstrates a vital role

to increase the share of cooperators and the switching rate.
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Chapter 5

Describing fairness among prosumers in electricity

sharing

This chapter presents a mathematical modeling technique for Problem 4.

5.1 Introduction

5.1.1 Literature review

Interaction between agents can be modeled as marching in graph theory. The concept of matching is
firstly introduced by Gale and Shapley in [46]. In a college admission problem presented in [46], a
matching model can be represented by a bipartite graph consists of two types of nodes: colleges and
students. As one of the applications of matching, Easley and Kleinberg proposed matching market,
which determines matching between sellers and buyers as partners to trade a single indivisible item
[44]. A study in [17] proposes a matching problem to describe electricity retail markets to represent
trading for electricity as multi-unit items. Above studies on matching, however, only deal with static
aspects of markets and cannot describe interactions of trading varying with time.

A resource sharing model based on a multi-agent system is called El Farol Bar Problem (EFBP)
[94]. In the EFBP, the capacity in a bar is considered as a resource shared among agents. Each agent
decides whether the agent go to a bar or not every week. To avoid congestion and enjoy the bar, agents
must achieve cooperative behavior without pursuing their selfish goal. A potluck problem is proposed
as the generalized version of the EFBP [95]. In the potluck problem, each agent has time-varying
supply and demand for dinner in every week. The goal of the potluck problem is to minimize the

difference between the total demand and total supply among all agents. The potluck problem only
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focuses on minimizing the difference in total supply and demand as overall efficiency and does not
consider envy of each agent.

As a metric for envy of each agent, envy-freeness is considered in many resource allocation
problems. If the allocation is envy-free, every agent is satisfied with its allocation and does not
envy the allocation for other agents [96]. Problems about envy-freeness is classified into two types:
problems for indivisible goods and problems for divisible goods. As an example of studies for
indivisible goods, Netzer et al. propose a distributed algorithm for minimizing envy among agents
[97]. As adynamic version of envy-free allocation problems, online cake-cutting problem is discussed
in [98]. Though dynamic aspects of resource allocation problems are considered in [98], the problems
deal with only fixed amounts of resources over time. This chapter focuses on divisible goods such as
electricity.

Resource sharing among prosumers might be conducted with limited neighbors that are connected
to each other. Hence, resources and envy can be partially observable from a prosumer’s viewpoint.
The partial observation is considered in a resource allocation problem proposed in [99]. Even
though this problem deals with dynamic settings, it considers indivisible resource allocation. Besides,
resources shared among agents are not changed dynamically in [99] though each agent cannot observe
all resources. Beynier also introduces methods for envy-free allocation in social networks, which
can describe a more realistic situation about partial observation of agents [100]. However, methods
proposed in [100] are tailored for the allocation for indivisible resources.

To represent conditions of prosumers varying with time, our model for resource sharing among
prosumers [101] utilizes Time-Varying Graph (TVG) [32]. TVG is also called temporal network.
On the temporal networks, community structures change with time [31]. For example, [31] explains
several events about communities such as growth, contraction, merge, split, and so on. Hence, it
is required to consider the time-varying structural change about networks of prosumers for resource
sharing.

Rossetti et al. proposed stream graphs, which is an extension of several concepts of graph theory
to analyze the temporal characteristics of networks. Especially, [102] defines bipartite stream, which
is an extension of bipartite graphs to temporal networks. Although the bipartite stream can model
the appearance/disappearance of nodes and edges on a bipartite graph, every node belongs to the
same group in the bipartite graphs through a time span. Hence, the bipartite streams cannot represent

periodical changes in the role of nodes in bipartite networks.
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5.1.2 Contribution

This chapter proposes a model for analyzing envy in resource sharing among prosumers in a temporal

network. Main contributions of this chapter are itemized below.

* This chapter introduces a resource sharing model among prosumers in a social network. The
model deals with time-varying supply and demand of prosumers based on the model proposed in
our previous study [101]. As an extension of the model in [101], the relationship among prosumers
for resource sharing is represented as social network. Thus, prosumers share their resources only
with their neighbors in a model of social network. As models of social network, this chapter

utilizes Barabasi-Albert (BA) model [92] and Watts-Strogatz (WS) model [103].

* The extended concepts of envy are introduced since resource sharing is conducted on a social
network in the proposed model. The envy in resource sharing discussed in related works is
defined in the situation where all agents share the same resources each other over time. In our
assumption of resource sharing in a social network, however, the amount of resources to be shared
is different in each prosumer and varies with time. Therefore, this chapter defines indices to
evaluate envy-freeness among prosumers that focuses on a resource allocation problem in a social

network.

* We formulate a minimum cost circulation problem to discover matching that maximizes utilization
of resources of prosumers and satisfies the constraints of supply and demand of prosumers.
Furthermore, to reduce envy among prosumers in the circulation problem, this chapter discusses
the adjustment of weight assigned to arcs (directed edges) in a flow network for the circulation
problem. Experimental results indicate that appropriate weight settings on arcs can decrease the

envy among prosumers over time while maximizing the utilization of resources of prosumers.

This chapter is structured as follows. Section 5.2 explains fundamental definitions of our resource
sharing model used in the following sections. The concept of envy of prosumers in a social network is
also introduced in Section 5.2. Section 5.3 formulates a minimum cost circulation problem to discover
matching in the resource sharing model. Section 5.4 demonstrates experimental results about the envy

among prosumers in the matching. Section 6.1 concludes this chapter and explains future works.
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(a) Example of N. (b) Example of G at ¢.

Fig. 5.1: Example of graph N and G.

5.2 Definitions on temporal network

5.2.1 Model representation

Agents share their resources on a social network represented by undirected graph N (V U {vg}, E). V
isasetofnodev; € V(i = 1,2,...,|V]), and each node v; denotes an agent of a prosumer. vy is a node
to cover imbalance of resource sharing among agent v; € V. vy does not denote a prosumer. FE is a
set of undirected edge (v;, v;) (v;,v; € V). Since N is undirected graph, both (v;, v;) and (v}, v;) are the
same edge. Edge (v;, v;) represents the relationship where v; is a neighbor of v;. Agents are willing to
share resources only with their neighbors. Adversely, v; and v; do not share their resources if (v;, v;)
does not exist. E also contain edges (vo, v;) for any v; € V. Thus, arbitrary v; share resources with vy.
Fig. 5.1a shows an example of N.

In resource sharing, the amounts of available resources for each agent will vary with time. To
represent the variation of resources, we utilize a temporal network constructed based on N. Temporal
network G (V U {vo}, E’, 7") is an undirected graph that has a set of agents V, which is the same as the
agents in N. 7 is a time span for G, and t € 7(t = 1,2,3...,T) is a round to describe each state of G.
E'is asetof edges at t in G. E' does not contain (v;, v;) if (v;,v;) ¢ E. The set of agents V does not

change through 7.

5.2.2 Roles of agents based on their production and demand

Every agent v; € V has its own demand and production of resources at . The demand of resources of
v; is 61?, and the production of resources of v; is pﬁ . At each round ¢, v; uses pﬁ to cover its 65 . Based

on the condition about 6/ and p!, v; will be assigned to one of the following three roles.
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1. pl > ot
Since surplus is more than deficit, v; has surplus resource indicated by pﬁ = pﬁ — 6!. v; will share

the surplus as seller to the other agents. The set of sellers is Vi C V.

2. 6> pf
v; has the deficit of resource denoted by d! = 6; - pf. since its deficit is more than its surplus. v;

will try to cover its deficit as buyer by getting surplus from other agents. The set of buyers is

VicV
3. 60 =p!

v; can cover its own demand 61? by using its own production o} at z. Regarding resource sharing,
v; has no surplus and deficit for sharing at ¢. Hence, v; does not join the resource sharing at z, and

role of v; is called none at t.

Fig. 5.1b shows an example of production and demand of agents v; € V of G at ¢. Regarding vy,
production ,o’1 = 60, and demand (5’1 = 20. Thus, v; is a seller at ¢ with its surplus p’1 = 40. About vy,
production pz = 20, and demand &), = 50. Hence, v4 becomes a buyer at ¢ with its deficit 4 = 30.

As a constraint for resource sharing in our model, all surplus pf and deficit dl.‘ must be shared at z.
However, the imbalance of surplus and deficit of resources will occur since every agent v; individually
determines demand 6! and production p} without considering the balance among other agents. Hence,
surplus p! and deficit d] are not necessarily offset by resource sharing only among agents.

To offset the imbalance of the surplus and deficit, vy has both surplus and deficit to offset the all
resources of v;. Let d6 be the deficit of vy that is sufficient for all surplus of v; € VSI. P! represents the

total surplus of all v; € V{. Thus, dj, is defined as dj, = P'. P' is denoted by

pl = Z pl. 6.1

t
UiEVS

Regarding surplus of vp, let p6 be the surplus of v that is enough for all deficit of v; € Vj. D' denotes

the total of deficit of all v; € Vj,. Therefore, pj; is defined as pj; = D'. D' is represented as

p=Y d. (5.2)

U,’EVIQ
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Fig. 5.2: Example of edges in G at z.

5.2.3 Neighbors of each agent according to agent’s role

Agent v; € V shares its resources with its neighbors. To explain the relationship to describe resource
sharing with neighbors, we divide E’ into three edge sets: E’,, E!, and E(g (E" = E\ U E!'U Eé). Fig.

5.2 shows an example of these edge sets. The definitions of the edge sets are as follows.

) cti contains edges with two agents which belong to different sets. Thus, (v;,v;) € E ZJ (v; € VS’, vj €

V[,). Edges in E g describe the opportunity for resource sharing between v; and v;.

* E! contains edges between agents which belong to the same set. Hence, (v;,v;) € E! (v;,0; €
Vi or v;,v; € Vi). No resource is shared on edges in E that are used to describe envy among

agents. The definition of envy is explained in Section 5.2.6.

. E(’) is a set of edges between v; € V and vy. Therefore, (v;, vg) € E(’) (v e ViU V). Edges in E(’) can

be used to cover resources that are not offset by resource sharing only among v;.

The set of neighbors of v; € V over an edge set E” is denoted by the following function.
adj(vi, E') = {v; € V | (vi,v;) € E'}. 5.3)

Similarly, the set of neighbors of v; € V over an edge set E’, El, and E(’) are represented by
adj(v;, E), adj(v;, E5), and adj(v;, E), respectively. Forexample, regarding v; inFig. 5.2, adj(vy, EY}) =
{v4, vs} and adjj(vy, Ef) = {v2}.
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5.2.4 Utility function

Benefit of v; € V for resource sharing is represented by utility function g’ : V. — R. This chapter
focuses on benefit of agents v; € V, and benefit of vg is not considered. In &, vy might need more
costs to offset the difference than agents v; since vy must prepare for pf, and djj according to surplus
and deficit of v; every round. Hence, it is assumed that resources of vy are more expensive than that
of other agents. Because of this condition, v; prefers resource sharing with v; € V to resource sharing
with vg.

Utility function ' is defined by benefit from resources and the amounts of resources in sharing at
round 7. Let ¢ and ¢ be the benefit for sharing one unit of resource with v; € V and vy, respectively.
Since resources of vg is more expensive than v;, ¢ and ¢¢ are considered to satisfy at least ¢ > ¢¢. Let
y' be the total amounts of resources obtained from all neighbors adj(v;, E :1) atround ¢. For instance, in
Fig. 5.2, y' of vy represents the amounts of resources shared with v4 and vs. Moreover, y(’) represents

the amounts of resources obtained from vy. Thus, the utility of v; € VS’ U V;; at round 7 is calculated by
H) =6y +¢o- yp. (5.4)
For simplicity, we assume ¢ = 1 and ¢o = 0. Therefore, equation (5.4) can be denoted as
Hw)=1y" (5.5)

Since all surplus must be shared at 7, for sellers v; € V{, y' + y, = p!. Likewise, for buyers v; € VJ,
y' + yj, = d] because all deficit d/ must be shared.

To increase utility of agents, resource sharing among agents v; € V should be conducted as much
as possible since ¢ > ¢o. In other words, resources of vy should be utilized only if the amounts of
resources of v; are not sufficient to offset all surplus and deficit. The conditions for resource allocation
described above can be discovered by maximizing the total of y’ over all agents. Methods to discover
the resource allocation for the maximization will be presented in Section 5.3. Available resources of

v; means the amounts of resources of neighbors v; € adj(v;, E[’l).
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5.2.5 Utility rate

The size of utility is quite different in each agent since each agent has a different amount of available
resources (surplus or deficit) of neighbors. Hence, utility u'(v;) cannot be directly compared with
other agents. To compare the utility over agents, it is required to define a criterion to describe a
normalized measure of utility over agents. This chapter defines utility rate ! € [0, 1] that indicates
how much amount of agent’s resource is shared among agents v; € V. Definitions to determine w! are
presented later in this section.

The available resources for v; must be defined to determine a)l? . Seller v; € VS’ share its resources
with buyers v; € V. Buyer v; € V share its resources with sellers v; € V(. Thus, the available
resources of v; is defined using the sum of resources of neighbors v; € adj(v;, E"l). For instance, in
Fig. 5.1a, seller v; recognizes the deficit of neighbors vs and v4 as resources. For v; € V¢, the total of

deficit d]t. of neighbors v; € adj(v;, E!)) is denoted by

pi= ), 4 G0

vjeadj(v;,EZl)

Besides, as available resource for v; € Vj, the total surplus pj. of neighbors v; € adj(v;, EY) is

represented by

Pl = Z P (5.7)

vi€adj(v;,EY)

Let ] represent the maximum amounts of available resources for v; at round ¢. o is determined
as follows.

* For seller v; € V§:

t s : : 12 t t 13 t _ o i i :
«@; is obtained by either D; or p:. If D: > p:, a; = p; since v; can share resources up to its surplus

p'. This situation means v; can utilize only a part of D!. Adversely, if p! > D!, a! = D! since
l l l l l l

v; can only share resources up to Di. Thus, surplus p} can be covered up to only D! if p! > D!.
Besides, surplus p! can be offset by D! if D! = p!. According to the conditions described above,

a! can be defined as the minimum value of D} or p}.

* For buyer v; € V:
al.t is determined by either Pl.f or dl.t , and conditions to obtain al.t is similar to the conditions of sellers

described above. If P! > d!, ] = d since v; can share resources up to its deficit d/. Conversely,
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p) =40

ab =40
yt =20
wi=1/2
Py =30
ab =30

yt =10
wh=1/3

Fig. 5.3: Example of utility rate.

if d! > P!, a] = P! since v; can only share resources up to P{. If P! = d!, deficit d! can be offset

by P!. Hence, a! can be defined as the minimum value of P! or d/.

Therefore, (xi’ is calculated as follows.

min (D%, p!)  (v; € VY),
o = (Dhpi) (e Vs (5.8)
min (P}, df)  (v; € Vp).

All resources of a'l? are not necessarily allocated to v; because some resources in a/f might also be
shared with the other agents and allocated to them. A part of ¢/ allocated to v; can be denoted by

y' = (' (v;) as equation (5.5). Thus, utility rate a)f is obtained as follows.
w! = p(v)/al. (5.9

When al? = 0, v; has no resource to share, and wlf cannot be defined. Besides, cxl.t and wlf cannot
be defined if |adj(v;, E C’l)| = 0. If one of the conditions described above holds, wlf is not defined at ¢.
Hence, envy of v; explained in Section 5.2.6 is not defined at ¢ with the above conditions, either.

Fig. 5.3 shows an example of the amounts of available resources o] and utility rate w]. The amounts
of resources shared on edges are denoted on each edge. Regarding vy, its surplus is represented by
pt1 = 40. Moreover, the total of available deficit of neighbors are obtained by Dt1 = dj1 + dg = 50. Thus,
a| = min(D}, p|) = 40. In this example, v; obtained 20 units of resources from vs. Hence, y' = 20,

and y'(vy) = 20. Therefore, utility rate w| = 20/40 = 1/2.
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5.2.6 Envy among agents

Atevery round 7, v; possibly has envy to each of its neighbors about allocated resources. Envy exists if
v; and its neighbor v; are in the same set V{ or V. If v, v; € V¢, both v; and v; are willing to share their
surplus to v; € V5. Conversely, both of v;, v; € V} will desire resources of the same agent vy, € Vs.
Thus, v; has envy over v; if v; € adj(v;, EY).

The definition of envy in this chapter is similar to [97]. However, this chapter defines envy by
using utility rate even though [97] utilize utility function. Envy of v; to v; about utility rate is defined

as local envy £ : V xV — [0, 1]. €(v;, v;) is defined as

t t t t
w; —w; (W) <w)),

E(vi,vj) = (5.10)

0 (! 2 w;).

where v; € adj(v;, E}). The range of £(v;, v;) is [0, 1] because the minimum of w! is zero, and maximum
value of wf is one. Because of this definition, £(v;, v;) is not defined at round ¢ if either of the following

conditions is satisfied at 7.
1. |adj(v;, EL)| = 0. (There is no neighbor to define envy.)
2. |adj(v;, E2)| = 0. (w! cannot be defined in this case.)
3. a! = 0. (! cannot be defined in this case.)

Due to the above condition 1 and 2, £(v;, v;) cannot be determined throughout 7 if v; € V has zero or
one neighbor in N. Thus, we assume v; € V has two or more neighbors in N.

To compare envy among agents, envy of v; at # must be denoted as one value. However, &(v;, v;)
can be defined for multiple neighbors v; € adj(v;, E!). Hence, for the comparison of envy among
agents, the maximum value of é(v;, v;) is chosen as envy of v; at t. Envy of v; at ¢ is represented by
r]f € [0, 1]. Z; represents the set of £(v;, vj) determined for v; and neighbors v; € adj(v;, Ef). Since nf

is the maximum value in Z;, r]f is represented by
7, = max E;. (5.11)

If |Z;| = 0 at the round ¢, 5} is not defined at r. 7, C 7 is the set of rounds in which 7 is defined.

Since 7/ is not determined in some ¢ as described above, 7| < [7].
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wé 1 | Eé
k=0 E;
wh =1/2 -
5(7}1,7}2):0 w4:1
0t =0 E(vg,v5) =0
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wh=1/3
5(1}2,1)1) = 1/6 w% =1
5(1)271}3) = 2/3 f(’l,’g,’l)z) =0
nt=2/3 nt=0

Fig. 5.4: Example of envy.

Fig. 5.4 shows examples of &(v;, v;) and nf in G at t. Utility rate wf is the same as Fig. 5.3. About
seller va, £(vp, v1) = 1/6 and &(va, v3) = 2/3. Thus, envy of v at ¢ is 7, = 2/3. Regarding sellers v
and v3, 7} = 0 and 7 = 0 since both w| and ) are larger than w). For buyers v4 and vs, 77, = 0 and

15 = 0 since w) and wy have the same value.

5.2.7 Index to denote envy of each agent

To describe envy of each agent through time span 7, this chapter defines two kinds of index as follows.

; a .
1. Envy-free amount index € € [0, 1]:
€/ indicates the envy of v; in terms of the amounts of resources that v; shared among agents. €/’

is defined as

6?={Z nf}/l‘izl. (5.12)

ke,

High € means v; shared little amounts of resources among agents. Adversely, v; does not have
much envy if €’ is low. Since ¢/ is defined by the actual amount of resources which v; obtained,
€' might not be suitable for prosumers that do not consider the difference of amounts of resources

in detail.

2. Envy-free round index € € [0, 1]:
Envy-free round index € indicates the number of rounds in which v; have envy to other agents.

€/ will be used to examine only whether v; has envy or not at each round. To describe rounds at
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which v; has envy, rl.’ is defined as

1 (>0,
= (5.13)

0 (i =0).

v; has envy at round ¢ if rl? = 1. Hence, el.’ is defined as

e = {Z r,.k} /|Ta). (5.14)

keT,

Considering bounded rationality, prosumers are possibly not sensitive to the difference in the

amounts of resources. el." is assumed to be utilized in the above situations.

5.3 Problem formulation

5.3.1 Bipartite graph and matching for resource sharing

Resource allocation among agents at round ¢ can be represented as matching M. This section explains
the definition of M, and methods to discover M are presented in Section 5.3.2 and 5.3.3. M is defined
on G (VU {uvy}, E"), which is an undirected graph at ¢ in G. M is denoted as many-to-many matching
since each node in M has one or more edges. To determine M, G is converted to a directed bipartite
graph G’ (8" U B!, A"), which is a directed graph with two types of node sets denoted by S’ and B’. For
every arc (v, w) € A’, nodes v and w belong to S* and B’, respectively. The existence of arc (v, w) € A’
means v and w can share resources on the arc. Fig. 5.5 shows examples of G and G’.

Nodes in G are mapped into nodes in G’. S’ contains all v; € VSt. Similarly, B" includes all
v; € Vj. Since G’ has two types of node sets S” and B', node vy in G is divided into two nodes: v and
vg (vy € S, vg € B"). v, offsets the gap of all deficit of v; € V. Conversely, vg covers the gap of all
surplus of v; € V(. Therefore, S = V{ U {vj} and B' = V} U {vé’ }. Fig. 5.5b depicts a bipartite graph
G’ converted from G shown in Fig. 5.5a. In Fig. 5.5a, V{ = {v1, v, 03} and V} = {v4,v5}. Hence,
St = {vy, v2, v3, vy} and B' = {vg, vs, vg} in Fig. 5.5b.

Regarding edges and arcs, edges (v;, v;) (v; € Vi, v; € Vi) in E;l are converted to arcs (v, v;) € A'.
For instance, G’ in Fig. 5.5b has arcs converted from edges in G shown in Fig. 5.5a. Edges in E{) are

also converted to arcs in A’. v, are connected to all v; € V with arc (g, vj)- Similarly, A" has (v;, vé’)
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(a) Graph G at round ¢. (b) Bipartite graph G’.

Fig. 5.5: Example of G and G’.

(v; € VS’). On the other hand, any edges in E! are not converted to arcs in A’ because no resource
sharing is conducted on edges in E!.

By using resource allocation obtained as M, the value of utility function u’(v;) can be calculated.
To obtain y'(v;), variables y' and y; are used as explained in Section 5.2.4. M is denoted by the set of
arcs and the values of flow on the arcs in G’. The flow corresponds to y' and y(’) in equation (5.4). As
defined in Section 5.2.4, y is the total amounts of resources obtained by v; from all neighbors except
vo. Let adj(v;, A") denote neighbors of v; in G’ except vé’ and vj. adj(v;, A") is defined according to
the set to which v; belongs in G’. If v; € S*, adj(v;, A") = {vj € (B"\ {vé’}) | (v, vj) € A'}. Thus, when

v € 8", y' is defined by using flow as follows.

y'= D x(vu)). (5.15)

vi€adj(v;,A")

If v; € B, adj(v;, A") = {v; € (§"\ {v}}) | (vj,v;) € A'}. Hence, when v; € B, y' is obtained by

y'= D x(pu). (5.16)

vi€adj(v;,A")
Besides, y6 is the total amounts of resources obtained from vg. By using flow, y(’) is defined as follows

) t t
for v; € VS U V.

x(vi0l) (v € V),
yh = 0 § (5.17)

x(vy, vi) (v € V).
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(a) Matching M in G’. (b) Resources shared in G.

Fig. 5.6: Relationship between matching M and graph G.

Fig. 5.6a is an example of M determined in G’ shown in Fig. 5.5b. The value of flow is denoted
on each arc in Fig. 5.5b. As shown in Fig. 5.6a, M is represented by the set of arcs and the values
of flow on the arcs. If the value of flow on an arc is not zero, M contains the arc. An arc with zero
flow is not included in M. Fig. 5.6b shows G that corresponds to M in G’. In Fig. 5.6b, the value
of resource shard on each edge is denoted on the edge. Thus, the allocation of resources in G can be
determined by M in G’. The allocation of resources determines variables y’ and y; to obtain utility
rate and the indices about envy for each agent. For instance, in both Fig. 5.6a and Fig. 5.6b, y’ and

y(’) of vy are determined as y’ = 20 and y(’) = 20 since x(v1, v5) = 20 and x(v1, vé’) = 20, respectively.
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Fig. 5.8: A directed graph H’ to solve circulation.

5.3.2 Circulation to discover matching

Resources of agents v; should be efficiently shared in matching M. The most efficient resource
allocation in M can be achieved by maximizing flow among v; in G’. We consider a minimum cost
circulation problem [27] to discover M that maximizes flow among all agents. Fig. 5.7 shows a
directed graph H to define the circulation problem. In this circulation problem, the objective is to
discover the minimum cost feasible circulation, which satisfies two constraints (2.1) and (2.2). The
circulation problem is different from general network flow problems since the graph H does not have
source and sink. Hence, constraint (2.2) must be satisfied in all nodes in the circulation problem. H
can be constructed from G’ such as the graph depicted in Fig. 5.5b. G’ can be converted to H by
adding node o and ¢ and arcs explained in Table 5.1.

Matching M can be obtained as the minimum cost feasible circulation on H satisfying the capacity
constraints shown in Table 5.1. Weights of arcs c¢(v, w) shown in Table 5.1 are set to maximize flow

among v;. About flow from source o, the weight of arcs for v; is set to c(o, v;) = 0. The weight of an
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Table 5.1: Arc (v, w) added to G’ for constructing H.

v ‘ w ‘ [b(v, w) ‘ ub(v, w) ‘ c(v, w) ‘
v € Vi | v eV 0 max(p!, djt.) 0
v; € V¢ vé’ 0 Pl 0

vy vj €V} 0 dj. 0

0 vi € Vg P! P! 0

0 v, 0 D;. z>0
v €V} t d; d;. 0

v(’)’ t 0 P! z>0

t 0 max(P’, D") | max(P', D") 0

arc for vj, on the other hand, is set to c(o,v3) = z (z > 0). According to the minimum cost feasible
circulation, resource sharing among v; is selected in preference to resource sharing with vy. Likewise,
regarding flow toward sink ¢, c(v;,t) = 0 and c(vé’, t) = z (z > 0). Therefore, flow from v; to ¢ is
chosen in preference to flow from v(’)’ in the minimum cost feasible circulation.

The circulation problem on H can be solved with general algorithms for a minimum cost maximum
flow problem by changing arcs in H. We utilize H’ which can be obtained by removing arc (¢, 0)
from H and adding arc (¢, 0) to H. Fig. 5.8 shows an example of H’ converted from H depicted
in Fig. 5.7. Flow bounds of (¢, 0) are the same as the bounds of (¢,0). Thus, Ib(t,0) = 0
and ub(t’,0) = max(P', D"). Then, the minimum cost feasible circulation on H is obtained as the

minimum cost maximum flow on #’-¢ path in H'.
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Table 5.2: ¢(v, w) considering envy weight.

v w c(v, w)
0 v € Vi |yl €[0,1]
o 2 z>1
vj € Vj t 1/15 € [0,1]
Ug t z>1

5.3.3 Circulation considering envy among participants

As described above, matching M maximizing resource sharing among v; at round ¢ can be obtained by
solving the circulation problem. However, that circulation problem does not consider the aspects of
envy-freeness among prosumers. Furthermore, since the circulation problem focuses on the flow only
at round ¢, the circulation problem needs a modification to realize desirable resource sharing through
time span in a temporal network.

Envy weight is defined for the circulation problem to discover M with lower envy among prosumers
while maximizing efficiency in resource allocation. The envy weight is the weight of arc that reflects
envy of prosumers to the resource allocation in future rounds. Thus, prosumers who have more envy
than others will be preferentially allocated resources by using envy weight in the circulation problem.

y! denotes envy weight for v; at . As the initial condition at# = 1,y = 0. 7 C 7 is a time span
before round 7 (1 < ¢ < T). For instance, forr = 4, 7’ = {1,2,3}. As well as envy-free amount index
e, 1} is used for ¢!. 7.’ C 7" denotes the set of rounds in which 7! is defined. If |7,| = 0, ¢! =
since this condition means envy does not exist before round 7. By using the definition described above,

! is defined as

yi=1=3 > | 1T (5.18)
keT,
Therefore, /! is in the interval [0, 1].

Table 5.2 shows weight of arcs ¢(v, w) modified from the definition in Table 5.1 to the definition
considering ;l/l.’. Low 1//l.t makes the cost of flow of v; high. Thus, in the minimum cost circulation
problem, the priority of v; in resource allocation will decrease compared to v;, which has 1//5. higher
than /. If ¢/ is used to calculate circulation, the value of z must be larger than ! so that resource
sharing among prosumers will be preferentially selected rather than v; and ué’ . Hence, z must satisfy

z > 1 since y! € [0, 1] when ! is applied.
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(a) BA model. (b) WS model

Fig. 5.9: Examples of social network models.

Table 5.3: The values used as parameters in simulation.

‘ Parameter ‘ Value ‘
T 100
V] 20, 40, 60, 80, or 100
P randomly chosen from {p} € Ny | o} € [0, 100)}
St randomly chosen from {] € Ny | 6! € [0,100)}
m (BA model) 2
k (WS model) 4
0.2 (V[ = 20),
p (WS model) : '335((||‘(/|| :4600)5,
0.4 (|V| = 80, 100)

5.4 Experimental results

5.4.1 Conditions

To analyze envy among agents in efficient resource allocation determined by the proposed circulation
problem, simulation experiments were conducted. As common models to construct social networks,
this chapter utilizes BA model and WS model in the simulation. Fig. 5.9a depicts an example of
the BA model. A graph constructed as BA model is called scale-free network in which only a small
part of nodes has larger degree compared to the other nodes. We focus on this characteristics because
achieving lower envy might become difficult if there is larger deviation about degree of nodes in a
graph. On the other hand, WS model does not have scale-free property and relatively smaller deviation
of degree of nodes compared to BA model. Fig. 5.9b shows an example of WS model utilized for

comparison.

82



Table 5.3 shows parameter conditions used in the simulation. 7 means the number of rounds in
a time span 7 as one set of the experiments. |V| was chosen from five values to analyze influences
of the number of agents. Parameter m for BA model and parameter k& for WS model were chosen so
that the similar number of edges are generated in both types of graphs. Parameter p for WS model
influences clustering coefficient of graph, which indicates the existence of clustering in the graph. In
the simulation, p was set to make clustering coefficient of graphs of WS model closer to clustering
coeflicient of graphs of BA model.

The simulation has ten patterns of parameter conditions since five values of |V| were used for the
two types of graph structure: BA model and WS model. The simulation experiment is conducted
1,000 sets for each parameter condition since the parameters contains random factors such as graph
structure, production pi, and demand 61?. Hence, 1,000 instances of G were generated for each
parameter condition. To impartially compare the proposed problem with envy weight and without
envy weight, matching M was determined by using the same instance of G for both conditions every
round. According to the condition of degree of agent v; of N in Section 5.2.6, every instance of graph
N used in the simulation satisfies that every agent v; in the instance has two or more neighbors.

A simulation software was developed with Python. In the simulation, a python library called
NetworkX [104] was utilized for constructing graphs based on BA model and WS model. Moreover,
the proposed circulation problem is solved by using a method to solve a minimum cost maximum flow
algorithm defined in NetworkX.

As an evaluation metric, the average of € and € over agents is calculated to examine the magnitude
of envy-freeness of overall agents. Moreover, the standard deviation of € and ¢ for all agent v; € V

is obtained to investigate the size of variance in each index of envy-freeness over agents.
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5.4.2 Results and discussion

Following results and discussion explain how envy weight influenced envy among prosumers in
matching, which represents efficient resource utilization determined by the proposed circulation

problem.

Average of each index over agents

The average of €' among agents is shown in Fig. 5.10. The charts in this section depict the results
about 1,000 sets of experiments for each parameter condition. Fig. 5.10a shows the average of €/’
regarding BA model. These results indicate that the difference between the two weight conditions is
not so significant. If the number of agents increased, the average of € of matching with envy weight
is slightly lower than matching without envy weight. Fig. 5.10b shows the average of €' about WS
model. The average value of € regarding WS model is lower compared to that of BA model. Unlike
BA model, the average of € in WS model slightly decreased as the number of agents increased.

The average of € is shown in Fig. 5.11. Fig. 5.11a shows the average of € regarding BA model.
The characteristics of the difference of € between two weight conditions are similar to that of €.
With almost every condition, the average value of € is relatively larger than that of €. Besides, Fig.
5.11b shows the average of € about WS model. Similar to the results about €, the average of € in
WS model was lower compared to € in BA model. About WS model, the value of €' is also slightly

a
larger than €.
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Fig. 5.10: Average of envy-free amount index €.
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Fig. 5.11: Average of envy-free round index €/ .
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Standard deviation of each index over agents

The standard deviation of € over agents is shown in Fig. 5.12. Fig. 5.12a shows the standard deviation
of €' in BA model. The standard deviation of € with envy weight was relatively lower than €' without
envy weight. Fig. 5.12b shows the standard deviation of €’ in WS model. By comparing Fig. 5.12b
with Fig. 5.12a, the deviation of € in WS model is clearly lower than that in BA model. The standard
deviation of €' with envy weight was also lower than € without envy weight in WS model. However,
the difference of the standard deviation of €' of two conditions in WS model was smaller than that
of BA model. Therefore, although the magnitude of improvement is different according to BA model
and WS model, the matching with lower standard deviation of € was discovered by using envy weight
for both models.

Fig. 5.13 shows the standard deviation of €/ among agents. Fig. 5.13a shows the standard deviation
of el.” in BA model. As shown in Fig. 5.13a, el.r in BA model demonstrated similar characteristics of el.“
shown in Fig. 5.12a. There is no large difference between the values of € and ¢/. Fig. 5.13b shows
the standard deviation of el.’ in WS model. As well as BA model, the characteristics of the standard
deviation of € shown in Fig. 5.13b is almost similar to that of €' demonstrated in Fig. 5.12b. Hence,
as well as €, the matching with lower standard deviation of € was found by applying envy weight in

the circulation problem.
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5.4.3 Discussions

Regarding weight conditions, envy weight contributed to improve both € and €/ mainly in terms of
variance of the indices over agents for both BA model and WS model. By integrating envy weight
into the minimum cost circulation problem, envy among agents can be reduced in resource allocation
determined as matching compared to matching obtained without considering envy weight. However,
the magnitude of difference in each index between two weight conditions is not so large especially
regarding €. Since the proposed circulation problem determines matching maximizing efficiency of
resource utilization of agents, the circulation problem with envy weight demonstrates the existence of
matching that represents resource allocation improving fairness while maximizing efficiency. Because
our proposed approach to find matching is heuristics, considering theoretical bounds for the value of
each index is an interesting future topic.

Comparing €' with €/, the average of each index demonstrates the difference in both BA model
and WS model. Results indicate the average of € is relatively larger than the average of €. Thus,
prosumers will feel larger envy with € as a metric of equity compared to € at least by using conditions
in Table 5.3. Simulation experiments with additional parameter conditions will give us more insights
about the difference in €/ and €/ .

The standard deviation of el.“ and el.r , on the other hand, does not demonstrate a large difference
between € and €/ for each of BA model and WS model. These results indicate that both of the matching
determined with two weight conditions have almost the same performance about the variance of envy
among agents. Regarding the results of BA model with those of WS model, the results indicate that
the difference of envy over prosumers in BA model might be larger than that of WS model since the
standard deviation of el.“ and ei’ in BA model is greater than WS model. Therefore, the structure of a

social network might also affect the size of envy for each prosumer.
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5.5 Summary of this chapter

This chapter proposed model deals with resource sharing among agents representing prosumers. To
evaluate envy-freeness for resource sharing among agents in a social network, we proposed two indices:
envy-free amount index and envy-free round index. Simulation results demonstrated the envy among
agents is reduced by using the proposed minimum cost circulation problem and the condition of weight
on arcs in a flow network for the problem. Additionally, the simulation results demonstrated that agents
will face the different magnitude of unfairness in each index of envy. Although the concept of envy-
freeness for resource sharing was proposed in this chapter, more realistic datasets of electricity should

be used in simulation experiments to obtain practical insights about the benefits of prosumers.
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Chapter 6

Concluding remarks

6.1 Conclusion

The results of studies on four problems contextualize the objective of this thesis, which is to analyze
consumers’ benefits in electricity markets to consider successful mechanisms. Regarding Problem
1, concepts of graph theory were utilized to propose market models for electricity markets, which
represent both benefits of participants and constraints on supply and demand. A market model to
represent deregulated electricity markets was presented for Problem 2, and this study explained the
relationship between the benefits of participants and electricity prices in energy trading. About
Problem 3, consumers’ switching behavior was modeled as an evolutionary game. The results
demonstrated that both the network structure and the existence of consumers active to switch suppliers
become important factors to promote switching behavior. Furthermore, in the resource sharing model
presented for Problem 4, envy-freeness was utilized as one of the metrics of electricity sharing among
prosumers.

Considering the above examples of results, the market models presented in this thesis demonstrated
several insights about consumers’ benefits in liberalized electricity markets. Therefore, these models
are expected to contribute to providing insights for considering and examining market mechanisms
that will be developed in the transformation of electricity markets from now on. The advanced
understanding of the benefits of consumers will contribute to decision making by both supply-side

and demand-side of the markets.

90



6.2 Limitations and future works

The proposed modeling techniques have several limitations regarding the detailed characteristics of
electricity markets that have not currently been integrated into the models. To enhance the applicability
of the models for real-world problems and obtain sophisticated insights from the models, the following

topics are left as future works.

1. Using datasets about electricity production and consumption in experiments:
To construct more realistic electricity market models and validate the models effectively, ex-
periments should use datasets of production and consumption of electricity. Many modeling
teams have traditionally restricted access for data about electricity production and demand [105].
Fortunately, there has been the movement toward opening up energy related data for improv-
ing reproducibility and transparency of energy modeling research recently [106]. Open Power
System Data is a platform of power data (including conventional and renewable plants) for
electricity system researchers [107]. Besides, Renewable.ninja provides simulation data about
the hourly output of worldwide solar and wind generation plants [108]. Regarding consumers’
behavioral data, however, have been still treated as closed data since actual behavioral data about
consumers can be considered as sensitive data [109]. Thus, it is important to consider what

kinds of data are available to improve the insights obtained from the models.

2. Considering detailed time intervals in time-varying electricity trading:
Regarding Problem 3 and 4, detailed time intervals in time-varying trading models should be
defined to clarify the characteristics of electricity markets that the models represent. Focal
points will be different according to the size of the time intervals represented by the models
(e.g. hourly, daily, monthly, and yearly basis) [110]. For instance, short-term time intervals
mainly focus on aspects regarding controls on supply and demand in every second, minute, hour,
etc. Besides, long-term time intervals can be utilized for planning over a few months about

generation combination, legislation, and so on.
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3. Integrating multiple factors of the utility of consumers:
Although the utility function in this thesis only considers electricity charges as the factor of
consumers’ utility, the other factors should be considered in the utility function according to
future transitions of electricity markets. Especially, it is inevitable to address the environmental
concerns regarding electricity generation and consumption worldwide for sustainable develop-
ment. Moreover, since choices for consumers in electricity markets might increase and change,

novel factors of the utility will be enabled by new market mechanisms in the future.

4. Increasing the number of nodes in network models:
For all of the four problems presented in this thesis, expanding scales of the market models is
important since the number of nodes used in the simulation experiments is considered to be
smaller than that in the real world. For this purpose, algorithms to determine trading should be

improved to solve larger sizes of problems effectively.

5. Assuming heterogeneous switching costs of consumers:
Regarding the model for analyzing the switching behavior of consumers for Problem 3, adding
heterogeneity of switching costs of consumers might provide additional insights about the
behavior of consumers. This topic requires extensive numerical experiments since the number
of patterns in parameter conditions will considerably increase if consumers’ switching costs are

heterogeneous.

6. Adding dynamical transitions of electricity prices:
Adjusting prices in the market model for Problem 3 and Problem 4 will demonstrate more
practical information than current models. Since electricity prices are assumed to be fixed in the
proposed models in this thesis, market models should be extended to allow changes in electricity

prices.
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Appendix A

Convergence of consumers’ strategies in algorithms for

Problem 3

In the process of the evolutionary game for Problem 3 explained in Chapter 4, strategies of all buyers

will converge to D. We show the convergence of the strategies as follows.

Lemma 1 Each buyer b; will eventually discover only indifferent sellers after a sufficient number of

iterations if X; and preference relation of b; over s; do not change.

Proof: Suppose b; can find a preferred seller at every iteration. For iteration ¢ (r = 1,2,...), let
a;.‘l € X; be the seller from which b; purchases electricity at iteration 7 — 1. b; can divide X; into two
subsets: the set of preferred sellers P; = {sk | pj(se) — pj (aj._l) > &} and the set of indifferent sellers
Ij’ =X;\ PJ’. (SDJI. N Ij’ = ). For only b; € B, b; conducts the search for new alternatives at line 3
and 8 of Algorithm 3. For b; with both C and D, b; compares its current alternative with the other
alternatives suggested by the other buyers at line 3, 5, 9, and 15 of Algorithm 4.

The relationship between Ij’ , Pj’., and Ij’ *1 can be explained as follows. In this proof, it is assumed
that b; can find preferred seller every iteration 7. In this case, for a.’i‘1 discovered at + — 1 and

ai. (ai * aj._l) found at ¢, the following condition must be satisfied.
pj(ah) = ,uj(aj-_l) > g. (A1.1)

Let Pjt = {Sm € Xj | ,U_,‘(Sm) - ,uj(a;_l) > 8} and ]jt = {sm € Xj | ,Uj(Sm) - /'lj(a;'_l) < 8}' The
relationship between #; and I} can be represented as $; U I/ = X; and £ N I/ = @. Thus, d' is
contained in either Pj’. or Ijt. When condition (A1.1) is satisfied, a; € Pjt. .

We show that IJ? C Ij’“ if (A1.1) is satisfied. In other words, we explain s,, € Ij’“ if s, € Ijt .
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Since Ij’ ={sm € Xj | pj(sm) — ,uj(a;._l) <&}, uj(sm) — ,uj(a;._l) < &. Therefore,

pism) < pi(ah) + €. (A1.2)
Moreover, because Ij’“ = {sm € Xj | uj(sm) — pj(a}) < &}, pj(sm) — pjaj) < . Thus,

Hi(sm) < ,uj(a;) +&. (A1.3)
Furthermore, by (Al.1),

uj(a;._l) +e& < pjaj). (A1.4)

Since € > 0, even by adding ¢ to right side of (A1.4), the following condition is satisfied.

uj(a;._l) +e< ,uj(a_’i) + . (A1.5)
By (A1.2) and (A1.5),

Hi(sm) < ,uj(a;_l) +e< uj(a;.) + . (A1.6)

Condition (A1.6) means p;(s,,) satisfies (A1.3) if p;(s,,) satisfies (A1.2). Thus, if s,, € Ij’ based
on (Al.2), s, € Ij”l is also satisfied based on (A1.3). Therefore, Ij’ C IJ.’ 1,

Because a;. € Pj’., a;. ¢ IJ? . Furthermore, since Ij’ C Ij’“ and a;. ¢ Ijt, a;. € (IJ.’Jrl \Ij’). Let
Sq € (Ij’Jrl \IJ.’). Since s, € IJ.’“, wj(sy) — ,uj(a;) < &. Moreover, since s, ¢ Ij’, Sq € SD]’.. Hence,

(IJ.’ 1\ IJ.’ ) can be denoted as follows by using s,.
I[N T = {sg | pysg) - my(al) < &5, € P},
Therefore, we obtain the following relationship between Ij”l and Ijt .

Ijt+1 J;.t U (Ijt+1 \Ijt)’

T U {sq | pj(sq) — pj(a)) < &,54 € P}
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In the comparison of sellers, b; can find a preferred seller s; only if compared seller s is contained
in SDJ’.. For aj.‘l discovered at r — 1, if seller s (sx € X;) chosen at ¢ is a preferred seller, the following

condition is satisfied based on condition (4.1) in Chapter 4.

pi(si) — pi(a™) > &.

The set of preferred seller s; over aj._l is denoted by PJ’. ={sx € Xj | uj(sx) — ,uj(a;_l) > g}
a;. at the start of Algorithm 4 can be considered as follows to clarify the relationship between

Algorithm 4 and SD]’..

o If 0';‘1 =D:
aj. = aj.’l at the start of Algorithm 4 since a;. is initially set as aj. = a;.’l at line 12, Algorithm 2.

< Ifol”'=C:
If b; € By, Algorithm 3 will be executed at line 9, Algorithm 2. At iteration ¢, a; is initially set

as ai. = a;.‘l at line 1, Algorithm 3. However, if s,,(sp, € Xj, 5, # a’j_l) satisfying

wi(sm) = pj(a)) > & (aj = ") (AL7)

1

was discovered as a result of Algorithm 3, a;. = s,,. Therefore, aj. = a;.‘ or a;. = s, at the start

of Algorithm 4.

As described above, a;. = aj.‘l or a;. = s, at the start of Algorithm 4. We will show preferred

1

seller s; € X; over aj. is contained in SD;. in each case of aj. = aj._ or aj. = s, as follows.

e Ifdl = at.—l .
J J

If 55 € X satisfies the following condition, sy € SDJ’. .

pi(se) = pila™) > &. (A1.8)
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. Ifai.zsm:

Let s; € X; be a seller satisfying the following condition.

Mi(sk) = pj(sm) > €.(Sm € Xj, S # a;._l) (A1.9)
Since u;(sx) > pj(sm) + & by (AL.9) and & > 0, the following condition is satisfied.

Ki(si) > pj(sm)- (A1.10)
By subtracting p; (a;.‘l) from both sides of (A1.10),

ﬂj(sk)_ﬂj(a;'_l) > llj(sm)_ﬂj(a;_l)- (Al.11)
Condition (A1.7) indicates that

pi(sm) — pj@™h) > &. (A1.12)
By (Al.11) and (A1.12),

pi(se) = (@™t > pi(sm) = pi(a™) > & (A1.13)
Therefore, the relationship between ;(s) and y; (a;._l) can be denoted as

wi(se) — ,uj(aj-_l) > g. (A1.14)

Because (A1.14) is the same as (A1.8), these conditions indicate s; € 7’]". .

Based on the conditions described above, we will show that preferred sellers contained in PJ’. in

line 3, 5, 9, and 15 of Algorithm 4.
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line 3, Algorithm 4 (0'1’._l =C, o' =0)

bj regards a! € X; as a preferred seller if a! satisfies y;(a) — p j(a;.) > g, which is the condition

=1 r_ 1

of line 3. Since 0']’.‘1 =C, a]’. satisfies a;. =dlora

; ! , since the

Sm(sm # a;._l). If a;. = a;._
condition of line 3 is identical to ,uj(alf) - yj(ai._l) > g, it becomes the same as (A1.8). Besides,
if a;. = sp, the condition of line 3 can be described as y;(a}) — u;(s;n) > €. Let a} = s, and the
condition of line 3 is identical to (A1.10) in this case. Thus, alf € 7’]". if the condition of line 3 is

satisfied.

line 5, Algorithm 4 (0'/’._] =C, ol =0)

b; regards a;. € X; as a preferred seller if a;. satisfies u,-(a;.) — pi(al) > &, which is the condition

1 1

of line 5. Since o'l."l = C, a} satisfies a} = al™" or a} = syu(sy # af‘l). If a} = a!™", since the
condition of line 5 is identical to ,ui(a;) - ﬂi(al{_l) > g, it becomes the same as (A1.8). Besides,
if a! = s, the condition of line 5 can be described as ,u,-(a;.) — wi(s) > &. Let a;. = sy, and
the condition of line 5 is identical to (A1.10). Therefore, a;. € 7)[.’ if the condition of line 5 is

satisfied.

line 9, Algorithm 4 (0'/’._] =C,o!l"! = D)
bj regards a! € X; as a preferred seller if a! satisfies u;(a}) — u j(a;.) > g, which is the
condition of line 9. Since 0'1‘.‘1 =D, a;. = a;.‘l. Because the condition in line 9 is identical to

uj(a;) - ,uj(ai._l) > g, dl € PI’. as the same as condition (A1.8).

line 15, Algorithm 4 (0'/’._1 =D, Ui’_l =0C)
b; regards a;. € X; as a preferred seller if a;. satisfies ui(a;.) — pi(al) > &, which is the condition
of line 15. Since 0'1."1 =D, a = al?‘l. Because the condition in line 15 is identical to

ui(a_’].) - ,ui(al?_l) > &g, a;. € P/ as the same as condition (A1.8).

Otherwise, b; discovers s € Ijt, which is an indifferent seller. The following discussion is based

on the iteration ¢ at which the condition |P; | > 0 is satisfied. Let a;. € X; be a seller chosen by b; at ¢.

For iteration 1 + 1, Ij’” can be defined as Ij’“ = {sm | pj(sm) — pj(a;.) < &}. For IJ.’, P]t., and Ij’“,

t+1 _ 7t . —uat) < t : t : : t+1 : t+1
IJ. IJ U {sg | uj(sq) u](aj) <egs4€ PJ.}. Since a’ s at least contained 1an , the size oij

will be denoted by |]j’+1| > IIjtl + 1. Adversely, |SD;.+1| < IPJ’.| — 1 because SD;.“ ={sx | S\ I].’“}.

Thus, |SDJ’.| decreases at every iteration. Since |PJ’.| is finite, there must be an iteration u that satisfies

|PJL.‘| = 0 after the sufficiently large number of iterations. However, this contradicts the assumption

since there must be s; € P;‘ in the search of b; according to the assumption. O
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Lemma 2 With fixed X; and preference relation of b; over s;, |B’C| becomes 0 if Ilf steadily enlarges.

Proof: Let us explain b; must reach iteration ¢ at which b; can only find ajC € Ijt . As explained above,
Ij’ increases if a;. is updated due to the discovery of preferred seller in Pjt.. From the assumption of
Lemma 1, |X;| is fixed. Moreover, PJ’. UZJ.’ = X;, and SDJ’. ij’ = &. Thus, 7’}’. decreases if I]f increases.
If Ij’ continues increasing, finally Ij’ becomes Ij’ = X;. In this case, b; must discover only a.’,. € Ij’ in
Algorithm 3 and Algorithm 4.

However, even if Ij’ # X, bj can reach the situation in which b; only find a;. € Ij’ . In this case,
Ij’ does not increase. Thus, Algorithm 2 can terminate without satisfying Ij’ = X;. Besides, by the
assumption of Lemma 1, ¢; is fixed for all 5; € X;. Hence, u;(s;) is also fixed. Thus, if 5; € Ijt at r,
there is no iteration ¢’ at which s; € 7’;/ after 7. Therefore, b; must reach the iteration r at which b;

can only find a; € 1.

We show that p(b;) < 0 only if 0'; = C. As described in line 26 of Algorithm 2, the definition of
p(b;) is as follows.

p(bj) = pj(ay) = v +rj. (A2.1)

Since p_,-(a;.) > 0, rJ’. > 0, and y;. > 0, (A2.1) becomes p(b;) < 0 only if y]f. > 0.

o If a’j’. =C:
By line 10 of Algorithm 2, y;. > 0. By (A2.1), p(b;) can be p(b;) < 0.

o If 0'; =D:
By line 13 of Algorithm 2, y;. = 0. By (A2.1), if sz_ = D, p(b;) must satisfy p(b;) > 0.

Therefore, p(b;) < 0 is satisfied only if O'Jt. =C.
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Next, we show that p(b;) < 0if b; can only find a;. € Ijt at r. Atiteration ¢, if b; find only aj. € ij,
aj. = aj.‘l in Algorithm 3 and Algorithm 4. In this case, u j(aj.) = 0. Moreover, because ‘{’j = @ in
Algorithm 2 and Algorithm 4 in this case, the procedures of line 18-23 of Algorithm 2 will not be
executed. Therefore, r/‘ = 0. Furthermore, since 0'; =C, y;. > 0 according to line 10 of Algorithm 2.
By (A2.1), p(b;) < 0. Therefore, for b; with (7/’. = C, finally p(b;) < 0.

Finally, let us consider the transition of 0'1’. in the situation where p(b;) < 0 for all b; € B.. a'; is

determined after the process from line 28 to line 41 of Algorithm 2.

* If pruax < 0:
Since pmax < 0, for b; and all buyer by adjacent to b;, p(b;) < 0, p(by) < 0. Thus, (rjf. = C and
oy = C. o7 will be changed to o} = D by line 29-31, Algorithm 2.

* If pax = 0 :
0';. will be determined to either C or D according to the condition of line 35-37 of Algorithm
2. Since p(b;) < 0 for b; with O'Jt. = C, 0}, = D for b,, with pnax > 0. Because p(b;) < 0 and
o}, = D, the conditions of line 35, 36 of Algorithm 2 are satisfied. Thus, strategy of b; becomes

0';. = D in this case.

As described above, since all buyer b; € B‘C finally decide o7, = D, finally |B’C| =0. O
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Theorem 1 After sufficiently large number of iterations, all buyer b; € B eventually choose 0'; =D

at an iteration t if X; and preference relation of b; over s; do not change.

Proof: Suppose |BtC| > 0 at every iteration z. As shown in Lemma 1, b; € B can only find s; € Ij’
after a sufficient number of iterations. For b; € B’C, u(bj) = 0since s; € 7)]’. cannot be found.
Suggestion conducted by b; cannot be succeeded because any other by € B do not have s; € Pj’. .
As described above, aj. € ‘Pl? holds if each of conditions in line 5 and 15 of Algorithm 4 is met. Then,
a;. will be added to ¥/ in line 6 and 16 in Algorithm 4. Similarly, a} € 7’}’. holds if each of conditions

in line 3 and 9 of Algorithm 4 is met. a! will be added to ‘Pj. in line 4 and 10 in Algorithm 4.

Conversely, conditions of line 5 and 15 in Algorithm 4 are not met if a;. € I!. Since no seller will
be added to ‘Pi’ in this case, ‘Plf = ¢. Likewise, conditions of line 3 and 9 in Algorithm 4 are not met

if aj. € Ij’. Because no seller will be added to ‘P; in this case, ‘P; =g

If 7’; = @ for bj, ‘Pj. = @ as described above since Ij’ = X and a;. € I'. The condition of line 18
in Algorithm 2 is not met in this condition. Therefore, line 19 of Algorithm 2 will not be reached in
this case.

Hence, r; =0, and p(b;) = —y;.. Therefore, p(b;) < 0. Considers the following two cases divided

according to | B},|.

Case 1. |B})| # 0:
Both of strategies C and D remain at any iteration ¢ in this case. For by € B, p(by) > 0 since

r; = 0due to o} = D. Thus, for b; € B, and by € By, p(by) > p(b;). As described in line 29-31

k k
in Algorithm 2, b; change (r]f. from C to D. Hence, | B(.| finally becomes zero at an iteration ¢. This

contradicts the assumption.

Case 2. |B),| = 0:
In this case, all buyers choose strategy C at any iteration. Since |B’C| = |B|, p(bj) < 0and p(by) < O
for any pair of buyers b;, by € Bl.. As described in line 29-31 in Algorithm 2, b; € B change (r]t.
from C to D if p(b;) < 0. Thus, |B| finally becomes zero at an iteration ¢. This contradicts the

assumption. O
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