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INTRODUCTION 
 

Friend murine leukemia virus (MLV) is a member of simple retroviruses in the Retroviridae 

family, with a genome that contains (from 5’ to 3’) a 5’ LTR, 5’ leader sequence, gag, pol, env, and 

3’ LTR. The gag gene encodes the structural proteins of the virion and the pol gene encodes a 

protease, reverse transcriptase and integrase. The env gene encodes the Env protein, which has a 

surface domain (SU) and a transmembrane domain (TM). There is a 5’ splice site (5’ss) in the 5’ 

leader sequence of the gag gene and a 3’ splice site (3’ss) in the 3’ end of the pol gene. Both 

full-length unspliced and spliced mRNAs are produced in MLV-infected cells. Gag and Pol proteins 

are translated from unspliced mRNAs and the Env protein is translated from spliced mRNA (Coffin 

et al., 1997). The MLV Env protein plays important roles both in viral adsorption to host cells and 

in induction of neuropathogenic disease in MLV-infected mouse and rat hosts (DesGroseillers et al., 

1984; Masuda et al., 1993; Masuda et al., 1992; Paquette et al., 1989; Szurek et al., 1988; 

Takase-Yoden and Watanabe, 1997; Yuen et al., 1986). In previous studies, we showed that the 

expression level of neuropathogenic A8-MLV Env is correlated with neuropathogenicity 

(Takase-Yoden et al., 2006; Takase-Yoden and Watanabe, 2005). Therefore, definition of the 

regulatory mechanism of Env expression and production of env-mRNA is important for 

understanding the functions of the Env protein. We previously found that splicing is important for 

increasing env-mRNA stability and translation (Yamamoto and Takase-Yoden, 2009). However, the 

detailed mechanism for gene expression of MLV due to splicing is still not clear. 

Processing of the 3’ ends of mRNA is a factor in regulation of protein expression or 

translation efficiency. The mRNAs of eukaryotic cells have 3’ poly(A) tails that are produced by a 

two-step reaction involving endonucleolytic cleavage and subsequent poly(A) tail synthesis 

(Danckwardt et al., 2008; Millevoi and Vagner, 2010). The specificity and efficiency of 3’ end 

processing is determined by the binding of multiprotein complexes to specific elements at the 3’ 

end of the pre-mRNA. The length of the poly(A) tail is similar (approximately 250 A nucleotides) 

in different mRNAs, and is thought to be determined by interaction between the nuclear 

poly(A)-binding proteins (PABPN1, PABP2), cleavage/polyadenylation specificity factor (CPSF) 

and poly(A)-polymerase (PAP). After nuclear export of mRNA, PABPN1 is replaced by the cytosol 
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poly(A)-binding protein (PABPC), which interacts with the translation initiation factor eIF4G to 

stimulate translation and regulate mRNA stability (Kuhn and Wahle, 2004; Mangus et al., 2003). 

Furthermore, PABPC can interact with translation termination factor eRF3, indicating that the 

poly(A) tail has a role in translation termination and possibly ribosome recycling (Cosson et al., 

2002). mRNA polysome structure is another factor that regulates protein expression or translation 

efficiency. Multiple ribosomes can bind to an mRNA to form a polysome structure, enabling many 

ribosomes to progress along an mRNA simultaneously to synthesize the same protein. In eukaryotic 

cells, mRNA bound with a cluster of ribosomes (polysomes) circularize primarily by interaction 

between the poly(A) binding protein and the translation initiation factor to bind the mRNA 5’ end 

(Gierer, 1963; Warner et al., 1963; Warner et al., 1962). mRNA circularization produces a cycle of 

rapid ribosome recycling.  

Splicing in eukaryotic cells involves a series of reactions catalyzed by the spliceosome. The 

spliceosome is a ribonucleoprotein complex that removes introns from precursor mRNA (Kramer, 

1996; Smith and Valcarcel, 2000). For splicing to occur, a branch point is required within the intron 

in addition to a 5’ss and a 3’ss. The sequences of the 5’ss, 3’ss and branch point are short and have 

been poorly conserved during evolution; we have frequently identified these sequences in genes. 

The presence of the 5’ss, 3’ss, and branch point in genes is not sufficient for the proper recognition 

of exonic and intronic sequences and regulation of splicing. Other regulatory cis-elements are 

required for the recognition of splice sites; these elements are classified according to their location 

and function and are known as exonic and intronic splicing enhancers (ESEs and ISEs, respectively) 

or exonic and intronic splicing silencers (ESSs and ISSs, respectively) (Blencowe, 2000; Cartegni et 

al., 2002; Schaal and Maniatis, 1999; Singh and Valcarcel, 2005). The best characterized ESEs and 

ISEs have purine-rich sequences that recruit splicing activators from the SR protein family 

(Graveley, 2000). The splicing activators bind to ESEs and ISEs and interact with spliceosomal 

factors recruited to the 5’ss and 3’ss. As a result, recognition of appropriate 5’ss and 3’ss is 

promoted (Busch and Hertel, 2012; Graveley, 2000; Lin and Fu, 2007; Manley and Krainer, 2010; 

Zhou and Fu, 2013). The best characterized ESSs and ISSs are recognized by members of the 

hnRNP family including polypyrimidine track-binding protein (PTB) (Black, 2003; Busch and 

Hertel, 2012). Several mechanisms have been proposed for ESS- or ISS-mediated splicing 
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suppression: (a) binding of hnRNPs to the ESS blocks the interaction of splicing factors such as SR 

proteins; (b) the propagation of hnRNP or PTB binding from a site of high-affinity located in an 

exon or an intron, respectively, block the binding of a splicing factor such as an SR protein; (c) an 

hnRNP inhibits exon definition when bound to the exon, or inhibits intron definition when bound to 

the intron; (d) and, for hnRNP A1, H and PTB, interactions between bound hnRNPs loop out 

portions of a pre-mRNA to promote exon skipping or stimulate intron definition (Blanchette and 

Chabot, 1999; Martinez-Contreras et al., 2007; Martinez-Contreras et al., 2006; McNally et al., 

2006; Singh and Valcarcel, 2005; Spellman and Smith, 2006; Wagner and Garcia-Blanco, 2001). In 

human immunodeficiency virus type-1 (HIV-1), which produces many types of mRNA by 

alternative splicing, the cis-regulatory sequences responsible for recognition of splice sites, such as 

ESEs/ISEs or ESSs/ISSs, have been identified (Amendt et al., 1994; Amendt et al., 1995; Exline et 

al., 2008; Jacquenet et al., 2001; Kammler et al., 2001; Kammler et al., 2006; Madsen and Stoltzfus, 

2005; Si et al., 1997; Si et al., 1998; Staffa and Cochrane, 1995; Stoltzfus, 2009). Alternative 

splicing of HIV-1 is regulated by these elements through the recruitment of splicing regulatory 

proteins belonging to the SR protein family (SF2/ASF, SC35, 9G8, SRp40, SRp55, and SRp75) or 

to the hnRNP protein family (hnRNP A/ B, hnRNP H) (Bilodeau et al., 2001; Caputi et al., 2004; 

Caputi and Zahler, 2002; Domsic et al., 2003; Jacquenet et al., 2005; Stoltzfus and Madsen, 2006; 

Tange et al., 2001; Tange and Kjems, 2001; Tranell et al., 2010; Zahler et al., 2004; Zhu et al., 

2001). 

MLV and other simple retroviruses have no regulatory genes, such as those that control gene 

expression, including splicing events, in lentiviruses. There are, however, several reports of splicing 

regulation in simple retroviruses. In Moloney MLV, it was reported that the CA-encoding region 

within the gag gene is a negative cis-regulatory element and that the region immediately upstream 

of the 3’ss is a positive cis-regulatory element that regulates expression of the unspliced RNA 

(Hoshi et al., 2002; Oshima et al., 1998; Oshima et al., 1996). Rous sarcoma virus and other 

members of the avian leukosis virus family contain a unique cis-acting element, termed the negative 

regulator of splicing (NRS), that acts globally to repress splicing to both the env and src splice sites 

(Arrigo and Beemon, 1988; Cook and McNally, 1999; Fogel and McNally, 2000; Giles and 

Beemon, 2005; Katz et al., 1988; McNally and Beemon, 1992; McNally et al., 1991; Stoltzfus and 
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Fogarty, 1989). Cellular factors, such as the serine/arginine-rich (SR) protein and heteronuclear 

ribonucleoprotein (hnRNP) H, are recruited to the NRS of Rous sarcoma virus, resulting in the 

regulation of recognition of splice sites (Fogel and McNally, 2000; McNally and McNally, 1996, 

1998). We have also shown that the positive and negative regulatory regions within the intron that 

controls Env expression in Fr-MLV at the level of env mRNA expression do so by controlling 

splicing efficiency (Yamamoto and Takase-Yoden, 2009). In addition, the proximal sequence of the 

5’ss of MLV contains cis elements that regulate splicing efficiency (Abbink and Berkhout, 2008; 

Choo et al., 2013; Kraunus et al., 2004; Zychlinski et al., 2009). Overall, however, the molecular 

mechanisms that regulate splicing in MLV, including the selection of splice sites, are not well 

understood.  

In this thesis, we focused on splicing to understand mechanisms for posttranscriptional 

regulation of gene expression of MLV. In Chapter 1, effects of splicing of Friend MLV env-mRNA 

on its 3’ end processing and polysome structure formation were analyzed. The results showed that 

splicing of MLV promoted the efficiency of complete polyadenylation of env-mRNA and the 

formation of env-mRNA polysome structures. These splicing-dependent phenomena were not 

observed with expression vectors in which the env gene was replaced by the luciferase (luc) gene. 

In Chapter 2, cis-elements that regulate splicing were analyzed. It was indicated that the 38 nt 

fragment within gag plays an important role in splicing at the correct 5’ss and 3’ss of MLV. Further 

analyses showed that a region (1183–1611 nt) upstream of the 38 nt fragment also contains 

sequences that positively or negatively influence splicing at the correct splice sites. In addition, the 

38 nt fragment appears to exert this function in cooperation with a region located just upstream of 

the 3’ss. In each Chapter, possible molecular mechanisms for posttranscriptional regulation of gene 

expression of MLV were discussed. 
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Chapter 1  
 
Effects of splicing of Friend murine leukemia virus env-mRNA 
on its 3’ end processing and polysome structure formation  
 

MATERIALS AND METHODS 
 

Cell culture and transfection 

Hela cells were grown in Dulbecco’s Modified Eagle’s Medium - low glucose 

(Sigma-Aldrich) supplemented with 10% fetal calf serum (MP Biomedicals), 50 units penicillin 

(Gibco)/ml and 50 µg streptomycin (Gibco)/ml, at 37°C in 5% CO2. NIH3T3 cells were grown 

using the same conditions as Hela cells except NIH3T3 cells were incubated in 7% CO2. The cells 

(1 x 106 cells) were transfected with 8 µg env or luciferase (luc) expression vectors using 

Lipofectamine 2000 Reagent (Invitrogen) diluted with Opti MEM (Invitrogen) according to the 

manufacturer's instructions. Construction of the vectors used in this study was described previously 

(Yamamoto and Takase-Yoden, 2009). However, vectors m1 and m1gpL were previously 

designated proA8m1 and proA8gpL, respectively. G to T (nt 2608), G to T (nt 2614) and G to T (nt 

2629) mutations were introduced into the pol region in m1 and m1gpL to suppress progeny virus 

production. m1 and m1gpL also had A to T (nt 2126) and T to A (nt 2777) point mutations. 

 

Determination of poly(A) tail length 

Hela cells were transfected with vectors and total RNA was extracted 24 h post-transfection 

using an RNeasy Mini Kit (QIAGEN) according to the manufacturer's instructions. After treatment 

with RNase-free DNase (QIAGEN), 4 µg RNA was added to each ligation reaction. As shown in 

Figure 1, the anchor primer oligo1 (5’-GGGACAGCCTATTTTGCTAG-3’) was ligated to the 3’ 

end of the RNA and reverse transcription (RT) then was carried out using the poly(dT)+oligo2 

primer (5’-CTAGCAAAATAGGCTGTCCCTTTTTTTTTT-3’), which has the oligo1 antisense 

sequence and 10 T nucleotides, or oligo2 primer (5’-CTAGCAAAATAGGCTGTCCC-3’), which is 

complementary to the oligo1 sequence. Nested PCR was carried out to amplify the viral mRNA  
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Figure 1 Experimental design in this study. (A) Experimental design to determine the poly(A) 

tail length of mRNA by nested PCR. (B) Putative structure of the nested PCR product. *: It is 

generally known that cleavage of the 3’ end of mRNA for poly(A) tail addition usually occurs 

15-30 nt downstream of the poly(A) addition signal (Elkon et al., 2013).  
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poly(A) tail. In the first PCR, a forward oligo3 primer targeting the 3’ end of U3 in the 3’ LTR 

(5’-GCCCTATAAAAGAGCTCACAACC-3’) and a reverse oligo2 primer were used. After 

purification of the first PCR products using a MicroElute Clean-Up Column (FAVORGEN), a 

second PCR was performed. In the second PCR, a forward oligo4 primer targeting the 5’ end of the 

R region in the 3’ LTR (5’-AGTCCTCCGACAGACTGAGT-3’) and a reverse oligo5 primer 

targeting the 3’ end of the oligo2 and poly(dT) sequence (5’-AAAATAGGCTGTCCCTTTTT-3’) 

were used. To determine the poly(A) tail length of gapdh-mRNA as a control, in the first PCR, a 

forward primer hGAPDH3end (5’-ACCACACTGAATCTCCCCT-3’) targeting the upstream 

region of the poly(A) signal and a reverse oligo2 primer were used. After purification of the first 

PCR products using a MicroElute Clean-Up Column (FAVORGEN), a second PCR was performed. 

In the second PCR, a forward hGAPDH3end2 (5’-CATGTAGACCCCTTGAAGAG-3’) primer 

targeting the downstream region of hGAPDH3end and a reverse oligo5 primer were used. The 

resulting PCR products were separated by electrophoresis on a 5% polyacrylamide gel in TBE 

buffer [50 mM Tris-HCl (pH 8.0), 48.5 mM boric acid, 2 mM EDTA] and stained with ethidium 

bromide. The size of DNA contained in the band was determined by reference to a standard curve 

generated using the known sizes of the marker DNAs and their mobilities.  To analyze the 

sequences of the bands separated by electrophoresis, the bands were extracted from the gels using a 

QIAquick Gel Extraction Kit (QIAGEN) and cloned into a pGEM-T-easy vector (pGEM-T-easy 

Vector System; Promega). The sequences of the cloned fragments in T-easy vectors were amplified 

using T7 (5’-GTAATACGACTCACTATAGGGC-3’) or sp6 

(5’-ATTTAGGTGACACTATAGAA-3’) primers and a BigDye Terminator v 3.1 Cycle 

Sequencing Kit (Applied Biosystems). The sequences were analyzed using an ABI PRISMOR 3100 

Genetic Analyzer (Applied Biosystems). 

 

Detection of cDNA synthesized from env- and luc-mRNA by PCR  

To detect the cDNAs from env- and luc-mRNA in the RT reaction products, after RT 

synthesis using the poly(dT)+oligo2 primer, PCR with forward primer s1 

(5’-GAGACCCTTGCCCAGGGA-3’) and reverse primer s2 (5’-TGCCGCCAACGGTCTCC-3’) 

was performed using Go Taq (Promega). The PCR products were separated by electrophoresis on 
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2% agarose gels in TBE buffer and stained with ethidium bromide. Control samples without the 

cDNA synthesis step did not yield these specific bands. 

 

Quantitation of cDNA synthesized from vector mRNAs by real-time PCR 

To evaluate the copy numbers of cDNAs from env- and luc-mRNA in the RT reaction 

products after RT synthesis using the poly(dT)+oligo2 primer, quantitative real-time PCR was 

performed as described previously (Yamamoto and Takase-Yoden, 2009). Briefly, the primers and 

probe used to quantitate cDNA of env- and luc-mRNA were forward s1-primer, reverse s2-primer, 

and TaqMan ss-probe (5’-CACCACCGGGAGCTCATTTACAGGCAC-3’). These primers were 

designed to amplify the exon-exon junction region of env- and luc-mRNA. The copy numbers of 

cDNAs corresponding to env- and luc-mRNA were determined by standard curves that were created 

using serially diluted splA8 plasmid and splA8L plasmid, respectively. The primers and probe used 

to quantitate cDNA corresponding to total RNA from the m1 and splA8 vectors were forward 

e1-primer (5’-AGGACCTCGGGTCCCAATAG-3’), reverse e2-primer 

(5’-TTAGGTAGCGGGAACGAAAGTT-3’), and TaqMan e-probe 

(5’-CCGAACCCCGTCCTGGCAGAC-3’). The copy numbers of cDNAs corresponding to total 

RNAs from the m1 and splA8 vectors were determined using standard curves that were created 

using serially diluted splA8 plasmid. The primers and probe used to quantitate total RNA from the 

m1gpL and splA8L vectors were forward L1-primer (5’-CGGCTTCGGCATGTTCA-3’), reverse 

L2-primer (5’-TACATGAGCACGACCCGAAA-3), and TaqMan L-probe 

(5’-CACGCTGGGCTACTTGATCTGCGG-3’). The copy numbers of cDNAs corresponding to 

total RNA from the m1gpL and splA8L vectors were determined using standard curves that were 

created using serially diluted splA8L plasmid. To quantitate cDNA from gapdh-mRNA, TaqMan 

Human GAPDH Control Reagents containing primer sets and a probe (Applied Biosystems) were 

used. The copy number of cDNA from gapdh-mRNA was determined by standard curves that were 

created by using serially diluted gapdh T-easy vector containing a fragment of the human gapdh 

gene. The copy number of cDNA from mRNA of vectors was normalized relative to the copy 

number of cDNA from cellular gapdh-mRNA. Negative control samples without the cDNA 

synthesis step did not show specific amplification. 
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Quantitation of vector DNA in transfected cells 

To quantitate the vector DNA in transfected cells, cellular genomic DNA was extracted using 

a DNeasy Blood and Tissue Kit (QIAGEN) according to the manufacturer's instructions. A sample 

of the resulting DNA was analyzed by real-time PCR using specific primers and the TaqMan probe 

with a 7500 Real-Time PCR System (Applied Biosystems). The primers and probe used to 

quantitate the DNA introduced by m1 and splA8 were forward e1-primer, reverse e2-primer, and 

TaqMan e-probe. The copy numbers of m1 and splA8 DNAs were determined using standard 

curves that were created using serially diluted m1 plasmid and splA8 plasmid, respectively. The 

primers and probe used to quantitate the DNA introduced by m1gpL and splA8L were forward 

L1-primer, reverse L2-primer, and TaqMan L-probe. The copy numbers of DNAs of m1gpL and 

splA8L were determined using standard curves that were created using serially diluted m1gpL 

plasmid and splA8L plasmid, respectively. The amount of gapdh DNA was measured as an internal 

control using TaqMan Human GAPDH Control Reagents containing primer sets and a probe 

(Applied Biosystems). The copy number of gapdh DNA was determined using a standard curve that 

was created using serially diluted gapdh T-easy vector plasmids. The copy number of DNA of 

introduced plasmid was normalized relative to the copy number of gapdh DNA.  

 

Fractionation of cell lysates by sucrose density gradient centrifugation 

Polysome fractions were obtained by fractionation of cell extracts by sucrose density gradient 

centrifugation as described previously (Esposito et al., 2010). Briefly, transfected or infected 

NIH3T3 cells (6 x 106) were incubated in medium containing 100 µg cycloheximide/ml for 15 min. 

The cells then were lysed in 1 ml hypotonic lysis buffer [1.5 mM KCl, 2.5 mM MgCl2, 5 mM 

Tris-HCl (pH 7.4), 1% Triton X-100, 1% sodium deoxycholate, 100 µg cycloheximide/ml, 1 mM 

dithiothreitol, 100 units RNase inhibitor (TaKaRa)/ml]. After 10 min on ice, lysates were 

centrifuged at 10,000 x g for 10 min and the resulting cytosol-containing supernatant was removed 

and layered onto a 10-50% sucrose density gradient in buffer [80 mM NaCl, 5 mM MgCl2, 20 mM 

Tris-HCl (pH 7.4), 1 mM dithiothreitol]. After ultracentrifugation in an SW 41 rotor in an Optima 

XL-90 ultracentrifuge (Beckman) at 30,000 rpm for 3 h at 4°C, 16 fractions were obtained. The 

RNA in each fraction was extracted using TRIzol LS Reagent (Invitrogen) and measured by 
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absorbance at 260 nm using Gene Quant pro (Amersham Biosciences). 

 

Detection of ribosomal RNA 

Extracted RNA from each fraction was denatured in sample buffer [50% (v/v) formamide, 1x 

MOPS �20 mM MOPS, pH 7.0, 8.3 mM NaAc, 1 mM EDTA), 15% (v/v) formaldehyde, 3.35% 

(v/v) ethidium bromide] and analyzed by electrophoresis on a 1% denaturing agarose gel. The 28S 

and 18S rRNAs were detected as ethidium bromide-stained bands on the gels. 

 

Quantitation of env-, luc-, and gapdh-mRNA in each fraction by real-time RT-PCR  

Extracted RNA from each fraction was treated with RNase-free DNase (QIAGEN). Equal 

volume samples of each fraction were used as template for reverse transcription (RT) using an 

oligo(dT) primer (Invitrogen). In its volume of the fraction that had a largest absorbance peak at 

260 nm, 2 µg RNA was contained. A portion of the resulting cDNA was amplified by real-time 

PCR using a 7500 Real-Time PCR System (Applied Biosystems). The primers and probe used to 

quantitate env- and luc-mRNA were forward s1-primer, reverse s2-primer, and TaqMan ss-probe. 

To quantitate gapdh mRNA, TaqMan Rodent GAPDH Control Reagents containing primer sets and 

probe (Applied Biosystems) were used. Standard curves used to calculate the amount of mRNA 

were produced using serial dilutions of splA8 plasmid and gapdh T-easy vector containing a 

fragment of the Rodent gapdh gene. Negative control samples without the cDNA synthesis step did 

not show specific amplification. 
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RESULTS 
 

Deteremination of poly(A) tail length of MLV mRNA 

The poly(A) tail length of mRNA from MLV was analyzed by the methods as described in 

Figure 1A. The putative structure of the nested PCR product is also presented in Figure 1B.  The 

m1 vector carried the full-length A8-MLV provirus genome and generated spliced env-mRNA (Fig. 

2A). Electrophoretic analysis of the products of nested PCR using oligo4 and oligo5 primers 

showed a smear in the 100-200 bp range in the mRNA from samples obtained from m1-transfected 

cells (lane 1 of Fig. 2B). Sequence analysis showed that these smears contained multiple A 

nucleotides 11-21 nt downstream of the poly(A) addition signal (AAUAAA). As a control, the 

poly(A) tail length of gapdh-mRNA was determined in m1-transfected cells. There were no 

differences in the poly(A) tail smear patterns of the gapdh-mRNAs from m1- and mock-transfected 

cells (bottom of Fig. 2B). 

 

Effects of splicing on the poly(A) tail length of env-mRNA 

To examine whether env-mRNA splicing affected polyadenylation of the mRNA, the poly(A) 

tail length of spliced env-mRNA and unspliced env-mRNA were compared using the m1 and splA8 

vectors (Fig. 2A). The splA8 vector was designed to generate unspliced env-mRNA by deletion of 

the intron region in m1. Electrophoretic analysis of the nested PCR products showed a smear in the 

100-200 bp range for mRNA obtained from splA8-transfected cells (lane 3 of Fig. 2B). Sequence 

analysis showed that these smears contained multiple A nucleotides 11-21 nt downstream of the 

poly(A) addition signal (AAUAAA). Interestingly, an approximately 70 bp band was also detected 

in RNA from splA8-transfected cells. Sequence analysis showed that this band came from mRNA 

in which 5-8 A nucleotides were attached just downstream of the poly(A) addition signal and the 

oligo1 sequence (Fig. 2B). This band was not observed in m1-transfected cells, as shown in lane 1 

of Figure 2B. In this experimental system, the length of the mRNA poly(A) tail could be 

determined in both unspliced full-length MLV mRNA and in spliced env-mRNA from 

m1-transfected cells. Therefore, to confirm that the first strand of cDNA synthesized by RT using 

the poly(dT)+oligo2 primer contained env-mRNA, PCR was performed using s1 and s2 primers.  
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Figure 2 Analysis of poly(A) tail length of mRNA from m1- and splA8-transfected cells. (A) 

Structures of the MLV provirus genome, the vectors used in this study, and env-mRNA. 5’ss, 5’ 

splice site; 3’ss, 3’ splice site. (B) Determination of poly(A) tail length of mRNA from m1- and 

splA8-transfected cells by using the poly(dT)+oligo2 primer for the RT reaction. The poly(A) tail 

length of the mRNA from each sample was analyzed by nested RT-PCR as described in Materials 

and Methods and Fig. 1. The PCR products were separated by electrophoresis. As a control, the 

gapdh-mRNA poly(A) tail length was analyzed in m1- and splA8-transfected cells. This figure is 

representative of 5 independent experiments that yielded similar results. Sequence analysis of the 

indicated bands in (B) was performed by TA-cloning as described in Materials and Methods. (C) 

Detection of cDNA synthesized from env-mRNA obtained from m1- and splA8-transfected cells 

with a poly(dT)+oligo2 primer. (D) Measurement of the copy number of cDNA synthesized from 

env-mRNA and total viral RNA with the poly(dT)+oligo2 primer, and the copy number of vector 

DNA in m1- and splA8-transfected cells by real-time PCR. The amount of cDNA from env-mRNA 

was measured by quantitative real-time PCR using s1 and s2 primers and an ss-probe. The amount 

of cDNA from total viral RNA and vector DNA was measured by quantitative real-time PCR using 

e1 and e2 primers and an e-probe. The mean values from 3 independent experiments and SEM are 

shown. Statistical comparison was performed using the t test. *: p<0.01� (E) Determination of the 

poly(A) tail length of mRNA from m1- and splA8-transfected cells by using the oligo2 primer for 

the RT reaction. The poly(A) tail length of the mRNA from each sample was analyzed by nested 

RT-PCR as described in Materials and Methods and Fig. 1. As a control, the gapdh-mRNA poly(A) 

tail length was analyzed in m1- and splA8-transfected cells. This figure is representative of 3 

independent experiments that yielded similar results. 
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These primers were designed to amplify the 94 bp fragment containing the splicing junction region 

in the cDNA from env-mRNA. As shown in Figure 2C, 94 bp bands were detected in cDNA of 

env-mRNA from m1- and splA8-transfected cells. All 94 bp bands were confirmed to come from 

env-mRNA by sequence analysis (data not shown). In addition, the copy number of cDNA 

synthesized from env-mRNA was evaluated by quantitative real-time PCR using s1 and s2 primers 

and the ss-probe. The copy number of cDNA from splA8 env-mRNA was 5.3-fold more than that 

synthesized from m1 env-mRNA (Fig. 2D). The copy number of cDNA synthesized from total viral 

RNA was also evaluated by quantitative real-time PCR using e1 and e2 primers and an e-probe, and 

it was not significantly different from results obtained for RNA from m1- and splA8-transfected 

cells. The transfection efficiency, which was measured by the copy number of plasmid DNA in 

transfected cells, was not significantly different in m1- and splA8-transfected cells. To confirm the 

finding that the approximately 70 bp band was detected only in splA8-transfected cells that 

contained unspliced env-mRNA but not in m1-transfected cells that contained spliced env-mRNA, 

the amount of template cDNA for the 1st PCR was normalized by the amount of cDNA synthesized 

from env-mRNA; the volume of the RT reaction mixture containing m1 cDNA used as a template 

for the first PCR was 5.3 times that of the RT reaction mixture containing splA8 cDNA. The nested 

PCR reactions produced a smear in the 100-200 bp range for mRNA from m1-transfected cells, but 

the approximately 70 bp band was not detected (lane 2 of Fig. 2B). 

Since the poly(dT)+oligo2 primer used in the RT reaction contains 10 T nucleotides, mRNA 

with less than 10 A nucleotides cannot be reverse transcribed. To examine whether other kinds of 

abnormal mRNAs with less than 10 A nucleotides existed in the transcripts of m1 and splA8, the 

oligo2 primer, which has no T nucleotide, was used for the RT reaction and then nested PCR was 

performed. Electrophoretic analysis of the nested PCR products showed a smear in the 100-200 bp 

range in the mRNA of the samples from m1-transfected cells (lane 1 of Fig. 2E). In RNA from 

splA8-transfected cells, bands in the 100-180 bp range were detected (lane 2 of Fig. 2E). Sequence 

analysis showed that these smears contained multiple A nucleotides, similar to the smear that was 

detected when the poly(dT)+oligo2 primer was used for the RT reaction (data not shown). The 

approximately 70 bp band was also detected in splA8-transfected cells (lane 2 of Fig. 2E). Sequence 

analysis showed that this band came from mRNA in which 2-8 A nucleotides were attached just 
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downstream of the poly(A) addition signal and the oligo1 sequence (Fig. 2E). There was no 

difference in the poly(A) tail smear patterns of control gapdh-mRNA from m1-, splA8-, and 

mock-transfected cells in the RT reactions using the oligo2 primer (the bottom panel of Fig. 2E). 

 

Effects of splicing on the poly(A) tail length of luc-mRNA  

Previous studies that utilized m1gpL and splA8L vectors in which the env gene in m1 and 

splA8 was replaced by the luc gene (Fig. 3A) demonstrated that splicing of luc-mRNA did not 

influence its stability or translation efficiency (Yamamoto and Takase-Yoden, 2009). The effect of 

luc-mRNA splicing on its polyadenylation in cells transfected with m1gpL and splA8L was 

investigated. As shown in Fig. 3B, 94 bp bands were produced from cDNA synthesized from 

luc-mRNA obtained from m1gpL- and splA8L-transfected cells. The copy number of cDNA from 

luc-mRNA was also measured by quantitative real-time PCR using s1 and s2 primers and an 

ss-probe. The copy number of cDNA synthesized from luc-mRNA from splA8L-transfected cells 

was 1.9-fold more than that from m1gpL-transfected cells (Fig. 3C). The copy number of cDNA 

synthesized from total vector RNA was measured by real-time PCR using L1 and L2 primers and an 

L-probe, and it did not differ significantly between m1gpL- and splA8L-transfected cells. The 

transfection efficiency also did not differ significantly between m1gpL- and splA8L-transfected 

cells. As shown in Figure 3D (lanes 1-3 of the upper left panel), when the poly(dT)+oligo2 primer 

was used for the RT reaction, the nested PCR products showed a smear in the 100-200 bp range for 

mRNA from all samples obtained from m1gpL- and splA8L-transfected cells, but the 

approximately 70 bp band was not detected. There was also no difference in the poly(A) tail smear 

patterns of control gapdh-mRNA from m1gpL-, splA8L-, and mock-transfected cells (lower left 

panel of Fig. 3D). When the oligo2 primer was used for the RT reaction, nested PCR produced a 

smear in the 100-200 bp range in the mRNA of the samples from m1gpL- and splA8L-transfected 

cells, but the approximately 70 bp band was not detected (upper right panel of Fig. 3D). There was 

also no difference in the poly(A) tail smear patterns of control gapdh-mRNA from m1gpL-, 

splA8L-, and mock-transfected cells (lower right panel of Fig. 3D). 
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Figure 3 Analysis of poly(A) tail length of mRNA from m1gpL- and splA8L-transfected cells. 

(A) Structures of the MLV provirus genome, the vectors used in this study, and luc-mRNA. 5’ss, 5’ 

splice site; 3’ss, 3’ splice site. (B) Detection of cDNA synthesized from luc-mRNA obtained from 

m1gpL- and splA8L-transfected cells with a poly(dT)+oligo2 primer. (C) Measurement of the copy 

number of cDNA synthesized from luc-mRNA and total RNA from the luc-vector with a 

poly(dT)+oligo2 primer, and the copy number of vector DNA in m1gpL- and sp1A8L-transfected 

cells by real-time PCR. The amount of cDNA from luc-mRNA was measured by quantitative 

real-time PCR using s1 and s2 primers and an ss-probe. The amount of cDNA from vectors and 

vector DNA was measured by quantitative real-time PCR using L1 and L2 primers and an L-probe. 

The mean values from 3 independent experiments and SEM are shown. Statistical comparison was 

performed using the t test. *: p<0.01 (D) Determination of the poly(A) tail length of mRNA from 

m1gpL- and sp1A8L-transfected cells by using the poly(dT)+oligo2 primer and the oligo2 primer 

for the RT reaction. The poly(A) tail length of the mRNA from each sample was analyzed by nested 

RT-PCR as described in Materials and Methods and Fig. 1. As a control, the gapdh-mRNA poly(A) 

tail length was analyzed in m1gpL- and splA8L-transfected cells. This figure is representative of 5 

(RT by poly(dT)+oligo2 primer) or 3 (RT by oligo2 primer) independent experiments that yielded 

similar results. 
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Effects of splicing on formation of env-mRNA polysome structures 

Since the MLV genome has a 5’ss in the 5’ leader sequence and a 3’ss in the 3’ end of the pol 

gene, both full-length unspliced mRNA and spliced env-mRNA are produced from the provirus. We 

have previously shown that splicing of env-mRNA promotes translation of the Env protein 

(Yamamoto and Takase-Yoden, 2009). Formation of polysome structures of mRNA is generally 

correlated with mRNA translation efficiency. To investigate whether splicing of MLV affected 

formation of env-mRNA polysome structures, we used the m1 and splA8 vectors to compare the 

amount of env-mRNA associated with polysome structures in spliced and unspliced env-mRNA. 

Lysates of NIH3T3 cells transfected with m1 or splA8 were separated by centrifugation on linear 

10–50% sucrose density gradients. After extraction of RNA from each fraction, the distribution of 

total RNA and ribosomal RNA (rRNA) was analyzed by measurement of absorbance at 260 nm and 

agarose gel electrophoresis, respectively (Fig. 4). mRNA in polysome structures was found in 

higher density fractions, while mRNA that was not in polysome structures was in lower density 

fractions, as reported previously (Akimitsu et al., 2007; del Prete et al., 2007; Holetz et al., 2007; 

Nashchekin et al., 2006; Otulakowski et al., 2004; Ryu et al., 2008). In lysates of m1-transfected 

cells, there was a large absorbance peak at 260 nm in fractions 6-9 (Fig. 4A). Agarose gel 

electrophoresis analysis showed that these fractions contained most of the 28S and 18S rRNAs in 

the lysate. There were small peaks at 260 nm in higher density fractions 11-16. These fractions also 

contained 28S and 18S rRNA, in agreement with these fractions containing polysomes. As a control, 

the distribution of gapdh-mRNA was examined by real-time RT-PCR. There were two peaks of 

gapdh-mRNA, one in lower density fraction 8 and the other in higher density fractions 13-15 (Fig. 

4A). These results were agreement with a previous report (Akimitsu et al., 2007). The distribution 

of env-mRNA was examined by real-time RT-PCR using s1 and s2 primers and the ss-probe (Fig. 

2A). As shown in Fig. 4A, most env-mRNA was in fractions 13-16, which were polysome fractions. 

From quantitative analysis of these real-time PCR results, 69% of env-mRNA in m1-transfected 

cells was in the polysome structures in fractions 11-16. A similar experimental analysis of lysates of 

splA8-transfected cells showed that a large amount of env-mRNA was in fractions 1-8 (Fig. 4B). 

Although 24% of env-mRNA in splA8-transfected cells was in polysome structures (fractions 

10-16), this was significantly less (p<0.01) than the 69% in polysome structures in m1-transfected  
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Figure 4 Polysome profiles of cells transfected with m1 and splA8, or infected with MLV. 

Fractionation of ribosomes from cells transfected with (A) m1 and (B) splA8, or infected with (C) 

MLV. Cell lysates were centrifuged through a 10-50% sucrose density gradient and fractionated, 

and RNA was extracted from each fraction. Ribosomal RNA was analyzed by electrophoresis on a 

1% denaturing agarose gel. To quantitate gapdh mRNA, TaqMan Rodents GAPDH Control 

Reagents containing primer sets and probe were used. The results of the distribution of total RNA, 

ribosomal RNA, and gapdh-mRNA were representative of 3 or 4 experiments. Similar results were 

obtained in these experiments. The amount of env-mRNA was measured by real-time RT-PCR 

using s1 and s2 primers and ss-probe (Fig. 2A), and the amount in each fraction relative to the total 

amount of env-mRNA in all fractions was calculated. The bottom graphs show the env-mRNA 

distribution from 3 or 4 independent experiments, with the mean ± standard error of each fraction.  
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cells. In A8-MLV-infected cells (Fig. 4C), 61% of env-mRNA was in polysome structures 

(fractions 11-16), which was not significantly different from the 69% in polysome structures in 

m1-transfected cells.  

 

Analyses of polysome structure formation of luc-mRNA  

We analyzed the effect of splicing of luc-mRNA on polysome structure formation in cells 

transfected with m1gpL and splA8L (Fig. 3A). The experiments in Fig. 4 were done using m1gpL- 

and splA8L- transfected cells to express luc-mRNA. The distribution of luc-mRNA was examined 

by real-time RT-PCR using s1 and s2 primers and the ss-probe (Fig. 3A). In m1gpL-transfected 

cells, 68% of luc-mRNA was in polysome fractions 11-16 and, in splA8L-transfected cells, 60% of 

luc-mRNA was in polysome fractions 11-16 (Fig. 5A and B). There was no significant difference in 

these amounts of luc-mRNA in polysome structures. In addition, the amount of unspliced 

luc-mRNA in polysome fractions was higher than that of unspliced env-mRNA (p<0.01). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
  
 

24 

 

 

 

Figure 5 Polysome profiles of cells transfected with m1gpL and splA8L. Fractionation of 

ribosomes from cells transfected with (A) m1gpL and (B) sp1A8L. The experiments in Fig. 4 were 

done using m1gpL- and sp1A8L -transfected cells to express luc-mRNA. The amount of cDNA 

from luc-mRNA was measured by real-time RT-PCR using s1 and s2 primers and ss-probe. The 

bottom graphs show the luc-mRNA distribution from 3 independent experiments, with the mean ± 

standard error of each fraction.  
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DISCUSSION 
 

In complete polyadenylation was detected in a fraction of the unspliced env-mRNA products 

(Fig. 2B and 2E). Sequence analysis of the approximately 70 bp band showed that a fraction of the 

unspliced env-mRNA was cleaved just downstream of the poly(A) addition signal and 2-8 A 

nucleotides were added (Fig. 2B and 2E). Since the oligo5 primer, which was used for the 2nd PCR, 

contains 5 T nucleotides, the 1st PCR product with less than 5 A nucleotides cannot be amplified. 

Thus it is possible that other kinds of abnormal env-mRNA, such as env-mRNA having 1 or no A 

nucleotide just downstream of the poly(A) addition signal or env-mRNA that was cleaved upstream 

of the poly(A) addition signal, existed in a fraction of the unspliced env-mRNA. Since cleavage of 

the 3’ end of mRNA for poly(A) tail addition usually occurs 15-30 nt downstream of the poly(A) 

addition signal (Elkon et al., 2013), the 3’ ends of the approximately 70 bp bands fraction of 

unspliced env-mRNA were probably abnormally processed unspliced env-mRNA. The 

mechanism(s) by which splicing affects processing of the 3’ end of env-mRNA is not well 

understood, but there are known to be functional interactions between spliceosomes and the 3’ 

end-processing machinery of eukaryotic mRNA (Danckwardt et al., 2007). Splicing factors that 

associate with the 3’ terminal intron also interact with downstream polyadenylation factors to 

promote both 3’ end cleavage/polyadenylation and terminal intron splicing (Awasthi and Alwine, 

2003; Danckwardt et al., 2007; Kyburz et al., 2006; Li et al., 2001; McCracken et al., 2002; 

Millevoi et al., 2006). In Rous sarcoma virus and avian sarcoma virus, splicing factors promote 3’ 

end processing through the cis-acting negative regulator of splicing (NRS) elements (Miller and 

Stoltzfus, 1992; Wilusz and Beemon, 2006). Wilusz et al. proposed a model in which heteronuclear 

ribonucleoprotein (hnRNP) H and serine/arginine-rich (SR) proteins compete to bind to the NRS. In 

this model, bound SR proteins bridge between the NRS and 3’LTR, promoting recruitment of the 3’ 

end processing machinery. Therefore, splicing factors might assist in processing of the 3’ end of 

env-mRNA through interactions with factors involved in 3’ end processing. On the other hand, 

electron microscopic analyses of nascent transcripts from Drosophila embryos has shown that 

splicing occurred co-transcriptionally (Beyer and Osheim, 1988). In the current era, it is generally 

thought that RNA processing, including splicing, is coupled to transcription (Luco et al., 2011). 
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Thus, one cannot exclude the possibility that the abnormal env-mRNA found in a fraction of the 

unspliced env-mRNA was produced by pre-termination of transcription. When the oligo2 primer 

was used in the RT reaction to analyze the poly(A) tail length, the size of the smear band (100-180 

bp) that was detected in splA8-transfected cells was smaller than that (100-200 bp) in 

m1-transfected cells (Fig. 2E). It is possible that the amount of mRNAs with a longer poly(A) tail 

may be larger in spliced env-mRNA than in unspliced env-mRNA. However, since in this 

experimental system the length of the mRNA poly(A) tail could be determined for either the 

unspliced full-length MLV mRNA or the spliced env-mRNA from m1-transfected cells, this 

requires further analyses. The data presented herein, together with previous reports, suggest that 

splicing of MLV plays an important role in complete polyadenylation of env-mRNA, although the 

mechanisms are still unknown. Interestingly, when the env gene in m1 and splA8 was replaced by 

the luc gene, splicing did not affect the 3’ end structure of luc-mRNA (Fig. 3). These data suggested 

that there were positive cis-elements within the env region to complete the polyadenylation of 

env-mRNA by splicing. 

Our previous study showed that following introduction of splA8 to cells, the Env expression 

level was 0.2-fold lower than that for cells with m1.� Furthermore, the half-life of env-mRNA from 

splA8 was significantly lower than that for m1 (Yamamoto and Takase-Yoden, 2009).� Recently, it 

was reported that the nuclear export receptor, nuclear RNA export factor 1 (NXF1), was involved in 

nuclear export of RNA transcripts, especially unspliced mRNA, of gamma retroviruses including 

xenotropic murine leukemia virus-related virus (XMRV) and MLV (Sakuma et al., 2014). A 

conserved cis-acting element was identified in the pol gene of gamma retroviruses, named the 

cytoplasmic accumulation element (CAE). The 3’ss of XMRV (5638 nt) existed within the CAE 

(5607-5752 nt), but in Friend-MLV A8, the 3’ss at 5489 nt was actually used and it existed 

upstream of the CAE (5620-5766 nt) (Machinaga and Takase-Yoden, 2014). Since unspliced 

env-mRNA, which was produced in splA8 transfected-cells, had a complete CAE region, nuclear 

export of the unspliced env-mRNA was unaffected. In fact, our previous study revealed that there 

was no difference in the distribution of nuclear and cytoplasmic of env-mRNA from m1- and 

splA8-transfected NIH3T3 cells, which produced spliced env-mRNA and unspliced env-mRNA, 

respectively (Yamamoto and Takase-Yoden, 2009). In the present study, incomplete 
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polyadenylation was detected in a fraction of the unspliced env-mRNA obtained from 

splA8-transfected cells (Fig. 2B and 2E). In retroviruses, polyadenylation of the 3’ end of mRNA 

plays an important role in translation initiation and mRNA stability (Karn and Stoltzfus, 2012; 

Schrom et al., 2013). It is possible that the appearance of incomplete polyadenylation in unspliced 

env-mRNA is partially correlated with a reduction of its stability and translation efficiency.  

We also investigated the correlation between splicing and formation of env-mRNA polysome 

structures. The results showed that the fraction of spliced env-mRNA in polysome structures was 

significantly greater than of unspliced env-mRNA (Fig. 4). This indicated that splicing promoted 

the formation of env-mRNA polysome structures. To our knowledge, this is the first report showing 

that splicing of a viral mRNA increased its polysome structure formation. However, it has been 

reported that mRNAs of the T-lymph cell receptor beta chain and beta globin genes expressed from 

vectors containing their introns formed more polysome structures than mRNAs expressed from 

vectors containing truncated introns (Nott et al., 2004). It is known that, during pre-mRNA splicing 

in the nucleus, several proteins bind to a region 20-24 nucleotides upstream of mRNA exon–exon 

junctions to form exon junction complexes (EJC) (Le Hir and Andersen, 2008; Le Hir et al., 2000; 

Reichert et al., 2002; Schmidt et al., 2009; Tange et al., 2004). The EJC is transported with the 

mature mRNA to the cytoplasm and remains associated with the mRNA-binding proteins until the 

mRNA is translated, and is involved in various cellular processes, including nucleocytoplasmic 

mRNA export, subcellular localization, quality control, and translation (Dostie and Dreyfuss, 2002; 

Giorgi and Moore, 2007; Kashima et al., 2006; Kim et al., 2001; Le Hir et al., 2001; Le Hir and 

Seraphin, 2008; Lejeune et al., 2002; Tange et al., 2004). It has been proposed that EJC may 

promote formation of polysome structures, thereby enhancing translation (Diem et al., 2007; Lee et 

al., 2009; Nott et al., 2004; Wiegand et al., 2003). Diem et al. reported that a 29 kDa protein, PYM, 

that binds EJC proteins in the cytoplasm also binds, via a separate domain, to the 40S ribosomal 

subunit and the 48S preinitiation complex, and suggested that PYM functions as a bridge between 

EJC-associated spliced mRNAs and the translation machinery to enhance mRNA translation (Diem 

et al., 2007). Therefore, for MLV mRNA, env-mRNA that is associated with EJC or that is spliced 

may form larger polysome structures. When the env gene in m1 and splA8 was replaced by the luc 

gene, splicing did not affect polysome structure formation of luc-mRNA (Fig. 5) and the degree of 
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polysome structure formation of unspliced luc-mRNA was higher than that of unspliced env-mRNA 

(Fig. 4B and 5B). Thus, it was suggested that there were cis-elements within the env region that 

contribute to polysome structure formation of mRNA. 

As described above, this study showed that splicing of MLV env-mRNA contributed to 

promote the efficiency of complete polyadenylation of env-mRNA and increased the fraction of 

env-mRNA in polysome-structures. Since it is generally known that processing of the 3’ ends of 

mRNA and mRNA polysome structure are factors in the regulation of protein expression or 

translation efficiency, the promotion of complete polyadenylation and polysome structure formation 

of env-mRNA by splicing might partially explain up-regulation of Env protein expression as a result 

of splicing. However, there still remains the possibility that other factors such as recruitment of 

translation factors or ribosome recycling also contribute to promote the translation efficiency of 

env-mRNA by splicing.  
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Chapter 2  
 
A 38 nt region and its flanking sequences within gag of Friend 
murine leukemia virus are crucial for splicing at the correct 5’ 
and 3’ splice sites 
 

MATERIALS AND METHODS 
 

Construction of vectors 

To construct the d3 vectors, AatII and SphI were used to carry out a restriction digest of m1. 

The enzyme sites were blunted using a DNA Blunting Kit (TaKaRa), and blunt-end ligation was 

then performed. To construct the d3+1026 vector, the HindIII-BglII fragment of m1 was cloned by 

PCR using a forward primer containing an AatII restriction site in the 5’ terminus, 

(5’-GAGACGTCAGCTTTAGCAGTAGAC-3’), and a reverse primer containing the SphI 

restriction site in the 5’ terminus (5’-TGGCATGCTTTTCAGCTTCCCTCA-3’). The ArtII-SphI 

fragment was recombined using the restriction site of m1. 

The vectors, B1, B2, B3, B2-a, B2-b, B2-c, B3-d, B3-e, B3-f, B3-d1, B3-d2, B3-d3, and 

B3-d4, which have serially truncated HindIII-BglII regions of m1, were constructed using a 

KOD-Plus-Mutagenesis Kit (TOYOBO). Point mutations, G to T (2608 nt), G to T (2614 nt) and G 

to T (2629 nt), were introduced into the pol gene of m1 in order to suppress the production of 

progeny (Yamamoto and Takase-Yoden, 2009). The mutations A to T (2126 nt) and T to A (2777 

nt) were also introduced into m1. To construct the B1 vector, the 879-1182 bp fragment was deleted 

from m1 by inverse PCR using the primer sets listed in Table 1. The B2, B3, B2-a, B2-b, B2-c, 

B3-d, B3-e, B3-f, B3-d1, B3-d2, B3-d3, and B3-d4 vectors were constructed by deleting the 

1183-1541 bp, 1542-1904 bp, 1183-1296 bp, 1297-1443 bp, 1444-1541 bp, 1542-1649 bp, 

1650-1770 bp, 1771-1904 bp, 1542-1569 bp, 1570-1591 bp, 1592-1611 bp, and 1612-1649 bp 

fragments from m1, respectively, using the same method as for B1. The primers used for generation 

of these vectors are listed in Table 1. To construct the B3-d4inv38 vector, two-stage inverse PCR 

was performed using the 2 sets of primers shown in Table 1.  
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TABLE 1. List of primers used for construction of vectors. 

Name of 

vectore 
Forward(5’→3’) primer     �      � Reverse(5’→3’) primer 

B1 cctgactcttccccaatggtatc gctaaagcttcccaggtcacgat 

B2 taatgatgcttttcccttggaacgtcc gataccattggggaagagtcagg 

B3 gtgagggaagctgaaaagatct atatcattgggcagctgagttggg 

B2-a tactggccattttcctcctctg gataccattggggaagagtcagg 

B2-b accctgctgacgggagaagaaa ttgaaactgtccattccctccc 

B2-c taatgatgcttttcccttggaacgtcc ccctaatagctgttggcagtca 

B3-d gggcagaagccccaccaattt atatcattgggcagctgagttggg 

B3-e gaggacccagggcaagaaaccaa gcgctttggagacccgctagga 

B3-f gtgagggaagctgaaaagatct agggtcataaggagtgtatctgcg 

B3-d1 gactgggactacaacacccaac atatcattgggcagctgagttggg 

B3-d2 gaggtaggaaccacctagtcca gggacgttccaagggaaaagca 

B3-d3 cactatcgccagttgctcctag gttgggtgttgtagtcccagtc 

B3-d4 gggcagaagccccaccaattt gactaggtggttcctacctcgt 

B3-d4inv38 1.ccgctatcacgggcagaagccccaccaatt 1.ggtttcgcggactaggtggttcctacc 

 
2.cctcgttgaccgctatcacgggcagaa 2.atcgcccagaggtttcgcggactaggtggt 

57 tagcgggtctccaaaacgcg ggagcaactggcgatagt 

MSV tagcgggtctccaaaacgcg tgagcaactggcgatagtgg 

FeLV tattagcgggtctccgcggggcgggcagaag gcaactggcgataaaggactagg 

XMRV tagcgggtctccaaaacgcg agagcaactggcggtagagg 

CasBrE tagcgggtctccaaaacgcg agagcaactggcgatagagg 

d3+771 ccacaggtattgggaaccga gcgctttggagacccgctagga 

d3+293 cactatcgccagttgctcctag acgtctcccagggttgcggc 

d3+467 cctgactcttccccaatggtatc acgtctcccagggttgcggc 

d3+353 tactggccattttcctcctctg acgtctcccagggttgcggc 

d3+206 accctgctgacgggagaagaaa acgtctcccagggttgcggc 

d3+108 taatgatgcttttcccttggaacgtcc acgtctcccagggttgcggc 

d3+80 gactgggactacaacacccaac acgtctcccagggttgcggc 

d3+58 gaggtaggaaccacctagtcca acgtctcccagggttgcggc 

   

 



 

 
  
 

31 

To construct 57 MLV, Moloney murine sarcoma virus (MSV), Feline leukemia virus (FeLV), 

xenotropic murine leukemia virus-related virus (XMRV), and CasBrE vectors, point mutations were 

inserted into d3+1026 by inverse PCR using the primer pairs shown in Table 1. 

To construct the d3+771 vector, the 1650-1904 bp fragment of d3+1026 was deleted by inverse 

PCR using the primer set shown in Table 1. The d3+293, d3+467, d3+353, d3+206, d3+108, d3+80, 

and d3+58 vectors were constructed by deleting the 879-1611 bp, 879-1182 bp, 879-1296 bp, 

879-1443 bp, 879-1541 bp, 879-1569 bp, and 879-1591 bp fragments from d3+1026, respectively, 

using the same method as for d3+771. The primer pairs listed in Table 1 were used to construct the 

vectors. To construct d3+38, a 38 bp fragment with an AatII restriction site in the 5’ terminus and a 

SphI restriction site in the 3’ terminus was prepared by annealing the following synthetic 

single-stranded DNAs: 

(5’-CCACTATCGCCAGTTGCTCCTAGCGGGTCTCCAAAGCGCGCATG-3’) and 

(5’-CGCGCTTTGGAGACCCGCTAGGAGCAACTGGCGATAGTGGACGT-3’). To construct 

d3+inv38 vectors, a fragment with the inverse sequence of the 38 bp fragment and with an AatII 

restriction site in the 5’ terminus and a SphI restriction site in the 3’ terminus was prepared by 

annealing the following synthetic single-stranded DNAs: 

(5’-CCGCGAAACCTCTGGGCGATCCTCGTTGACCGCTATCACGCATG-3’), and 

(5’-CGTGATAGCGGTCAACGAGGATCGCCCAGAGGTTTCGCGGACGT-3’). These 

fragments were inserted into the AatII and SphI restriction sites of m1. 

To construct the d4+58 and d4+1026 vectors, SphI and NdeI were used to carry out a 

restriction digest of d3+58 and d3+1026, respectively. The enzyme sites were blunted using a DNA 

Blunting Kit (TaKaRa), and blunt-end ligation was then performed.  

 

Cell cultures and transfections 

NIH3T3 cells were grown in Dulbecco's Modified Eagle Medium (DMEM; Cellgro) 

supplemented with 10% (v/v) fetal calf serum (FCS; MP Biomedicals), 50 units penicillin 

(GIBCO)/ml, and 50 µg streptomycin (GIBCO), at 37°C in a 7% CO2 atmosphere. Cells were 

seeded with 1 × 106 cells in a 6 cm dish with growth medium minus penicillin-streptomycin. They 

were transfected the next day with 8 µg of vectors using Lipofectamine 2000 Reagent (Invitrogen) 
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diluted by OPTI-MEM (Invitrogen) according to the manufacturer's instructions. 

 

RT-PCR analysis of viral spliced mRNA in transcripts 

Total cellular RNA was isolated from transfected cells using RNeasy Mini Kit (QIAGEN) 

according to the manufacturer’s instructions. After treatment with RNase-free DNase (QIAGEN), 2 

µg of RNA were added to the reverse transcription (RT) reaction, which used an oligo (dT) primer 

(Invitrogen). The spliced mRNA was detected by PCR using Go Taq (Promega) and specific 

primers. The primers for detecting spliced mRNA containing the splicing junction region were: s1 

forward primer (5’-GAGACCCTTGCCCAGGGA-3’) and s2 reverse primer 

(5’-TGCCGCCAACGGTCTCC-3’). The env coding region was detected by PCR, using KOD-plus 

(TOYOBO) and the s1 forward primer and the u3 reverse primer 

(5’-TGCGGCTATCAGGCTAAGCAACTTGGT-3’). PCR products were separated on 2% or 1% 

agarose gels in TBE or TAE buffer, respectively, and stained with ethidium bromide. Negative 

control samples without the cDNA synthesis step did not yield specific bands.  

 

Sequence analysis of splice variants 

To analyze the sequence of splice variants, the relevant electrophoretic band was extracted 

from the agarose gel using a QIAquick Gel Extraction Kit (QIAGEN), and cloned into a 

pGEM-T-easy vector (pGEM-T-easy Vector System; Promega). The sequences of the cloned 

fragment in T-easy vector were amplified using T7 (5’-GTAATACGACTCACTATAGGGC-3’), or 

sp6 (5’-ATTTAGGTGACACTATAGAA-3’) primers, and a BigDye Terminator v 3.1 Cycle 

Sequencing Kit (Applied Biosystems). The sequences were analyzed using an ABI PRISMOR 3100 

Genetic Analyzer (Applied Biosystems). 
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RESULTS 
 

Narrowing down the region within the HindIII-BglII fragment (879-1904 bp) that is crucial 

for splicing at the correct 5’ss and 3’ss  

During splicing of the Friend-MLV gene, the 205-5488 nt region is normally spliced out and, 

subsequently, env mRNA is produced (Fig. 6). We previously investigated the role of the intron 

within the Friend-MLV gene in Env expression using vectors with serially truncated introns. We 

found that when the HindIII-BglII (879-1904 bp) fragment was deleted from the m1 vector, which 

contains the full-length A8-Friend-MLV proviral gene sequence, abundant splice-variants were 

observed among the transcripts (Yamamoto and Takase-Yoden, 2009). The m1 vector was 

transfected into NIH3T3 cells and generation of spliced mRNA was examined after 48 h by 

RT-PCR using the s1 and s2 primers (Fig. 6 and 7A). These primers were designed to amplify a 94 

bp fragment containing the splicing junction region from the cDNA of normal spliced transcripts. 

As shown in Figure 7B, the 94 bp band was detected in the transcripts of m1. In contrast, in the 

transcripts of the B vector (called the pA8d1b vector in our previous report) with a truncated 

HindIII-BglII fragment from m1, a band of approximately 300 bp was detected (Fig. 7B). Sequence 

analysis showed that the 300 bp band came from an mRNA splice variant in which the 205-807 nt 

(D1-A3) region and the 2042-5488 nt (D6-A13) regions were spliced out (mRNA-D1-A3/D6-A13). 

These results are in agreement with those of our previous study (Yamamoto and Takase-Yoden, 

2009). We analyzed the importance of the HindIII-BglII fragment in splicing using the d3 vector, in 

which the majority of the intronic AatII-SphI (366-5139 bp) fragment was deleted from m1 (Fig. 

7A). The d3 vector yielded the splice variant mRNA-D1-A1/D12-A13 and unspliced transcripts 

(Fig. 7B and 7C). When the HindIII-BglII fragment was inserted between 366 bp and 5139 bp of 

the d3 vector (to produce the d3+1026 vector) only produced correctly spliced mRNA (Fig. 7B). 

We first sought to narrow down the region within the HindIII-BglII fragment that is crucial 

for splicing at the correct 5’ss and 3’ss of Friend-MLV. To this end, we constructed B1, B2, and B3 

vectors with serially truncated 1 kbp (HindIII-BglII) fragments from the entire sequence of m1 (Fig. 

7A). Among these vectors, B2 and B3 yielded a small amount of mRNA splice variants in addition 

to correctly spliced mRNA (Fig. 7A and 7B). Details of the splice variants B2 and B3 are described  
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Figure 6 Structure of proviral DNA of MLV and the primers used to detect env-mRNA by 

RT-PCR. Throughout these figures, native 50ss (204nt) and 30ss (5489 nt) are designated D1 and 

A13, respectively (see splice site numbers in Fig.11a). The numbering of nucleotides is based on the 

transcript. The s1 and s2 primers were designed to amplify a 94 bp fragment from the cDNA of 

spliced transcripts containing the splice junction region and the s1 and u3 primers to amplify a 2.4 

kbp fragment from cDNA of spliced env-mRNA. 
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Figure 7 Analysis of the crucial for splicing at the correct 5’ss and 3’ss of Fr-MLV. (A) 

Structures of d3, d3+1026, and vectors with a serially truncated HindIII-BglII fragment of m1. (B) 

Detection of the splice junction region of env mRNA in the transcripts of vectors. (C) Structures of 

splice variants in transcripts of d3, B3-d, B3-d4, and B3-d4inv38 and sizes of the PCR products. In 

(B), the m1 vector and the vectors with the serially truncated HindIII-BglII fragment were designed 

to generate both unspliced mRNA and spliced mRNA; however, bands corresponding to unspliced 

mRNA were not detected in the transcripts of all tested vectors under the conditions used in the 

present experiments. Sequence analysis confirmed that the 94 bp band came from normally spliced 

transcripts. In (C), closed circles represent the splice sites that were utilized in splice variants (see 

splice site numbers in Figure 11A), thick solid-lines represent the exon region in splice variants, and 

broken lines represent regions that were spliced out. The splice variants not included in (C) are as 

follows: B2, mRNA-D1-A4/D2-A13 that was produced by the splicing out of 205-1006 nt (D1-A4) 

and 1201-5488 nt (D2-A13) region; B3, mRNA-D1-A6/D6-A13; B2-c, mRNA-D1-A6/1444nt 

(artificial splice site that arose due to vector construction)-A13; B3-e, mRNA-D1-A6 or 

A7/D4-A13; B3-d1, mRNA-D1-A6, A7, or A8/D4-A13.  
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in the legend to Figure 7. We sought to further narrow down the 0.7 kb (1183-1904 bp) region by 

constructing the B2-a to B3-f vectors that are serially truncated in this region. The transcripts of the 

B2-a, B2-b, and B2-f included only correctly spliced mRNA (Fig. 7B). The transcripts of the B2-c 

and B3-e vectors included abundant correctly spliced mRNA and a few mRNA splice variants (see 

the legend to Fig. 7 for details). It is noteworthy that B3-d included only mRNA splice variants as 

described in Figure 7C. To further narrow down the 0.1 kb (1542-1649 bp) fragment, we next 

constructed the B3-d1 to B3-d4 vectors that were serially truncated in the fragment. In B3-d1, the 

transcripts contained normally spliced mRNA and a few mRNA splice variants (see the legend to 

Fig. 7 for details). In B3-d2 and B3-d3, the transcripts contained only correctly spliced mRNA and 

no splice variants were detected. Interestingly, B3-d4, in which the 1612-1649 bp fragment was 

deleted from m1, only yielded mRNA splice variants. The transcripts from the B3-d4inv38 vector 

carrying a reverse sequence of the 1612-1649 bp fragment included only splice variants. These 

findings showed that the 38 nt region (1612-1649 nt) contained the important elements that regulate 

splicing at the correct 5’ss and 3’ss. 

We examined whether the spliced mRNA of the tested vectors contained the entire sequence 

of the env coding region by RT-PCR using the s1 and u3 primers (Fig. 6). These primers were 

designed to amplify a 2.4 kbp band in the spliced mRNA of m1. We found that the spliced mRNAs 

of all of the tested vectors contained the entire sequence of the env coding region (data not shown).  

 

Comparison of the 38 nt fragment among gamma retroviruses 

The 38 nt fragment sequence is well conserved among simple retroviruses such as gamma 

retroviruses, although a few nucleotides differ from A8-MLV (Fig. 8A). To determine whether the 

differences in sequences of the 38 nt fragment in gamma retroviruses influenced splicing, we 

replaced the 38 bp fragment of the d3+1026 vector with the 38 bp fragment from Friend-MLV 57, 

Moloney murine sarcoma virus (MSV), feline leukemia virus (FeLV), xenotropic MLV-related 

virus (XMRV), or CasBrE MLV (Fig. 8A). The derived vectors were transfected into NIH3T3 cells 

and their mRNA transcripts were analyzed by RT-PCR using the s1 and s2 primers. In the 

transcripts of A8, 57, MSV, XMRV, and CasBrE, only the 94 bp band of the correctly spliced 

transcript was observed (Fig. 8B). In FeLV, a few mRNA splice variants were detected in addition  
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Figure 8 Comparison of the 38 nt fragment among gamma retroviruses. (A) Structures of 

vectors in which the 38 bp fragment of d3+1026 was replaced by the 38 bp fragment derived from 

Fr-MLV 57, MSV, FeLV, XMRV, or CasBrE. (B) Detection of the splice junction region of env 

mRNA in the transcripts of vectors. 
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to correctly spliced mRNA.  

 

Effects of the flanking sequence of the 38 nt fragment on splicing at the correct 5’ and 3’ 

splice sites 

As shown in Figure 7, the 38 nt region was demonstrated to play an important role in splicing 

at the correct splice sites. However, the flanking sequences of the 38 nt region, such as the 

1183-1541 nt region, the 1542-1569 nt region, and the 1650-1770 nt region, also positively 

influenced splicing (B2, B3-d1, and B3-e vectors in Fig. 7), as described in the first section of the 

Results and the first paragraph of the Discussion. In order to further define the region for control of 

correct splicing within the flanking sequences of the 38 nt fragment, we constructed vectors with 

serially truncated HindIII-BglII fragments derived from the d3+1026 vector (Fig. 9A). The d3+771 

and d3+293 vectors have the upstream and downstream flanking regions, respectively, of the 38 bp 

fragment of d3+1026. In d3+771, correctly spliced mRNA was detected (Fig. 9B). By contrast, in 

d3+293, variant transcripts (data not shown) were detected in addition to correctly spliced mRNA. 

Next, we constructed a series of vectors, d3+467 to d3+38, in which the 879-1611 bp region of 

d3+771 was serially truncated, to narrow down the critical flanking region within the 879-1611 nt 

fragment for correct splicing (Fig. 9A). Serial truncation of the upstream region of the 38 bp 

fragment resulted in the production of transcripts with splicing variants in d3+353, d3+206, d3+80, 

and d3+38 in addition to correctly spliced mRNA (Fig. 9B). No correctly spliced transcripts were 

present in the spliced mRNA products of d3+inv38 carrying a reverse sequence of the 38 bp 

fragment; only correctly spliced mRNA was detected in the transcripts of d3+467, d3+108, and 

d3+58.  

 

Effect of the upstream region of 3’ss of MLV on function of the 38 nt fragment and its 

flanking sequence 

In a previous study, we showed that the SphI-NdeI (5140-5400 nt) fragment located 

approximately 100 nt upstream of the 3’ss could influence splicing efficiency and the appearance of 

splice variants (Yamamoto and Takase-Yoden, 2009) (Fig. 6). When this SphI-NdeI fragment was 

deleted from m1, a splice variant appeared in which the 205-1360 nt (D1-A6) and 1595-5488 nt  
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Figure 9 Effects of the flanking sequence of the 38 nt fragment on splicing at the correct 5’ 

and 3’ splice sites. (A) Structures of vectors with serial truncation of the HindIII-BglII fragment of 

d3+1026. (B) Detection of the splice junction region of env mRNA in the transcripts of the vectors. 

In (A), solid lines represent the 38 bp fragment.  
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(D4-A13) regions were spliced out (data not shown). Interestingly, the structure of the splice variant 

was identical to that of a splice variant observed in the transcripts of B3-d4, in which the 38 bp 

fragment was deleted from m1 (Fig. 7). The vectors developed for the experiments shown in Figure 

9 contain the SphI-NdeI region. To examine whether this region influenced the control of splicing 

by the 38 nt fragment and its flanking sequence, as shown in Figure 10A, we deleted it from d3+58 

and d3+1026 (Fig. 9); the resulting transcripts were all correctly spliced. By contrast, abundant 

splice variants were obtained from the transcripts of d4+58 and d4+1026 (Fig. 10B and 10C). The 

findings revealed that a synergistic interaction between the 5140-5400 nt region located upstream 

region of the 3’ss and the 38 nt fragment and its flanking sequence is required for splicing at the 

correct 5’ss and 3’ss. 

 

Mapping of cryptic 5’ss and cryptic 3’ss on the MLV gene 

As described in earlier sections, our experiments with vectors carrying truncated fragments 

from m1 yielded a range of splice variants. On the basis of the sequence data of these splice variants, 

we mapped the splice sites that were actually used as ‘D’ (5’ss) and ‘A’ (3’ss). The native 5’ss (204 

nt) and 3’ss (5489 nt), designated D1 and A13, respectively, are indicated by the boxed regions in 

Figure 11A. Cryptic 5’ss were identified at D2 (1200 nt), D3 (1366 nt), D4 (1594 nt), D5 (1677 nt), 

D6 (2041 nt), and D12 (1200 nt); cryptic 3’ss were found at A1 (285 nt), A3 (808 nt), A4 (1007 nt), 

A6 (1361 nt), A7 (1367 nt), A8 (1411 nt), and A9 (1435 nt). A few sites, D4, D5, A6, and A7, were 

frequently used to produce splice site variants in the tested vectors. The sequences of these splice 

sites are shown in Figure 11B. All of the fragments that were spliced out from the tested vectors 

contained GU at the 5'ss and AG at the 3'ss, and had a polypyrimidine-tract-like sequence located 

before the 3' end of the fragment to be spliced. In addition, we found consensus sequences, 

GAGGUAAGC and Y(11)AAG, where Y=T or C, that could act as 5’ss and 3’ss, respectively 

(D7#-11#, D13#-17#, A2#, A5#, A10#-12#, and A14# in Fig. 11A). However, these predicted sites 

were not used by all of our tested vectors. The consensus sequences of the branch points for splicing, 

YNYURAY, where Y=T or C, N=A, T, G or C, and R=A or G, were also mapped (black ellipses in 

Fig. 11A). Predicted branch-points were located in the upstream region of each cryptic 3’ss.  
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Figure 10 Analysis of the SphI-NdeI region influenced the control of splicing by the 38 nt 

fragment and its flanking sequence. (A) Structures of vectors produced by deletion of the 

SphI-NdeI fragment from d3+58, and d3+1026 (see Figures 4). (B) Detection of the splice junction 

region of env mRNA in the transcripts of the vectors. (C) Structures of splice variants in transcripts 

of d4+58, and d4+1026, and sizes of the PCR products. In (C), closed circles represent the splice 

sites that were utilized in splice variants (see splice site numbers in Figure 14A), thick solid lines 

represent the exonic region in splice variants, broken lines represent regions that were spliced out, 

and thin solid lines represent the regions that were not contained in the vectors.  
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Figure 11 Mapping of cryptic 5’ss and cryptic 3’ss on the MLV gene. (A) Mapping of the splice 

sites that were actually used in splice variants, the predicted splice sites, and the predicted branch 

points for splicing. Numbers in parentheses represent the positions of splice sites. The consensus 

sequences for 50ss and 30ss (GAGGUAAGC and Y(11)AAG: Y.T or C, respectively) were also 

mapped and indicated by “#.” Black ellipses represent the consensus sequences of branch points for 

splicing. Splice sites that were frequently used in splice variants are underlined. The shadowed 

region on the MLV gene represents the 38 nt fragment. (B) Sequences of the splice sites of splice 

variants. The splice sites that were used in splice variants were mapped and designated “D” (5’ss) 

and “A” (3’ss). Artificial splice sites that arose as a result of vector construction are not included. 

Native 5’ss (D1) and 3’ss (A13) are indicated by the 
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DISCUSSION 
 

The genome of Friend-MLV contains a 5’ss located at 205 nt and a 3’ss located at 5489 nt. In 

virus-infected cells, env mRNA is produced by a single splicing event. In previous studies, we have 

shown that when the HindIII-BglII (879-1905 bp) fragment within the gag gene was deleted from 

the m1 vector that has the entire Friend-MLV sequence, then cryptic splicing of mRNA occurred 

(Yamamoto and Takase-Yoden, 2009). In the present study, we first attempted to narrow down the 

region within the HindIII-BglII fragment that is crucial for splicing at the correct 5’ss and 3’ss of 

Friend-MLV. The results indicated that a 38 nt fragment (1612-1649 nt) in gag contained the 

important elements that regulate splicing at the correct 5’ss and 3’ss, and that the orientation of the 

38 nt fragment was crucial to its function (Fig. 7A and 7B). However, elements that positively 

contribute to splicing at the correct splice sites seem to exist in the HindIII-BglII region except for 

the 38 nt fragment. In the transcripts of B2, which contained the 38 nt fragment, some mRNA splice 

variants were observed. There were no splice variants among transcripts of B2-a or B2-b; however, 

splice variants were present among the transcripts of B2-c. The latter had an artificial splice site at 

1444 nt that arose due to vector construction and which was used to produce the variants. Therefore, 

although we could not further delimit the 1183-1541 nt region with regard to sequences essential to 

splicing, our results indicated that the entire 1183-1541 nt region might play a positive role in 

splicing at the correct splice sites. We believe that the presence of normally spliced mRNA and a 

few splice variants in the transcripts from B3, which did not carry the 38 nt fragment, might be due 

to the presence of the 1183-1541 nt region in this vector. Similarly, as the transcripts of B3-e and 

B3-d1 contained a few mRNA splice variants, we suggest that the 1650-1770 nt region and the 

1542-1569 nt region positively contributed to splicing at the correct splice sites. The vectors tested 

in this study were deletion mutants created within Gag protein coding region, which is known to be 

a relatively conserved region in gamma retroviruses. Therefore, we cannot exclude the possibility 

that other regions in addition to the 38 nt fragment contribute to splicing through changes in 

pre-mRNA features such as exon length and pre-mRNA secondary structures.  

The effects of the 38 nt fragment on splicing are not restricted to NIH3T3 cells but also occur 

in F10, RS-A, 293T, U927, HeLa, and Jurkat cells (data not shown). When the env gene of m1 was 
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replaced by a luciferase gene, the effects of the 38 nt fragment on splicing were also the same as the 

vector having an env gene (data not shown). In addition, as shown in Figure 8, the analysis using 

vectors with the 38 nt fragment, i.e., 57-MLV, MSV, FeLV, XMRV, and CasBrE, showed that this 

region has a splicing function in all gamma retroviruses. Thus, the 38 nt fragment seems to play a 

universal role in splicing. FeLV had some splicing variants in addition to correctly spliced mRNA, 

suggesting that differences in the nucleotide sequence of the 38 nt region between FeLV and other 

viruses might have influenced its function in splicing.  

We analyzed flanking sequences upstream of the 38 nt fragment to determine whether they 

influenced splicing (see Fig. 9). Our results showed that sequences with a positive or negative 

influence on splicing were scattered through the 1183-1611 nt upstream flanking region. The vector 

d3+353, produced by deletion of the 1183-1296 bp sequence from d3+467, yielded a small number 

of splice variants. In d3+206, produced by deletion of the 1297-1443 bp region from d3+353, 

abundant splice variants were recovered. These results indicate that the 1183-1443 nt region has a 

positive influence on splicing. When the 1444-1541 bp fragment was deleted from d3+206 to 

produce d3+108, only correct splicing was found; this suggested that the 1444-1541 nt region 

negatively influenced splicing. Deletion of the 1542-1569 bp fragment from d3+108 to produce 

d3+80 resulted in cryptic splicing; further deletion of the 1570-1591 bp fragment from d3+80 to 

give d3+58, resulted in the appearance of correctly spliced products. These results suggested that 

the 1542-1569 nt region and the 1570-1591 region positively and negatively influenced splicing, 

respectively. When the 1592-1611 bp fragment was deleted from d3+58 to produce d3+38, 

abundant splice variants appeared, suggesting that the 1592-1611 nt region positively influenced 

splicing. In the vectors used in this experiment, most of the intronic region was deleted. As stated 

above, it is also possible that changes in pre-mRNA features are also involved in regulating correct 

splicing. In addition, our results also indicated that the 38 nt fragment and its upstream sequences 

appear to exert the splicing function in cooperation with the 5140-5400 nt region located upstream 

region of the 3’ss, because when this fragment was deleted from the vectors that carried the 38 bp 

fragment and its flanking sequences and that yielded correctly spliced mRNA, abundant splice 

variants appeared (see Fig. 10). 

We assume that cellular factors are recruited to the 38 nt region for its function in splicing, 
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because it is known that regulatory cis-elements recruit splicing activators or repressors for the 

recognition of splice sites in human immunodeficiency virus type 1 (Bilodeau et al., 2001; Caputi et 

al., 2004; Caputi and Zahler, 2002; Domsic et al., 2003; Jacquenet et al., 2005; Stoltzfus and 

Madsen, 2006; Tange et al., 2001; Tange and Kjems, 2001; Tranell et al., 2010; Zahler et al., 2004; 

Zhu et al., 2001). We were not able to identify candidate consensus sequences for the binding of 

such factors in the 38 nt region. However, we did identify several consensus sequences for the 

binding of splicing-related factors, such as hnRNP family proteins, SR family proteins, and PTB, 

within the upstream region (1183-1611 nt) of the 38 nt fragment (data not shown). Therefore, it is 

possible that 38 nt region interacts with upstream cis-elements that regulate splicing and that this 

interaction has an important role in the selection of splice sites. Although the mechanisms for this 

putative interaction are not yet clear, the 38 nt region might interact with cellular factors that bind to 

the cis-elements through its tertiary structure or via new host factors recruited into the 38 nt region.  

� As shown in Figure 11, the cryptic 5’ss and cryptic 3’ss, which were used in splice variants, 

clustered near the 38 bp fragment of MLV gene. Among these sites, we identified a few cryptic 

splicing sites, D4, D5, A6, and A7 that were frequently used. It has been reported that in cells 

infected with replication-competent Moloney MLV, a novel subgenomic 4.4 kb RNA is found. The 

subgenomic RNA is produced by splicing at an alternative 5’ss (1597 nt) within the gag region and 

the canonical 3’ss before the env gene (Dejardin et al., 2000; Houzet et al., 2003). Interestingly, the 

new 5’ss of Moloney MLV is identical to the D4 (1594 nt) of Friend-MLV. Since the cryptic 

splicing sites D4, D5, A6, and A7 were easily utilized in the MLV genome, the 38 nt fragment 

might play an important role in the attenuation of the activities of these potential cryptic splice sites.  
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CONCLUSION 
 

In this thesis, we focused on splicing to understand mechanisms for posttranscriptional 

regulation of gene expression of MLV. First, we studied effects of splicing of Friend MLV 

env-mRNA on its 3’ end processing and polysome structure formation using env expression vectors 

that produce spliced env-mRNA and unspliced env-mRNA. Since it is known that 3’ processing of 

mRNA such as polyadenylation is an important factor in translational efficiency, we investigated 

whether splicing of env-mRNA affected its polyadenylation. The results showed that incomplete 

polyadenylation was detected in a fraction of the unspliced env-mRNA products, indicating that 

splicing of Friend MLV plays an important role in the efficiency of complete polyadenylation of 

env-mRNA. Formation of polysome structures of mRNA is also generally correlated with mRNA 

translation efficiency, thus we investigated whether splicing of MLV affected formation of 

env-mRNA polysome structures. It was revealed that more spliced than unspliced env-mRNA 

formed polysome structures. These splicing-dependent phenomena were not observed with 

expression vectors in which the env gene was replaced by the luc gene. Second, we analyzed 

cis-elements that regulate splicing of MLV. In previous studies, we showed that if the HindIII-BglII 

(879-1904 bp) fragment within gag is deleted from the m1 vector, which carries the entire 

Friend-MLV sequence, then cryptic splicing of env-mRNA occurs. To identify the genomic 

segment(s) in this region that are essential to correct splicing, we constructed vectors with a serially 

truncated HindIII-BglII fragment. The vector, in which a 38 bp fragment (1612-1649 bp) was 

deleted or reversed in m1, only produced splice variants. The results indicated that a 38 nt region 

within gag contained important elements that positively regulated splicing at the correct splice sites. 

Further analyses of a series of vectors carrying the 38 bp fragment and its flanking sequences 

showed that a region (1183-1611 nt) upstream of the 38 nt fragment also contained sequences that 

positively or negatively influenced splicing at the correct splice sites. We deleted the SphI-NdeI 

(5140-5400 bp) fragment just upstream of the 3’ss from vectors that carried the 38 bp fragment and 

its flanking sequences and which yielded correctly spliced mRNA; interestingly, these deleted 

vectors showed cryptic splicing. The results suggested that the 5140-5400 nt region located just 

upstream of the 3’ss was required for the splicing function of the 38 nt fragment and its flanking 
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sequences. The results of this thesis showed new mechanisms for posttranscriptional regulation of 

gene expression of MLV, in which splicing of MLV promoted the efficiency of complete 

polyadenylation of env-mRNA and the formation of env-mRNA polysome structures in an env 

gene-dependent manner and the 5’ and 3’ splice sites of MLV are selected correctly through the 

function of the 38 nt region within gag gene. 
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