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Chapter 1  

Introduction 

 

1.1 Background 

Agriculture has been facing many challenges, including climate change, limited water 

resources, environmental pollution, aging and shortages of farm workers, and increase 

of greenhouse gas emissions. Climate change is likely to add uncertainty to projections 

of agricultural output, highlighting the importance of monitoring and research to refine 

those predictions (Nature, 2010). Massive climate change also affects the global 

hydrological cycle in many ways, such as timing and distribution of rainfall, and sea 

level rise (Rosegrant et al., 2009). Environmental pollution by anthropogenic or natural 

sources constrains agricultural activities.  

Aging and shortages of farm workers is also a concern. A survey by Japan’s Ministry of 

Agriculture, Forestry, and Fisheries (MAFF) examined concerns of the rural elderly, 

mostly farm workers aged 65 to 75, about participation in farming and other activities in 

their communities (Japan MAFF, 2009). Due to aging of the workforce and lack of 

replacement human resources in a rural community, one of the requirements to maintain 

agricultural production and rural resources within communities is a securing IT and 

other information infrastructures.  

There are research of wireless sensor networks which supporting the agriculture 

activities. The details of such related research are discussed later in section 3.2. Besides, 

Ruiz-Altisent et al. (2010) has reviewed various sensing technologies for agriculture 

support, such as wireless sensor networks and radio frequency identification sensors. 
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1.2 Sensor Networks and Optical Fiber Sensors 

Recently, a number of wireless sensor networks (WSNs) have been widely developed 

and studied. Applications of wireless sensors are available in different monitoring areas 

(Rahman, (2010), Corker et al.,(2010), Hill and Culler, (2002), M. Ruiz-Altisent et al., 

2010, Alemdar and Ersoy, (2010), Hadjidj, (2013), such as military, medical and health, 

industrial, nuclear plant maintenance, ocean, agriculture, airport, disaster management 

and home network. These sensor networks act as information infrastructure, helping to 

provide ubiquitous services by using information from daily life 

 

Lately, optical fiber has been used not only for data communications but for sensor 

applications (Yin et al., 2008). Fiber sensors have been applied to measuring stress in 

bridges, measuring water quality, and predicting mudslides.  

This study uses a hetero-core spliced optical fiber that has been developed and studied 

for various purposes. The fiber can be easily manufactured through simple cutting and 

fusion splicing processes, and has been used in a soil gravity water detection sensor 

(Kumekawa & Watanabe, 2011), a humidity sensor (Akita et al., 2010), a chemical 

sensor for measuring of the pH of liquids (Iga et al., 2003; Seki et al., 2003), a bending 

sensor for gauging pressure, a restraint-free wearable cloth sensor for measuring arm 

motion and walking action (Nishiyama et al., 2007a, 2007b), and a smart 

pressure-sensing mat for monitoring human activities (Nishiyama et al., 2010).  

The study employs a hetero-core spliced optical fiber surface plasmon resonance (SPR) 

sensor (HC-SPR sensor) that detects soil gravity water. An HC-SPR sensor has 

functionality both as a sensor and as a medium for data communications. Kumekawa 

and Watanabe (2011) tested its sensing function and evaluated its sensitivity. To extend 
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the advantages of the sensor function, a fiber sensor system capable of simultaneously 

providing both data communications and sensing functions over the same optical fiber 

line is designed.  

 

1.3 Overview of the Thesis  

This thesis is divided into eight chapters. First chapter describes the overall 

background, sensor network and fiber optics sensor. In the second chapter, fiber optic 

sensors and its applications are discussed. Next, chapter three summarizes the current 

conditions and issues in regard to network sensors, including the requirements of sensor 

networks, a comparison of sensor networks, related work on natural environmental 

monitoring systems, and some issues not yet addressed by current research. The chapter 

four discusses research objectives and system requirements.  

The next section- chapter five presents the details of Hetero-core SPR sensor, 

its related research and summarizes a performance experiment that verifies combined 

data communications and sensing for short and longer distance.  

Chapter six proposes, evaluates and discusses the system design for the hetero-core 

fiber opticsl sensor system for soil gravity water monitoring. Chapter seven describes 

the detail of optical sensor network management using internet-standard protocol – 

SNMP and the verification test of the system configuration using different light source.  

Lastly, chapter eight provide a summary with discussion, conclusions and future works. 
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Chapter 2  

Fiber Optic Sensors 

 

2.1 Fiber Optics  

Optical fiber systems have many advantages comparing to the metallic based 

communication systems. These advantages consist of attenuation, interference and 

bandwidth characteristics. To operate a fiber optic system properly, it is important to 

know what type of fiber is being used and why. There are two basic types of fiber which 

is Multimode Fiber (MMF) and Single mode Fiber (SMF).  

MMF has a larger core diameter compared to SMF, therefore, it allow for the larger 

number of modes. On the other hands, SMF allow higher capacity to transmit 

information. It is because it can retain the fidelity of each light pulse over longer 

distances and it exhibits no dispersion cause by multiple mode. (Fiber Optic Info). 

 

2.2 Fiber Optics Sensors  

(a) Strain Dependency Types  

I. Fiber Bragg Grating (FBGs) Sensors 

The sensing mechanism of FBG is based on strain dependence of frequency of 

light reflected at grating. In FBGs the Bragg wavelength ⋋B, or the wavelength 

of the light that is reflected, is given by  

⋋B =2n∧      (1) 

where the n is the effective refractive index of the fiber core and ∧ is the 

grating period. Refer to Eq. (1), it can be seen that the Bragg wavelength is 
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changes with a changes in the grating period or effective refractive index. (Lee, 

B., 2002). 

In another word, the grating period is the case for strain and the effective 

refractive index is for temperature variation. This means, FBGs, respond to 

both strain and temperature. Most of the FBG sensors are used in the 

applications in smart structure. There have been demonstrated on civil 

engineering structures such as bridges, dams; oils wells; also for composite 

material structures such as aircraft and spacecraft (Yin, S., et al. 2008).   

  

II. Brillouin Optical Time-domain Reflectometer (BOTDR) 

The Brillouin optical time-domain Reflectometer is a distributed optical fiber 

strain sensor whose operation is based on Brillouin scattering (Hiroshige et al., 

2001.).  

In the proposal by Kurashima et al. (1993), a technique employs Brillouin 

spectroscopy in optical fibers and is based on a time domain analysis of the 

signal. They name the technique Brillouin optical-fiber time domain analysis 

(BOTDA) which can be used to measure not only temperature distribution but 

also tensile strain distribution along optical fiber.  

    

(b) Macrobending Types  

Fiber macrobending is well developed as a technology. Macrobending of an optical 

fiber is the attenuation associated with bending or wrapping the fiber. Light can “leak 

out” from a fiber when it is bent. When the bend becomes more acute, more light leaks 

out. (J.A. Jay, 2010) In Macrobend sensors, the SMF is usually used and it is bend at 
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relatively large diameters. A specially bend sensitive SMF is used as regular 

telecommunication fiber is usually not sensitive enough to macrobending.  

Watanabe et al. 2000 has investigated the macrobending characteristics of a newly 

developed hetero-core splicing for the practical use intended for relatively large 

distortion monitoring and for liquid adhesion detection. The results shown that the 

sensor with SMF of 9-5-9 structure detected large distortion and the sensor with SMF of 

9-3-9 structure shown as a viable technology for liquid adhesion detection around the 

curved hetero-core portion.  

  

(c) Surface Plasmon Resonance Types  

SPR refers to the excitation of surface plasmon polaritons (SPPS), which are 

electromagnetic waves coupled with free electron density oscillations on the surface 

between a metal and a dielectric medium (or air) (Lee, B., et al. 2009) 

In the study of SPR sensors based on MMF, the sensing element encompasses the fiber 

with an exposed core that coated with a thin metal layer supporting surface plasma 

waves (SPW). The propagation constant of the SPW is depends on the refractive index 

of the medium adjacent to the coated metal. (Slavik R., et al., 2001). Moreover, 

thickness of the metal is a crucial parameter in determining sensor characteristic.  

According to the study by Lee, B., et al., diverse structures of SPR fiber sensors are 

available. The structures include D-shaped, cladding off, end-reflection, angled fiber tip 

and taper fiber structures.  
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2.3 Application of Fiber Optics Sensors (FOS) 

The evolution of optical fiber sensor technology has expand its capability as a sensor.  

It can measure nearly all of the physical measurands of interest such as bridge, building; 

large number of chemical or liquid such as acid, soil water and even gas such as 

hydrogen.   

The optical fiber sensor measurands are listed in the table below.  

 

Table 2.1 Optical fiber sensor measurands 

Acceleration  Magnetic Field 

Acoustic Fields Pressure 

Chemical pH 

Displacement (Position) Strain  

Electric Fields Radiation 

Flow  Rotation 

Force Temperature  

Humidity Velocity 

Liquid level Vibration  

 

Some of FOSs are chemical sensors, temperatures sensors, strain sensors, biomedical 

sensors, electrical and magnetic sensors, rotation sensors, pressure sensors, 

displacement and position sensors, pH sensors, acoustic and vibration sensors.  

In the next page, a table summarized the application of the different types of FOS and 

the related research of them. Different types of FOS has it unique function and 

application, therefore, it may only specific to certain application.  
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Table 2.2 Summary of Fiber Optic Sensors Application 

 

 

 

Fiber Optic Sensors  Application  Reference  

(a) Strain Dependency Types    

 FBGs  Measure temperature and strain Du, W.C., et al., 1999 ; Kersey, A, et al., 1997  

 BOTDR Measure temperature and strain Kurashima et al., 1993, 

(b) Macro bending Types Displacement and positions  

Liquid adhesion detection 

Watanabe, K., et al., 2000, Nishiyama, M., et al., 2007  

(c) Surface Plasmon Types  Chemical (liquid) pH  

Humidity 

Water level   

Iga, M., et al., 2004;  Seki, A., et al., 2007 

Shiraishi, M., et al, 2011  

Takagi, K. and Watanabe, K., 2012. 
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2.4 Fiber Optics Sensor Networks  

Studies related to fiber optics sensor networks has become more common in recently 

years. The most suitable transmission medium for signals that generated by the fiber 

sensors is optical fiber, therefore, fiber-based networks has the advantages to 

accommodate the fiber optic sensors.  

In the review of fiber optic sensor networks by Perez-Herrera and Lopex-Amo (2013), 

they classify the fiber optic sensor network into four subdivisions. The first subdivisions 

between them are  

 Hybrid networks  

 Simple networks  

Further subdivisions that based on the type of sensors used are  

 Reflective networks  

 Transmissive networks  

 

Moreover, they also discussed diverse of topologies for making sensors available in a 

network which are divided into four fundamental configuration. The topologies are (i) 

serial bus / dual bus or ladder, (ii) star, (iii) tree and (iv) mesh.  
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Chapter 3 Sensor Networks  

 

3.1 Current Status of Sensor Networks  

Although, many such wireless sensor networks (WSNs) seem to be successfully 

deployed and have evolved in many aspects, they continue to be networks with 

constrained resources in terms of limited in power, memory, and computational 

capacities (Liao and Yang (2012), Sahoo et al., (2009). Power efficiency is the main 

concern in sensor networks; however, the QoS (Quality of Service), requirements also 

need to be satisfied (Tadayon, et al., 2013). In the study by Zhu et. al. (2012), they 

mentioned that coverage is one of the measurements of WSNs QoS and it is closely 

related with energy consumption. In addition, nodes have limited communications 

capabilities, due to which a source node can cover only within its maximum 

transmission range (Rizvi, et al., (2012). 

 

The fiber optic sensor network (FOSN) is fully wired in entire system or network, so 

there is no major concern to the limited power resource which will later cause the low 

quality of data communications or failure.  

However, the cost of the fiber optic sensor network with only a single channel of fiber 

optic sensor is relatively high. Opportunely, if the system or networks would be possible 

to share either the source of light, system of detection or preferably, both; the 

aggregation of the sensors could results in their cost reduction (Perez-Herrera and 

Lopez-Amo, 2013).    
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3.1.1 Sensor Network Requirements  

In comparison, the devices on an optical fiber sensor network differ from those on a 

WSN; however, it is reasonable to suppose that the general requirements of both sensor 

networks are basically the same. Therefore, from the requirement of WSNs, general 

requirements of a sensor network can be considered as following. 

(1) Installation: it should be easy to install sensor devices and to deploy 

communications and power cables. 

(2) Power supply: electric power required for communications and sensing should 

be able to be stably supplied over a long period of time. 

(3) Network capacity: even if the volume of sensor data increases owing to an 

increase in the frequency of measurements, the network should have sufficient capacity 

to accommodate the increased volume of data. 

(4) Device cost: sensor network components such as sensor devices or elements, 

and communications devices should be inexpensive. 

 

3.1.2 Comparison of Sensor Networks  

In this section, the advantages and disadvantages of the wireless sensor network and 

fiber optics sensor network is discussed. The comparison is based on the general 

requirements discussed in section 3.1.1. 

 

(i) Installation 

A wireless Sensor device is feasibility of installment because there is no need to lay 

cables (Ruiz-Altisent, et al., 2010) and wireless sensor devices are very small, as in the 

case of MICA-mote (Hill and Culler, 2002), and smart-its (Beigl and Gellersen, 2003). 
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On the other hand, the implementation and configuration of a satellite sensor network 

could be a hassle which involved many man power and time consuming.  

Comparing to the WSN, the installation of a fiber optics sensor network is more 

complex due to the need to lay optical fibers. 

 

(ii) Power Supply  

Limited battery life is recognized as being a serious problem with WSNs.  Therefore, 

various kind of energy saving techniques which include energy-efficient routing 

protocol, medium access control schemes, special operating systems and 

system-on-chip technology has been studied. Although this techniques seems to be 

useful to extend the battery life time of the WSN nodes, but none of them offers an 

indispensable solution to the battery replacement issues. It is difficult and troublesome 

to replace dead batteries of a large number of sensor devices (Minami et al., 2005). 

Refer to this issue; research on the power supply by solar power has been carried on. 

However, the energy or power supply could be affected by changes of weather or level 

of illumination in the environment. Therefore, attempts to prolong battery life impose 

limitations on the operations of sensor devices has become an issue.  

As for optical fiber network systems, fiber sensor elements use light propagating along 

optical fibers to take measurements. Therefore, fiber optics sensor elements do not need 

to be supplied with power although communications and measurement apparatuses do. 

Furthermore, connecting a number of fiber optics sensor elements in series over a fiber 

line enables reduction of the number of communications and measurement apparatuses. 

In this case, the complexity of the power supply cable that connects to the system could 

be avoided.  
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(iii) Network Capacity  

In wireless sensor network, since the radio communications dominates the power of the 

sensor node, severe constraints on the wireless communications protocol and transceiver 

is present. Wireless technology such Bluetooth and ZigBee which assumed a variety of 

application, therefore, its complex features and the high power consumption are not 

suitable for wireless sensor network (Shih et al., 2001). Wireless sensor devices mainly 

employ low-power and low-speed radio transceivers due to the problem of battery life 

(Shih et al., 2001, Rhee et al., 2003). In the case of an increase in traffic, such as by the 

occurrence of an abnormal event, challenges remain network congestion is likely to 

occur. In addition, in order to prolong battery life, sensor devices or nodes usually 

communicate only intermittently (Akyildiz, et al., 2008). In such situation, sensor nodes 

might appear in an inactive condition, so data receiving operation could not be 

performed. This increased the distance between nodes which cause the nodes reception 

is at the impossible state. Then, error rate increases and the data communications quality 

are degraded.  

Fiber optics sensor networks are expected to offer high-speed communications.  

By utilizing inherent features of the optical fiber as a transmission medium, high-speed 

large-capacity communications can be achieved. Therefore, even if the sensing 

information generated in large quantities, the network congestion occurrence is very 

minimal. In addition, it is not only functioning as the propagation of sensing 

information, but it provides a function as a normal LAN. 
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(iv) Economy Efficiency / Device Cost 

Advances in hardware and engineering design have led to a reduction in the cost of 

sensor devices (Pottie and Kaiser, 2000). However, WSNs require a large number of 

closely arranged sensor devices because of the constraints imposed by the propagation 

range of radio waves. Therefore, it is not always true that the cost of the entire system is 

low.  

In terms of fiber optics sensor networks, the sensor elements, light sources, and 

measuring equipment are more expensive than wireless sensor devices. 
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3.2 Related Research: Natural Environment Monitoring System  

A number of natural environment monitoring systems which especially focus on 

agriculture have been researched and studied. A regional and on-farm wireless sensor 

networks is implemented in the eastern Washington, (Pierce, et al., 2008), NAV system 

is designed for remote real-time monitoring of a vineyard in Italy (Matese, et al., 2009).  

 

In Japan, Geographic Information System by Fujitsu (Hori et al., 2010, Fujitsu 

Hokkaido System, 2011) introduces the latest technology such as sensors, wireless 

networks and cloud computing into agriculture practices. Fujitsu revises approaches and 

conducts business feasibility studies to establish a hypothetical model of cloud services 

that make genuine contribution to agriculture.  

 

GeoMation Farm by Hitachi (Hitachi, 2011a and 2001b) utilizes a satellite service to 

provide the image for analysis and a visual indication on the best time to harvest crops. 

The system regulates the quantity, frequency and timing of agricultural chemicals. 

 

NEC provides agriculture ICT Solution by collecting sensing data such as farm 

temperature and humidity or cultivation work history and then centralizing data in the 

cloud for management and agricultural production support purpose. The services also 

include statistical data analysis, application development and network setup at the farm 

(NEC, 2012).  
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FieldServer by Elab Experience (2010), a sensor network environmental monitoring 

device is designed with a camera and sensor communications. FieldServer applications 

include a web marketing service to view scenery of a coffee farm, next generation of 

agricultural education based on ICT in Shizuoka Prefectural Agriculture and Forestry 

College and Himalaya Lake Imja monitoring project. Sensor Service Grid (SSG) by 

Geomove (2011), provides a cloud service for constructing field sensor network system. 

 

The alternative technology such as satellite remote sensing already exists and uses for 

agricultural meteorology or agrometeorology remote monitoring (Minami et al., 2005).   

Faruolo, M, et al., 2013 discussed a sensor-independent approach (RST, Robust 

Satellites Techniques-FLOOD) is presented and applied to data acquired by two 

different satellite systems (Advanced Very High Resolution Radiometer (AVHRR) 

onboard National Oceanic and Atmospheric Administration platforms and Moderate 

Resolution Imaging Spectroradiometer (MODIS) onboard Earth Observing System 

satellites) at different spatial resolutions (from 1 km to 250 m) in the case of Elbe flood 

event occurred in Germany on August 2002.  

In study by Mello, M.P., et al., 2013; a new image processing method: Spectral–

Temporal Analysis by Response Surface (STARS), which synthesizes the full 

information content of a multitemporal–multispectral remote sensing image data set to 

represent the spectral variation over time of features on the Earth's surface. 

However, such systems involved country level or high level of research works in order 

to implement and provide the satellite remote sensing system. Therefore, cost of 

implementation is very high and it could not be user friendly due to complexity of the 

system.  
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3.3 Current Agriculture Monitoring Activities  

In recent years, a revolution toward the environmental sensors network (Hart et al., 

2006) has results in many studies that focusing on the sensing technologies for crop 

production (Lee et al., 2010) and agriculture activities monitoring (Zhang et al., 2011).  

According to the summary by Hart et al. (2006), the example of different environment 

sensor networks has shown that soil moisture, air temperature and humidity, water and 

light level are important factors for agricultural environments monitoring.  

On the other hand, because water makes major contribution to the crop production and 

majority of crops are produced from rain-water (Mark, et al., 2009), therefore, it is very 

essential to monitoring soil gravity water or soil moisture in agriculture activities.   

Related research of recent environment sensor monitoring and its monitored items have 

been summarized in the next table.  
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Table 3.2 Current Agriculture Monitoring: Related Research Summary Table 

 Environment Sensor Network  Monitoring items Research by 

1 Sensor networks for pasture assessment  Soil moisture Wark, et al., 2007  

2 An agricultural weather network and an on-farm frost monitoring network  Micro-meteorological parameters  Pierce, et al., 2008 

3 WSN sensor network of remote real-time monitoring and collecting of 

micro-meteorological parameters in a vineyard 

Irrigation and soil moisture Matese, et al., 2009 

4 An ethnographic study of the denizens of vineyards  Temperature BeckWith, et al., 2009 

5 Deployment of sensor network to provide reliable, long-term monitoring 

of rainforest ecosystems.  

Rain forest- restoration of biodiversity  Corke, et al., 2010 

6 Using the fieldserver to provide an outdoor solution for monitoring 

environmental parameters in real-time.  

Water, soil, air , sunlight Honda, et al., 2009 

Field Server, 2010 

7 A remote monitoring system using cloud service to provide real-time data 

from sensors  

Temperature, air moisture, soil, soil 

temperature, soil gravity water 

Fujitsu, 2013 

8 A system to manage and utilize information for each piece of field, 

including crops, staff, the record of fertilizer and other agricultural 

chemical usage, and yield and quality 

Soil type management, soil usage 

management, soil fertilizing 

management 

Hitachi, 2011 

9 Smart monitoring solutions for crop and water management Air temperature and humidity, soil 

temperature and soil moisture 

Sensor Ware Systems, 

2013 

10 Design and implementation of a reactive, event driven network for 

environmental monitoring of soil moisture and evaluates the effectiveness 

of this solution 

Soil moisture, soil temperature  Cardell-Oliver, et al., 

2004 
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3.4 Remaining Issues of Previous Research  

Based on the comparison of the sensor network and the natural environmental 

monitoring system in section 2.2 and 2.3, the remaining issues of existing research are 

summarized as below.  

 

(i) Larger, complex system configuration and function 

Wireless sensor network and existing commercial system is very complex and 

involve large system configuration. Furthermore, an alternative of satellite 

remote sensing involved country level or high level or research work (Faruolo, 

et al., 2013; Mello, et al., 2013). 

 

(ii) Limited sensor’s power or battery supply 

Power management is one of the major concerns in the sensor network systems 

intended to operate wirelessly (Burrell et al., 2004). If electricity supply is 

unavailable, sensors are required to have a battery. Limited battery life time 

may cause direct operation interruption during the data communications 

(Tanenbaum et al., 2006). 

 

(iii) Low reliability on data communications 

A wired network is not present, thus this requires a sensor to communicate 

using an ad hoc wireless network (Tanenbaum et al., 2006) which unable to 

produce high connectivity networks. Assurance the delivery of data over 

multiple node hops is extremely difficult, because low data throughputs 

expected to go through long hops count before reaching the sink.  
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Moreover, the microwave radio communications cannot permeate through 

obstacles such as forests, building and metallic walls and dominates energy 

consumption (Gracia-Hernandez et al., 2007, Hu et al., 2010, Lee et al., 2010).  

 

(iv) Higher production cost 

A cost of a single sensor node could justify overall cost of a sensor network. In 

order to provide a low cost sensor network, manufacturing cost of a sensor is 

required to be low (Tanenbaum et al., 2006). 
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Table 3.1 Summary of the requirements, existing research and the remaining issues.  

No  Requirements  Existing Research  Remaining Issues  

1. Installation  Satellite based remote sensing :  

Faruolo, et al., 2013,   

Mello, et al., 2013;  

 

Commercial system:  

By Fujitsu, NEC, Hitachi.  

Larger, Complex System Configuration and Function  

Faruolo and Mello are both research using the satellite-based remote sensing system. Although the 

system cover a huge monitoring area, however, it involved a complex installation and years of 

research works.   

The commercial system is mainly target for huge production farm which equipment with complete 

infrastructure. Installation of the system is difficult when the farmer do not have further knowledge 

regards to the system infrastructure.   

2. Power 

Supply  

Environmental WSN : Minami, 

et al., 2005; Puccinelli and  

Haenggi, 2005; Piece, et al. 

2008; Matese, et al., 2009; 

Corke, et al., 2010; Liao and 

Yang, 2012; 

Limited Battery or Power Supply  

Corke, et al., 2010: radio clearly dominates the energy consumption; the energy state of a node 

places a constraint on the performance that a node can deliver. 

Minami, et al., 2005 Battery replacement problem could not be solved with various energy saving 

techniques.  

3. Network 

Capacity  

Sensing Technology : Lee, et 

al., 2010;  

Outdoor Sensornet : Hu, et al., 

2012;  

Environmental WSN : Corke, 

et al., 2010; 

Low Reliability on Data Communications 

According to Corke et al., numbers of their deployments showed, the variability in conditions in 

many environmental area (e.g. Foliage, rain, humidity) means that communication LQ between 

nodes is highly dynamic and unpredictable.   

In evaluation study by Hu, et al. they observed a highly dynamic environment between the sensors 

nodes cause by a combination of many environmental parameters.  

4. Device Cost  Commercial system: By 

Fujitsu, NEC, Hitachi.  

Satellite-based remote 

sensing : GeoMation farm by 

Hitachi, Faruolo, M, et al., 

2013,  Mello, M.P., et al., 

2013; 

Higher Production Cost  

Commercial sensing system which provides many monitoring features and management system is 

always consume huge cost during implementation. Those systems is also mainly target to larger 

commercial farm not suitable for small-size farm.  

Satellite-based remote sensing involved high end research by the government and research institute, 

furthermore, it is not a low-cost technology which also take years to complete the research. 

Comparing the WSN or OFSN, such system definitely far more expensive in cost.  
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Chapter 4  

Research Objective and System Requirements 

 

4.1 Research Overview and Concept 

The overall concept of our research laboratory is to construct a sensor network 

which could be utilized in the wide area of environmental monitoring with fiber optic 

sensor. The natural environment could be a forest, a farm or a natural park. Figure 

4.1 shows the overall concept of our study. In order to operate such a system, the 

fiber sensors are installed in a target sensing point in the local sensor network and 

link up with fiber optic line. The local sensor network will then send the required 

data from a measuring local station to the monitoring center remotely. The 

connection from the local sensor network to the monitoring center using wireless, 

public network or fiber optic is possible to be included in the existing sensor 

networks.  

 

Figure 4.1 Overview Concept of Sensor Network for Natural Environment Remote 

Monitoring 
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4.2 Research Objective 

Based on the overall concept, this research topic focuses on the realization of a fiber 

optic sensor system for agricultural environments such as a farm. Therefore, this 

research objective is to propose and construct a remotely monitor fiber optic sensor 

system for soil gravity water monitoring in agricultural environments.  

The system is capable of adaptation to larger areas with real-time measurement and 

data transmission. In order to remote monitor a sensor networks, we study the optical 

sensor networks remote management using the internet-standard protocol. The study 

involves the installation of multipoint sensors into the same fiber line and differentiates 

the response from each sensor by using the internet-standard protocol – Simple Network 

Management Protocol (SNMP).   

 

4.3 Significance of Study  

Natural environmental monitoring involved in many aspects, such as ground water 

monitoring, rain forest micro-climate monitoring, lake water quality monitoring and 

environmental impacts monitoring (Corke, et al., 2010). The target of those monitoring 

items could be different from each monitoring systems depend on their purposes. 

In order to achieve the overall concept of our laboratory study, we start with a focus 

on agricultural environment monitoring with fiber optics sensor. 

However, before we could realize the entire sensor networks, many challenges such as 

the usability of the fiber optic sensors, the balance between the sensing and data 

communications, simplicity of the measurement devices, and others remaining issues of 

the related research need to be studied.    
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By conducting the research over some related research based on agriculture, the current 

agriculture monitoring activities have been summarized in sections 3.4. We could see 

that most of the target monitoring items are soil, soil moisture, soil gravity water and soil 

temperature. Therefore we start from the soil gravity water monitoring.  

Next, we need to find an appropriate fiber optic sensor which can detect soil gravity 

water. According to the study by Lee, B., et al. (2009), one of the important advantages 

of fiber-optic SPR sensing configurations are the simplified optical design and the 

capability for remote sensing. In our study, we choose a hetero-core spliced optical fiber 

surface plasmon resonance (SPR) sensor (HC-SPR sensor) that detects soil gravity 

water. The sensitivity of HC-SPR sensor to detect the soil gravity water has been studied. 

(Kumekawa and Watanebe, 2011). However, the agriculture remote monitoring (soil 

gravity water in this research) which involves the installation of the HC-SPR sensor 

within the communication line, and retrieving data for both sensing and data 

communications simultaneously have not been studied yet.  

There is a trade-off relationship between communications quality and measuring 

accuracy when the sensors is installed in the same line with the communication signal. 

Hence, this research has a challenge to study on how to balance data communications 

and measurement sensitivity features requiring proper devices and their consistent 

integration. Furthermore, a remote monitoring technique which could handle such 

system need to be studied.   
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The main contributions of this study are system integration that meets the 

requirements for soil gravity water monitoring in agricultural environment and to realize 

the remote management of fiber optic sensor networks. Throughout this study, we 

focusing on two main parts of which this doctoral dissertation consists.  

(i) A study on a system integration of Sensor system for soil gravity water 

monitoring in agricultural environments with HC-SPR sensor 

(ii) A study of a remote management of multipoint sensing systems using HC-SPR 

sensors 

 

The system requirements and the proposed methods are discussed in the next section. 

Based on those requirements, a proposed system is configured, tested via experiments to 

verify its feasibility. The experiments and results will be discussed in chapter five.   

 

4.4 System Requirements  

The systems requirements of our proposed system are define based on the user needs 

and refer to remaining issue discussed in previous section. By consulting the local 

farmers near to our university, we found their needs are, broad area monitoring, 

real-time status monitoring of farm environment and a low cost with easy to install 

system. Therefore, we aim to construct a simpler configuration, higher quality 

communications optical fiber sensor system which provide a real-time measurement and 

adaptable to broad area. The system requirements are describes as below. 

 

(i) Simpler configuration sensing system and network management: the number of 

system components such as communications and measurement devices are 

minimized in order to facilitate simple installation of the system. A simple 
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network management method is required to manage the sensor network. 

(ii) Continuous power supply: Being different from wireless sensors, the FOSs do 

not need power supply for operation, while other measuring devices are 

connected to the power directly. Therefore, the installation of FOSs can solve the 

power or battery supply issues for the sensors.  

(iii) Data communications reliability and real-time measurement: the system is wired 

connect with continuous power supply which ensured the data communications 

reliability. To send real-time measured data to users is one of the crucial features 

of our monitoring system. It is to provide users a real-time measured and 

processed data which collected from the sensor located at farm.  

(iv) Adaptable to larger area of environment: In most countries in Southeast Asia, the 

average farm size is less than 2 hectares (Eastwood et al., 2010). However, to 

accommodate the expansion of the farm size or monitoring area which includes 

two or three farms, a longer distance monitoring system need to be constructed. 

Thus, a system which is able to offer a soil water monitoring service in a broad 

area needs to be studied.   

(v) Multi-point sensing: Sensors are tandem install in the same fiber line in order to 

collect data in a few areas.   

 

4.5 System Requirements and Proposed Methods  

Based on the defined system requirements, some methods are proposed. The main 

proposed methods to meet the system requirements are, the use of Fiber Optic Sensor 

(in this study, the HC-SPR sensor is utilized) and SNMP as network management 

approach.  Table 4.1 describes the detailed of the proposed methods. 
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Table 4.1 System requirements and proposed methods. 

No  Requirements  Proposed Methods 

1.  Simpler configuration 

sensing system and  

network management  

Avoid complex measurement devices  

In order to measure the output from the network, the FOS measuring devices such as Optical Time-Domain 

Reflectometer (ODTR), Optical Spectrum Analyzer (OSA) are replaced by the measurement devices such as 

combination of Photodiode with power meter.   

SNMP as a remote network management  

To remote monitor the network status, SNMP agent and software which is simple to be configured are integrated 

into the system.  

2.  Continuous Power 

Supply 

 

Fiber optics sensors  

Being different from wireless sensors, the FOSs do not need power supply for operation, while other measuring 

devices are connected to the power directly. Therefore, the installation of FOSs can solve the power or battery 

supply issues for the sensors which is a major challenges in WSNs.  

With a continuous power supply to the system, the data communications is stable and the sensing data could be 

send to measuring device in a real-time. Other than that, fiber optics also provide a larger network capacity.   

3.  Data communications 

reliability and real-time 

measurement 

4.  Adaptable to larger 

area of environments 

Fiber optics sensors 

The fiber optics sensor used in this study able to simultaneously provide data communications and sensing. It is 

the hetero-core spliced SPR sensor. To adapt the sensor to larger area of monitoring, the sensor coated with a 

metal film of 25nm of gold and 60nm of tantalum pentoxide.  

This sensor could perform the sensing approximately 2000m with the wavelength of 1310nm.  

5. Multi-point Sensing  SNMP to manage multi-point sensors  

The SNMP trap PDU which can be used by the agent to alert the manager that a predefined event has occurred. 

By configure the settings of trap value enable the system to recognize the identity of the responded sensor 

(explain as a predefined event). Such technique do not required complex configuration and SNMP agents can be 

configure easily to the existing system.  
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Chapter 5  

Soil Gravity Water Monitoring using Hetero-core 

Fiber Optics Sensor  

 

5.1 Hetero-core Fiber Optics Sensor and Verification Experiments 

5.1.1 Hetero-core Fiber Optics Sensor 

The structure of the fiber consists of a multimode transmission fiber and a single-mode 

fiber segment inserted in the transmission line, where the core of the multimode fiber is 

50 µm and the core of the single mode fiber is 3 µm. Figure 5.1 shows the hetero-core 

structured optical fiber SPR sensor. The sensor is fabricated with a graded index 

multimode fiber with core and cladding diameters of 50 µm and 125 µm, respectively, 

and an inserted 10 mm long step index single-mode fiber with a core diameter of 3 µm 

and cladding diameter of 125 µm. The core diameter of the inserted fiber, which is 

smaller than the transmission fiber, works as a sensor portion. Since the core diameter 

of the inserted fiber for the sensor portion is much smaller than the transmission line, 

most of the light wave would leak into the cladding layer at the interface of the 

transmission line and the hetero-core. Next, the hetero-core portion is fabricated by 

cylindrically coating the bare fiber surface with metal using an RF sputtering machine 

(CFS-4DS-231, Shibaura Mechatronics Corp).  

In this research, the coating on the cylindrical surface of the hetero-core portion with 

metal material allows the formation of a surface plasmon wave when the evanescent 

wave reflects on the metal surface. The light leakage generates an evanescent wave in 

the course of the cladding mode development when reflecting at the boundary surface 
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between the cladding and the surrounding medium. 

The SPR resonance wavelength varies, depending on the refractive index and 

absorbance of the metal surface. Thus, this device can be used as a sensor for measuring 

refractive index by measuring the resonance wavelength.  

In previous work by Takagi & Watanabe (2012), the Au/ Ta2O5 coating combination was 

properly selected to give a sufficient SPR dip according to a series of experiments. By 

increasing the Ta2O5 thickness coating to 60nm, the experiment shows that the 

resonance wavelength is largely shifted. Figure 5.2 shows the spectrum of an HC-SPR 

sensor with 10 mm insertion length coated with 25nm Gold (Au) and 60nm Tantalum 

Pentoxide (Ta2O5). 

This sensor’s SPR dip occurred at the wavelength 1310nm which is the resonance 

wavelength. It is depicted by the arrow in figure 5.2. According to the graph*, the 

maximum sensitivity or power loss of this HC-SPR sensor with a 1310 nm wavelength 

in water is approximately 2 dB.  

(*The sensor’s spectrum graph is drawn by using value measured in air minus value 

measured in water – In this case – AIR is used as the base) 

The study applies the HC-SPR sensor to the communications line, where it 

simultaneously acts as a sensor and serves as a medium for data communications. In 

such a situation, light leakage, which is caused by SPR resonance in the HC-SPR sensor, 

is measured as the light loss. This system therefore measures changes in the signal 

intensity. 
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Figure 5.1 Structure of hetero-core structured optical fiber SPR sensor 

 

 

Figure 5.2 Spectrum of an HC-SPR sensor with 10 mm insertion length 
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5.1.2 Related Research 

One of the fiber optic based sensors – FBG (Fiber Bragg Grating) sensor which serves 

as a communications network and as health monitoring system has been studied (Golt, 

et al 2004). The sensor can serve a dual role through wavelength division multiplexing, 

which allows multiplexing of multiple wavelengths into a single fiber. For example, the 

sensor uses 1310nm wavelength for data communications and 1550nm for strain 

sensing.  

With this method, the data communications reliability requirement can be achieved.    

However, the manufacturing process of FBG sensor is lightly to be complicated which 

lead to high manufacturing cost. Furthermore, measurement devices required for a FBG 

sensor network such as OSA (Optical Spectrum Analyzer) and OTDR (Optical Time 

Domain Reflectometry) are known to be expensive.  

  

5.2 Wide-area monitoring using Tantalum Pentoxide (Ta2O5)-coated HC-SPR Sensor 

5.2.1 Tantalum Pentoxide (Ta2O5)-coated HC-SPR Sensor  

A Ta2O5 coating over part of the metallic lamina on the surface of an SPR sensor makes 

it possible to shift the resonant wavelength of SPR to a longer wavelength, due to the 

higher dielectric constant of Ta2O5 (Slavı́k et al., 2001). The SPR resonance wavelength 

is largely shifted to a region over 1000 nm by thickening the Ta2O5 coating to 60 nm 

(Takagi & Watanabe, 2012). Therefore, proper adjustment of the Ta2O5 coating 

thickness can be expected to induce the SPR phenomenon even at the 1310 nm 

wavelength used for long-distance data communications. 

This section describes an experiment for verification of short- and long-distance data 

communications and sensing using a Ta2O5-coated HC-SPR sensor, and the results of 
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each experiments. 

 

5.2.2 Short-distance Data Communications and Sensing Verification Experiment 

Figure 5.3 shows an overview of the experiment. An HC-SPR sensor coated with 25 nm 

of gold (Au) and 60 nm of Ta2O5 was prepared. A NextStream (Fujitsu Network 

Technologies) network-testing unit was used to measure data throughput and frame 

check sequence (FCS) errors using an optical communications signal with 1310 nm 

wavelength.  

First, the data flow of the experiment started with generating a data communications 

signal (1310 nm) from the NextStream. Next, the signal was passed through a media 

converter and an HC-SPR sensor, and then separated by an optical fiber coupler. Lastly, 

a power meter measured the transmitted light and measurement data was sent to a PC. 

Pure water was used as the test sample in this study.  
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Figure 5.3 Structure of the verification experiment for data communications and sensing 

 

Figure 5.4 shows the experimental results. The experiment was carried out in two cycles 

of immersing the HC-SPR sensor in pure water within 150 s. The experiment was 

carried out in two cycles to identify the pattern of light loss when the sensor was 

immersed and removed from the water. 

 

Figure 5.4 Experimental result of verification of the sensing characteristic for a tantalum 

pentoxide (Ta2O5) coated HC-SPR sensor 

 

During the first 30 s the sensor was dry, and from 31 to 60 s the sensor was immersed in 

water. This was then repeated for another cycle. The results in Figure 5.4 show that the 

power loss of the HC-SPR sensor increased when it was immersed in water in the first 

and second cycles, from 31 to 60 s and 90 to 120 s. When the sensor was immersed in 

the first cycle, the movement caused the sensor to touch the surface of the water, which 

caused a power increase. This occurrence was due to the bending or position of the 
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HC-SPR sensor, and is a normal phenomenon.  

Both cycles show that the power decreased when the sensor detected water, with an 

average power loss of 0.8 dB. The NextStream did not detect any FCS errors during this 

experiment.  

These results demonstrate that the proposed system can perform data communications 

without interruption while measuring variations in power loss. 

 

5.2.3 Long-distance Data Communications and Sensing Verification Experiment 

In order to provide a data communications and sensing service to farm in a longer 

distance, a few experiments are conducted in order to evaluate the feasibility of the 

HC-SPR sensor under our proposed system. Those experiments are conducted to verify 

the data communications and sensing characteristics of an HC-SPR sensor coated with 

25 nm of Au and 60 nm of Ta2O5 in a longer-distance of 1000 m. The pattern of the 

experiment A, B and C is described in Table 5.1.  

 

Table 5.1  

Experiment description for long-distance data communications and sensing verification. 

No Experiment  Description  

1 A Verification experiment with two 500 meter long of 50 µm core 

multimode fibers install before and after the SPR sensor position 

2 B Verification experiment with a 1000 meter long of 50 µm core 

multimode fiber install before the SPR sensor position 

3 C Verification experiment with a 1000 meter long of 50 µm core 

multimode fiber install after the SPR sensor position 
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5.2.3.1 Experiment A  

Figure 5.5 shows the experimental setup for experiment A. The experimental 

environment was constructed using two 500 m rolls of 50 µm core multimode fiber. A 

multimode optical coupler was used as a signal splitter. A power meter was used to 

measure the light loss. In this study, pure water was used as the test liquid. 

 

  

Figure 5.5 Experimental setup A - to verify the data communications and sensing of an 

Au and Ta2O5 HC-SPR sensor over a long distance 
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Figure 5.6 Results for experiment A 

 

Figure 5.6 shows the experimental results for experiment A. In the first 30 s, the light 

loss was zero while the sensor was in air. From 23:31:30 to 23:31:30 and from 23:31:30 

to 23:31:30 the sensor was immersed in water. The average power loss when the sensor 

was immersed in water was 0.6 dB. The NextStream detected no FCS errors, and then 

data communications were not interrupted, either. The result of experiment A 

demonstrates that the proposed system can perform sensing and data communications 

without interruption while successfully measuring power loss. 
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5.2.3.2 Experiment B 

The experimental environment is almost the same as experiment A, and water was used 

as the test liquid. However, the two 500 m rolls of 50 µm core multimode fiber are 

installed before the HC-SPR sensors as shown in figure 5.7.  

 

   

Figure 5.7 Experimental setup B - to verify the data communications and sensing of an 

Au and Ta2O5 HC-SPR sensor over a long distance 
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Figure 5.8 shows the experimental results for experiment B. In the first 30 s, the light 

loss was zero while the sensor was in air. From 15:32:00 to 15:32:30 and from 15:33:00 

to 15:33:30 the sensor was immersed in water. The average power loss when the sensor 

was immersed in water was 1.0 dB. The data communications were not interrupted and 

the NextStream detected no FCS errors. The result demonstrates that experiment B can 

perform sensing and data communications without interruption while successfully 

measuring power loss, even with 1000 meters fiber optic is installed before the sensor.  

 

 

Figure 5.8 Results for experiment B 
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5.2.3.3 Experiment C  

The experiment C’s setup is similar to experiment A and B. The two 500 m rolls of  

50 µm core multimode fiber are installed after the HC-SPR sensors as shown in    

figure 5.9.  

Figure 5.10 shows the experimental results for experiment C. In the first one minutes, 

sensor was in the air therefore, the light loss was zero. From 15:42:00 to 15:42:30 and 

from 15:43:00 to 15:43:30 the sensor was immersed in water.  

 

The average power loss when the sensor was immersed in water was 0.4 dB.  The 

NextStream detected no FCS errors and data communications has no interruption. The 

experiment C result also shows that this configuration can perform sensing and data 

communications successfully, even with 1000 meters fiber optic is installed after the 

sensor.  

 

 

Figure 5.9 Experimental setup C - to verify the data communications and sensing of an 

Au and Ta2O5 HC-SPR sensor over a long distance 
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Figure 5.10 Results for experiment C 
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Chapter 6  

Soil Gravity Water Monitor Sensing System using 

Hetero-core Fiber Optics Sensor  

 

6.1 Conceptual System Configuration of Hetero-core Fiber Optics Sensor System  

Figure 6.1 shows the construction of the proposed conceptual system. The system 

hardware configuration consists of a hetero-core spliced SPR sensor, media converter 

(Core System Japan Co., Ltd.), switching hub, power meter, USB device server and a 

notebook PC.  

To meet the system requirements of (i) simpler configuration sensing system and 

network management, those complex and expensive measuring devices such as open 

system adapters and optical time-domain reflectometers are not used in this system 

configuration.  

The sensor system is wired connected to the system, so (iii) continuous power is 

supplied to the system therefore (iii) data communications reliability is guaranteed. 

Moreover, (vi) adaptation to a wide-area environment can be accomplished by 

introducing a hetero-core spliced fiber sensor coated with 25 nm of Au and 60 nm of 

Ta2O5.  
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Figure 6.1 Proposed conceptual system configuration of HC-SPR sensor system for 

agricultural environment monitoring 

 

6.1.1 Verification experiment of the hardware configuration of hetero-core optical 

fiber sensor system  

The configured system shown in figure 6.1 is tested for its function. The web camera is 

connected via the USB device server to the sensor system, which it is control by its own 

software at the monitoring PC. The data from the monitoring PC to the camera and vice 

versa is send through the sensor.  

 

After confirming the web camera connection and the real-time camera data is sending 

back to the monitoring PC, the sensor is immersed into the water for 30 seconds for two 

cycles. The test results are shown in figure 6.2 and table 6.1.  

The HC-SPR sensor could detect the water when immersed to the water at 20:41:00 to 

20:42:00 and 20:43:00 to 20:44:00 as shown in the graph (figure 5.2). Besides, the 
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camera data transmission is not interrupted when the sensor is immersed into the water. 

The real-time data is viewed clearly and video data is captured.  

 

 

Figure 6.2 Test result of HC-SPR sensor with proposed hardware configuration 

 

Table 6.1 

Captured video file details for experiment conducted based on figure 6.1  

Captured video file details  

File Type WMV format  

Video size  12.8 MB  

Length of the video  5minutes 02econds  
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6.2 Software Architecture Design of Hetero-core Fiber Optics Sensor System 

The system architecture for an HC-SPR sensor system for agricultural monitoring is 

designed and shown in Figure 6.3. An HC-SPR sensor, media converter, power meter, 

and on-site PC are situated on the farm. The SPR sensor pushes the data via the media 

converter to the power meter for measurement, then to the on-site PC for temporary 

storage. The on-site system is connected to the Internet to allow data synchronization 

with a public cloud storage service. Next, the server will request the data from the 

public cloud storage to analyze and process the sensor data. The web and database 

server is a server-class computer located in the lab at a university with Internet 

connectivity. Finally, the data is displayed on the web, and can be viewed via PC or 

smart device. This architecture design achieves the system requirement of (iii) real-time 

measurement. 

 

 
Figure 6.3 sensor system software architecture design 

  



51 

 

6.3 Field trial Verification Experiments and Results under the Andosol  

Based on the conceptual system configuration show in Figure 6.1, an HC-SPR sensor 

system for soil gravity water monitoring in agricultural environments is constructed. 

The diagram is shown in Figure 6.4. An experiment to evaluate performance of the 

system is conducted. This experiment uses an HC-SPR sensor coated with 25 nm of Au 

and 60 nm of Ta2O5 with insertion length of 10mm.  

Andosol was used after drying to 15–20% water content over about 24 h in a dryer. 

Next, the sensor was installed in a plastic chassis sensor unit (W: 55 mm × H: 28 mm × 

D: 95 mm) (Figure 6.5). The top of the case was covered with an urethane mesh to 

prevent soil from dropping directly into the sensor case. Next, the sensor unit was set 5 

cm below the top of the Andosol (Figure 6.6). 

The experiment started by spraying 1000 ml water via a sprinkler as uniformly as 

possible on the surface of the Andosol within 60 s. The on-site PC captured sensor data, 

and a web camera connected to the system recorded video.  

The data and video captured and stored by the on-site monitoring PC were pushed to 

public cloud storage. The server requested the data from the public cloud storage and 

processed the data for real-time display. Users could request sensor data via a remote 

monitoring PC or other smart device such as a smart phone or tablet computer.  
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Figure 6.4 HC-SPR sensor system for soil gravity water monitoring of agricultural 

environments 

 

 

 

Figure 6.5 Side view of the sensor units 
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Figure 6.6 Image of the system performance evaluation with HC-SPR sensor under the 

Andosol 

 

Figure 6.7 shows the results of this experiment. The watering process started at 

13:10:00, and took about 60 s to complete. A power meter was used to measure the 

sensing data, and the baseline of light loss for this experiment was zero. 

Initially, the Andosol moisture level was less than 20%. The dry soil absorbed the 

sprayed water instantly, and thus the sensor could not detect the water immediately after 

the watering process started. Detection started after about 30s of watering. The power 

loss gradually increased to 1.5 dB. After the watering process stopped, the power loss 

from the sensor maintained at 1.5 dB as long the soil was kept moist. In addition, during 

the experiment, video data were seamlessly captured. The experimental result shows 

that data communications and sensing was successfully carried out with an HC-SPR 

sensor set in Andosol.  
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Figure 6.7 Experimental results for an HC-SPR sensor set in Andosol. 
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Chapter 7  

Optical Sensor Network Management using 

Internet-standard Protocol – SNMP 

  

7.1 Overview 

In the review by Rathnayaka and Potdar (2013), transport protocols for WSNs are 

discussed. Due to the numerous requirements and constraints on WSNs, many standard 

network transport protocols such as User Datagram Protocol (UDP) and Transmission 

Control Protocol are not appropriate. 

In our study of monitoring sensor conditions in the network, an existing 

Internet-standard protocol which works in the application layer of the Open Systems 

Interconnection (OSI) model –SNMP is used. The OSI management environments 

includes five categories of network management, which are called the OSI specific 

management functional areas (SMFAs). They includes fault management, accounting 

management, configuration management, performance management and security 

management (Mark A. Miller, P.E 1997). Based on the management functions categories 

defined in the OSI standards by Raman, L. (1998), these characteristics have a 

significant impact on configuration, performance, and fault management. They need to 

be considered from the view of network management. 

 

SNMP which introduce to this study is referred to as “simple” because the agent 

requires minimal software. Furthermore, most of the processing power and data storage 

resides on the management system. Besides that, one of the most useful aspects of 
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SNMP trap is their ability to communicate significant event such as a threshold that 

exceeds a predetermined value to a remote network manager. (Mark A. Miller, P.E 

1997).  

 

7.2 Multi-Point Sensor Networks and System Configuration  

7.2.1 Multi point Sensor Networks Requirements  

In order to manage a multi-point fiber optics sensor network remotely the following 

functions are required. Such as (i) real-time measurement and data transmission and (ii) 

the ability to distinguish the identity of responding sensors, a sensor network 

management method is required.  

Vancea and Dobrota (2007) discussed a related topic, sensor network management of 

WSN devices by SNMP with IEEE 802.15.4. However, their work is intended to 

provide a system that can be used for management of low-rate wireless personal area 

network equipment.  

This study is considering both the attenuation of light by HC optical fiber sensors as an 

element to measure the sensing performance and the value of the light intensity as a 

performance indicator for the communication signal among the resources to be 

monitored in an OSN.  Besides, the system also needs to identify the response from 

multiple sensors installed into the same fiber line. This proposed system use the 

attenuation of light intensity in the data communications signal to measure the sensing 

performance; therefore, it makes sense to consider failures in data communications as 

arising from attenuation of the light. To manage this, a method that relies on SNMP is 

used.  
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7.3 SNMP Agent and Its functions  

SNMP can detect changes in the network environment by means of a threshold value 

and using trap functions. To identify the operational status of multiple sensors, a unique 

management information base (MIB) must be defined for use by the SNMP agent 

(ASABi301TM (IP2AGP-301)) and SNMP manager (TWSNMP Manager). SNMP agent 

device used in this study can act as measuring devices for sensor data and also as an 

SNMP agent.  

This device has total of 10pins, whereby (i) pin no 1 to 4 and pin no 6 to 9 belong to 

four different channels with one signal pin and one ground pin for each channel; while 

(ii) pin no 5 and no 10 for the 5V output. The agent is connected to an Ethernet interface, 

and four-channel analog input to this device can be used to measure electric voltage 

which converted from the light intensity responded from the sensor. The USB 

connection is to supply the power to the device.  

The SNMP agent requires a script to function. Before writing the script into the SNMP 

agent, the output value of the sensors which are tandem connected in fiber line in a few 

combinations are measured. After identifying the different output values from the 

sensors (by conduct the test with different combination patterns), the trap numbers are 

assigned to each value in the script (for SNMP agent). The script will be updated to the 

SNMP agent via the script transmission program that is shows in figure 7.1. Then, the 

SNMP manager will refer to the trap numbers to identify the source of the response 

from the tandem connected sensors and display it on the manager interface. 
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Figure 7.1 The interface of script transmission program which use to connect and update 

the script for trap setting to the SNMP agent  

 

7.4 Remote Management of Multi-point HC-SPR Sensors with LED Light Source  

7.4.1 System Configuration for Multiple HC-SPR Sensors  

 

Figure 7.2 System configuration of OSN management using the SNMP for SPR sensors 

 

Takagi and Watanabe (2012) studied water multi-point detection using HC-SPR sensors. 

Their detection scheme employed a combination of an LED light source and a 
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photodiode. The experiment result shown that the study was successful. However, the 

remote management of the sensors was not implemented in that study. In our study, we 

extends the application of the above previous work and the proposed system 

configuration is shown in Figure 7.2.  

 

Three HC-SPR sensors with different insertion lengths are used. The insertion lengths of 

the sensors are 2 mm, 5 mm, and 15 mm for sensors 1, 2, and 3, respectively. The 

system devices are an LED light source, a 3dB attenuator, a photodiode, SPR sensors, 

an SNMP agent, and an SNMP manager. The connection from LED light source to 

photodiode is using the multi-mode fiber optic, while the connection from the 

photodiode to SNMP agent is using a copper wire. SNMP agent is connected to the 

manager through a USB cable.  

In this study, the copper wire which transmit the sensing signal from the sensors is 

connect to the channel no 4: pin no 8 for signal line (+) and the channel 4: pin no 9 for 

the ground line (-). Further details about the SNMP agent: ASABi301TM (IP2AGP-301) 

could be found at http://www.ip-square.com/sensor_stationASABi.html.  

The output of the SNMP agent is captured by the SNMP manager. When the threshold 

settings in the SNMP agent match the sensor output value a trap message will be sent to 

the SNMP manager to identify the ID of the responding sensors.  
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7.4.2 System Verification and Results 

The experiment was conducted with the test patterns listed in Table 7.1. An ‘ON’ signal 

means that the sensor is immersed in water. The loss value of sensors immersed in water 

is captured using the SNMP agent, and the value is calculated. Table 7.2 show the 

responded value from the sensor with different combination pattern.  

The loss value of each combination pattern is covert using the formula 

 “-10*LOG (current value/absolute of base value)”  

and the graph results of the loss value are shown in Figure 7.3. 

 

 

Table 7.1 

Trap number assignment for the SPR sensors and detection results  

No Test Pattern 

Description 

Assigned 

Trap 

Number 

Result 

1 Sensor 1 ON Trap No 32 Detected 

2 Sensor 2 ON Trap No 33 Detected 

3 Sensor 1,2 ON Trap No 34 Detected 

4 Sensor 3 ON Trap No 35 Detected 

5 Sensor 1,3 ON Trap No 36 Detected 

6 Sensor 2,3 ON Trap No 37 Detected 

7 Sensor 1,2,3 ON Trap No 38 Detected 
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Table 7.2 

Each combination pattern responded value captured by SNMP Agent (Asabi)  

 

 

 

Figure 7.3 The loss value of sensors measured using SNMP 

  

All OFF Sensor 1 ON Sensor 2 ON Sensor 1, 2 ON

Maximum Value 15177308 14162644 13578315 12719933

Average Value 15170991 14152294 13575398 12718236

Minimum Value 15162374 14143779 13568768 12710969

Sensor 3 ON Sensor 1,3 ON Sensor 2,3 ON All ON

Maximum Value 11302458 10654391 10307336 9769148

Average Value 11293269 10646267 10302599 9756926

Minimum Value 11285632 10637841 10299186 9710233
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The results showed that each combination pattern could detect a different loss value. 

Therefore, this value is use to set the threshold value in the SNMP agent and configure 

the MIB settings. Each combination pattern is assigned to a trap number in the SNMP 

agent by writing a simple script. This script which written for the SNMP agent to detect 

the respond from the sensors are update to the agent via script transmission program is 

shows in Table 7.3. 

When a sensor is immersed into water, the trap will be send from the SNMP agent and 

then the trap numbers will be shown in SNMP manager according to the response by the 

sensors. Table 7.1 shows the results of this experiment. All test patterns were 

successfully detected by the SNMP agent and display at the SNMP manager.  
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Table 7.3 Script for SNMP agent to detect respond from the sensors 

if(adc_data04 < 15177308 && adc_data04 > 15162374) 

{ 

 adc_ch4_trapenable = 1; 

 trap = 32; 

 adc_ch4_trapenable = 0; 

} 

if(adc_data04 < 14162644 && adc_data04 > 14143779) 

{ 

 adc_ch4_trapenable = 1; 

 trap = 33; 

 adc_ch4_trapenable = 0; 

} 

if(adc_data04 < 13578315 && adc_data04 >13568768 ) 

{ 

 adc_ch4_trapenable = 1; 

 trap = 34; 

 adc_ch4_trapenable = 0; 

} 

if(adc_data04 < 12719933 && adc_data04 > 12710969) 

{ 

 adc_ch4_trapenable = 1; 

 trap = 35; 

 adc_ch4_trapenable = 0; 

} 

if(adc_data04 < 11302458 && adc_data04 >11285632 ) 

{ 

 adc_ch4_trapenable = 1; 

 trap = 36; 

 adc_ch4_trapenable = 0; 

} 

if(adc_data04 < 10654391 && adc_data04 > 10637841 ) 

{ 

 adc_ch4_trapenable = 1; 

 trap = 37; 

 adc_ch4_trapenable = 0; 

} 

if(adc_data04 < 10307336 && adc_data04 > 10299186) 

{ 

 adc_ch4_trapenable = 1; 

 trap = 38; 

 adc_ch4_trapenable = 0; 

} 

if(adc_data04 < 9769148 && adc_data04 > 9710233) 

{ 

 adc_ch4_trapenable = 1; 

 trap = 39; 

 adc_ch4_trapenable = 0; 

} 



64 

 

7.5 Remote Management of TIP-type HC-SPR sensor with LD Light Source  

The multi-point detection using HC-SPR sensors with LED light source has been 

successfully carried on as described in section 7.4. Next, the study could challenge the 

multi-point sensing with HC-SPR sensor by combining the data communications and 

sensing using with the LD light source which is generated by the media converter. 

Our study has conducted experiments based on the concept in section 7.4 (figure 7.2) by 

including the data communications devices and its measuring devices such as media 

converter, Ethernet switch and NextStream into the test. The HC-SPR sensors are use in 

the test; both sensing data and data communications is measured to identify the 

feasibility of such system. The experiment is conducted in seven different pattern as 

same to test pattern described in table 7.1. The system configuration and the results of 

those experiments are summarized in appendix C.  

After conducted the experiment, the results are converted into graph for analysis 

purpose. From the experiment results, below two points can be concluded: 

(i) the sensors could not provide a stable data measurement  

(ii) those data could not clearly differentiate the responding sensors, this is because 

the different test patterns have similar output data (although it supposed to give a 

different output data)  

By analyzing the experiment results, the identification of the sensors status is difficult 

when three HC-SPR sensors are inserted into same line for the sensing and data 

communications purpose. Thus, the multi-point HC-SPR experiments with the LD light 

source (from media converter) are considered difficult and have many challenges.  
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Consequently, we look into another option and possibility to implement the multi-point 

HC-SPR system with the integration of sensing and data communications by using the 

TIP-type HC-SPR sensor.  

In the next section, the spectrum of TIP-Type HC-SPR sensor and the details of the 

experiment are describe.  

 

7.5.1 TIP-Type HC-SPR Sensor  

The structure of the TIP-type HC-SPR sensor is shows in figure 7.4. 

The sensor is fabricated with a graded index multimode fiber with core diameters of 50 

µm, respectively, and an inserted 2~10 mm long step index single-mode fiber with a 

core diameter of 3.1 µm. Then, the hetero-core portion is fabricated by cylindrically 

coating the fiber surface with metal using an RF sputtering machine. In this study, the 

metal film uses in this sensor are Gold and Tantalum Pentoxide (Au & Ta2O5) coating 

combination with the thickness or 25nm and 60nm respectively.  

When this sensor is immersed in the test liquid, a surface plasmon wave is generates. 

The wave is then reflects on the mirror portion of the sensor which is also coated by the 

Au/ Ta2O5, and then the reflected signal is send to the measuring devices via the 

transmission portion of the sensor (which is the multi-mode fibers). The amount of 

change from the reflected sensing signal can be used to measure as the light loss of the 

sensor.  
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Figure 7.4 Structure of the TIP-type HC-SPR Sensor 

Spectrum of TIP-type HC-SPR sensor for insertion length of 2mm, 5mm and 10mm are 

shown in this section. In order to view the spectrum of the TIP-type HC-SPR sensors, 

both measurement in air and in water is measured. Then, the spectrum graph for each 

insertion length are drawn by using air as the base (The value measured in air minus 

value measured in water, which is same with HC-SPR sensor spectrum graph 

preparation). 
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Figure 7.5 Spectrum of TIP-type HC-SPR sensor for 2mm 

  

Figure 7.6 Spectrum of TIP-type HC-SPR sensor for 5mm 

 

 

Figure 7.7 Spectrum of TIP-type HC-SPR sensor for 10mm 
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7.5.2 System Configuration for TIP-type HC-SPR sensor 

A new system configuration is proposed for the TIP-type HC-SPR sensor. The design is 

shows in figure 7.8.  

As a first step, the experiment is conducted with only one point of the TIP-type HC-SPR 

sensor is identify the feasibility of the system for both sensing and data communications. 

The test start with the TIP-type HC-SPR sensor with 10mm insertion length.  

Before conduct this test, some verification test has been conducted to verify the respond 

of the TIP-type HC-SPR sensor. The details are summarized in appendix D.  

 

The communication packet (data) is generates by NextStream and send via the Ethernet 

switch, media converter and coupler to the sensor. The reflected signal will be send back 

to NextStream and measured by the monitoring PC which connected to NextStream.  

The LD light generates by the media converter is send to the sensor through coupler.   

When the sensor is immersed into the test liquid, the signal is reflected and send to the 

measuring devices. However, in this setup, the sensing signal is saturated, therefore a 

6dB attenuator is positioned before the measuring devices (the photodiode and SNMP 

agent). In other words, the sensing signal will pass through a 6dB attenuator before it is 

send to the photodiode and SNMP agent for measurement.  

Photodiode is connected to the measuring PC via USB and the sensing signal is 

measured by the photodiode software. On the other hand, the SNMP agent is connect to 

the photodiode using a copper wire and the sensing signal is send to the measuring PC 

through the Ethernet switch via RJ45 (LAN) cable. The power of sensing signal which 

received by the SNMP agent is measured using the SNMP manager software called 

TWSNMP.  
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Figure 7.8 System configuration for the TIP-type HC-SPR sensor (10mm) 

 

7.5.3 System Verification and Results 

The experiment results for the TIP-type HC-SPR sensor which describes in section 7.5.2 

are shown in figure 7.9, figure 7.10 and figure 7.11.  

In figure 7.9 the data shows the power value measured by using the SNMP agent. The 

graph shows that sensor responded because the power is decreased when it was 

immersed into the water.  

The sensing signal from the sensor is also measured using the photodiode. Figure 7.10 

shows the value measured by photodiode software. The graph shows that the sensor 

responded due to the power decrease of sensing signal when it was immersed into the 

water. Then, the loss value measured by photodiode is calculates and shows in figure 

7.11 in the graph format. This graph shows that the sensor generates about 2.2 dB of 

loss value when immersed into the water.  
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Figure 7.9 Graph for the power value measured by SNMP agent 

 

 

Figure 7.10 Graph for the value measured by photodiode 
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Figure 7.10 Graph for the loss value calculate from the value measured by photodiode 

 

 

7.5.4 System Configuration of Multi-point Sensors and Experiment Results 

An experiment based on the design concept in figure 7.8 to test the feasibility for 

two-points of TIP-type HC-SPR sensors has been carried on. The sensors with insertion 

length of 2mm and 10mm is used in the experiments. However due to a large amount 

power loss after the light is separated by the coupler, the communications is down. The 

simple summary of this experiment (test 10) is described in appendix D page 127 while 

the diagram (slide 26) is shown in page 130.  
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Chapter 8  

Discussion, Conclusion and Future Works  

  

8.1 Discussion  

This paper presents studies of sensor system with hetero-core spliced optical fiber 

sensor which developed for soil monitoring in agricultural environments based on the 

requirements of (i) simpler configuration sensing system and network management, (ii) 

continuous power supply, (iii) data communications reliability and real-time 

measurement capability, (iv) adaptable to larger area of environments and (v) 

multi-point sensing.  

 

During the system construction, we designed and tested many system configurations to 

obtain results that match our system requirements. The system was constructed using an 

HC-SPR sensor, power meter, media converter, USB device server, and notebook PC. 

The HC-SPR sensor is simple to manufacture, and can serve a dual role as data 

communications transmitter and sensor, so data communications devices and sensors do 

not need to be set up separately. Besides, the complicated and expensive measuring 

devices for fiber optic sensor such as Optical Time-Domain Reflectometer (ODTR), 

Optical Specturm Analyzer (OSA) are replaced by the measurement devices such as 

combination of photodiode with power meter. The requirement of (i) simpler 

configuration sensing system is thus met. 

In chapter 7, the Internet-standard protocol – SNMP is described. SNMP is referred to 

as “simple” because the agent requires minimal software. Utilizing the SNMP method to 
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manage the sensor network, the system can avoid the complication of setting up the 

communications protocol or finding a suitable protocol for it. The FOS network has the 

advantage to use this existing standard protocol when compare to WSNs which has 

numbers of requirements and constrains in selecting the proper network 

communications protocol.  

 

Unlike wireless sensor networks the entire fiber sensor network is wire-connected, so 

the system is able to (ii) continuous supply power to data communications devices and 

measuring devices, which means that data communications reliability is ensured.  

FOS do not has power supply or battery life time issues because FOS operate using the 

light propagation. The experiment results indicate no interruptions in the data 

communications, as no FCS errors were detected while the SPR sensor was functioning 

as a sensor. The data communications quality of our proposed system is more reliable 

than that of wireless sensor networks. Because of the data communications reliability of 

our system, it has the ability to provide real-time measurement and offer users real-time 

information from the sensor. The requirement (iii) reliable data communications and 

real-time measurement capability is achieved.  

Next, to achieve (iv) adaptability to larger environments, a hetero-core spliced fiber 

sensor coated with 25 nm of Au and 60 nm of Ta2O5 was utilized in the system. This 

sensor can serve as a data communicator and sensor at distances up to 1000 m. This 

feature overcomes the data communications issues that challenge wireless sensor 

networks, such as difficulty transferring data through larger areas and limited network 

capacity. As discussed in section 4.4, the average farm size in most countries in 

Southeast Asia, is less than 2 hectares. Our system can provide the sensing and data 
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communications up to 1000 m based on the verification test. Therefore, the system 

consider to have the ability to accommodate the average farm size in South East Asia 

even if the monitoring area includes two or three farms.; however, it is also depends on 

the layout or topology of the sensor network configuration and design.   

 

There are many network patterns or combinations of devices that can realize such a 

system, but it is not easy to select devices that meet our system requirements in 

agricultural environments. Selection of the proper devices for our proposed system that 

balance the requirements of data communications and sensing is non-trivial, because 

both functions have a trade-off relationship. Specifically, from a communications 

standpoint, this might lead to optical signal degradation and increase FCS errors. 

 

For the requirement of (v) multi-points sensing, the sensors are tandem installed in the 

same fiber line and then the feasibility of multi-point sensing for HC optical fiber sensor 

networks by SNMP is evaluated. The experiment was carried on with the light source 

from LED as described in section 7.4. To distinguish the status of fiber optic sensors and 

to construct remote data acquisition sensor networks, a method that uses SNMP is 

introduced. The responses from HC-SPR sensors were successfully detected using the 

proposed method.  

 

Next the multi-point of HC-SPR sensors experiment is carried on with the LD light 

source which is generated by the media converter. The system configuration of the 

experiment is redesigned and both sensing data and communications data are measured 

to identify the feasibility of such system. However, the experiment results show that the 
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identification of the sensors status is difficult when three HC-SPR sensors are inserted 

into same line for the sensing and data communications purpose. Therefore, a sensor 

network with the integration of sensing and data communications by using the TIP-type 

HC-SPR sensor is studied. A new system configuration is proposed and verification is 

conducted. The experiment result shows that the possibility of using the TIP-type 

HC-SPR sensor in the new proposed system, but further study to overcome the 

challenge to construct a multi-points sensing system with LD light source (by media 

converter) need to be carried on.  

 

On the other hands, the measuring devices that were used in our system are more 

affordable devices, as compared to other optical fiber sensor networks (Golt et al., 

2004) , commercial sensor networks (Fujitsu Hokkaido System, 2011; Geomove 2011; 

Hitachi, 2011a and 2001b; Hori et al., 2010; NEC, 2012) and satellite-based remote 

sensing (Faruolo, M, et al., 2013;  Mello, M.P., et al., 2013). Therefore, our system 

cost might be lower when comparing to those system mentioned above; however, 

further study need to be carried on to evaluate the system cost efficiency with WSNs. 
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Table 8.1 Summary of requirements, proposed methods, implementation and verification test 

No  Requirements  Proposed Methods Implementation and Verification Test  

1.  Simpler configuration 

sensing system and  

network management  

 Avoid complex measurement devices  

In order to measure the output from the network, the FOS 

measuring devices such as Optical time-domain reflectometer 

(ODTR), Optical Specturm Analyzer (OSA) are replaced by the 

measurement devices such as combination of Photodiode with 

power meter. 

 SNMP as a remote network management  

To remote monitor the network status, SNMP agent and software 

which is simple to be configured are integrated into the system. 

The proposed system utilized the power meter as 

measurement devices. The data can be easily stored and use 

for analysis later. The system integration has been verified in 

section 6.3 for soil water monitoring. 

2.  Continuously Power 

Supply 

 

 Fiber Optics Sensor 

FOSs do not need power supply or depend on battery to operate. 

While the other devices in the system are always supplied with 

power. 

Without the power supply issue, the data communications is 

stable. Moreover, the fiber line could provide larger network 

capacity and the sensing data could be send to measuring device 

in a real-time.  

Data communications reliability and real-time measure has 

been verified in section 5.2.2 and 6.1.1, 6.3. The fiber optic 

wired system ensure the power continuously supplied. 

Furthermore, by integrating FOS– HC-SPR which utilized in 

the system did not affected the data communications.  

3.  Data communications 

reliability and real-time 

measurement 

4.  Adaptable to larger area 

of environments 

 Fiber Optics Sensor 

To adapt the sensor to larger area of monitoring, the HC-SPR 

sensor coated with a metal film of 25nm of gold and 60nm of 

tantalum pentoxide.  

In section 5.2.3.1 the experiments result shown that the 

HC-SPR sensor with 25nm Au 60nm Ta2O5) successfully 

detected water in the distance more than 1000m. In another 

word, the system could be implemented in a larger 

monitoring area.  

5. Multi-point Sensing   SNMP to manage multi-point sensors  

By configure the settings of SNMP trap value enable the system 

to recognize the identity of the responded sensor. Such technique 

do not required complex configuration and SNMP agents can be 

configure easily to the existing system.  

The multi-point sensors management using SNMP has been 

verified in section 7.4. The experiment results shown that the 

proposed SNMP method to manage and identify the respond 

of multi-points sensors successfully.  
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8.2 Conclusion  

This study described and analyzed a hetero-core spliced optical fiber SPR sensor system 

for soil monitoring of agricultural environments. The goal is to design and construct a 

remotely monitor fiber optic sensor system for soil gravity monitoring in agricultural 

environments. Many related research has been studied in order to identify the remaining 

issues of the current research. Based on those data, this study define the requirements to 

construct the remote FOS system for soil gravity monitoring which target to be used in 

agricultural area.  

First part of the study is to construct a sensor network with fiber optics sensor. In order 

to extend the distance of data transmission for large-area monitoring, the study used an 

HC-SPR sensor coated with Ta2O5 and adopted a wavelength of 1310 nm. The HC-SPR 

sensor network system has been constructed, and experiments succeeded in gathering 

real-time sensor data from the system. 

Next, the second part of the study proposes and evaluates the feasibility of multi-point 

sensing for HC optical fiber sensor networks with LED light source using the SNMP 

method. To distinguish the status of fiber optic sensors and to construct remote data 

acquisition sensor networks, a method that uses SNMP is introduced. The responses 

from HC-SPR sensors were successfully detected using the proposed method. 

In a nutshell, the objectives of the study has been achieved and all defined requirements 

has been met with the proposed method.  
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8.3 Future Works  

Future work could include developing integrated simultaneous data communication and 

sensing functions for multiple sensing points on a multimode fiber line. A further study 

is needed to find out the possibility usage of multi-points TIP-type HC-SPR sensors in 

proposed system. The study could be focus on the system design or improvement of the 

specification of TIP-type HC-SPR sensor in order to accommodate to the current 

design.  

 

This study also can further investigate the “multiplicity boundary” to identify the limit 

on how many HC-SPR sensors can be connected in series under no degradation in 

communication quality. To expand the usefulness of this type of sensor network, 

combinations of different types of HC sensors and testing the feasibility of these mixed 

systems could also be examined.   

 

After investigate the above issues, the on-field experiment need to be conducted in order 

to identify others issues of such system when it is implemented in a real outdoor 

environment or farm. The collaboration with local farmer and researcher from 

environmental engineering might be needed.     
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Appendix A 

NextStream Menu Settings Reference and Media 

Converter Diagram  

Appendix A.1 NextStream NX 6000 F  

This section described the steps for (i) New frame settings (ii) Using traffic monitor 

function and (iii) saving log data into CSV format 

(i) New frame settings  

 

Go to [File] ＜ファイル＞and select [New] <新規作成> 
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 Select the port to be used (for TX) and click on the <使用・未使用> to choose the 

port  

 Next click on <編集> to make configuration , below screen will appear  

 

 

 
 

 Click on the <追加> to register the frame and next screen will appear  
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 For frame length [bytes] <フレーム長> change settings to 1522.  

 At the <プロトコル> select IPv4 and click on the <ヘッダ編集> to go for next 

settings 

 

 
 

 In this menu, key-in the Src address to 192.168.0.1 and the Dst address to 

192.168.0.2 

 Keep the rest of the settings as original 
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 Click ok to exit to previous screen  

 
 

 This screen shows that the frame settings has been done, exit to go back to main 

menu  

 

 

 

 Next from this menu, select the <ポートオプション> to make settings 

 *These settings are the same for RX port which will be configured later 
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 *At the <ネットワーク設定> 

  uncheck the <グローバル> and check on the IPv4 アドレス  

 

 

 *At ＜自発 ARP＞ follow above screen shot to do the setting.  
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 *Lastly at <最大フレーム長>, set the value to 1522 and then click [OK].  

 

 To set up the RX (receive port), select one of the port from the list and      

click on the <使用・未使用> to choose the port  

 At the <受信> check the <可変フレームチェックを行う>  

 Next click on the <ポートオプション> to make the same settings as TX port 
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 After all the settings has completed, this setting can be saved by select the <保存> 

button as shown below. 

 Name the file accordingly, so it can be retrieved when NextStream is used in similar 

experiment. 
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(ii) Using the traffic monitor function 

 Next to view the traffic condition using the traffic monitor, follow the steps below 

 Go to <トラフィック> and select <トラフィックモニタ>  

 

 
 

 Below screen will appear  

 Next, go to the side menu and select the <Start> then choose <連続のみ送信> 

from the menu  
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 Tx and Rx value can be view in variety of measurement. Click on the top menu of 

each column to change the measurement value.  

 

 
 

 Now the traffic condition of the network can be viewed (in this case Bits/s) 
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(iii) To save the traffic monitor log data into CSV format 

 Click on the record button at the traffic monitor menu  

 

 

 A pop-up windows will appear and select a location and insert file name before 

save the log file  
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 After the location and file name is defined, click on save button and below message 

will appear to inform where the file is saved.  

 
 

 The log will continue to save automatically to the designated file until the STOP 

button at the traffic monitor menu is click  

 To open the saved log file, go to FILE in the main menu of NextStream and select 

open (O) 

 

 In the open file pop-up windows box, select the saved log file  
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 The log file will be displayed and click on the [save the log file into CSV format] to 

save the file into the CSV format for further analysis 

 

 

 Select the port (in this example is port 1) in order to save the log data and defined 

the period of the log (No) that want to be saved into CSV format, then click start 

button.  

 Repeated the same steps for second port ( in this example is port 5) 

   

 



100 

 

 After clicked on start button, below windows will appear. Define the location to 

save the file and insert a file name.  

 

 Below screen shows that the log file has been saved into the CSV format 

 

 Go to the saved file location to open the file  
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 The log file saved in CSV format is shown as below. The data can be used to draw graph for visual purpose.  

 The file can also be saved in the xls or xlsx format by choosing the [Save As] from the Menu  
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Appendix A.2 Media Converter Connection Diagram 

(i) Old Type Media Converter Layout  

 

Coupler specification for Old Type Media Converter 

 

Old Type Media Converter

1x2 SM coupler 1310 dual window 1:99

1:SC/PC
SC/PC

99:LC/PC

Single mode dual window  fiber coupler, P grade, 1310nm, 1x2, 1/99, 900um, SMF f iber

Quantity: 4

Total Length: 2Meter

1meter 1meter

2meter
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(i) iLineBox(New Media Converter) Layout 
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Coupler specification for iLineBox 

 

 

 

 

 

 

 

 

 

 

 

 

ILine Box 

1x2 SM coupler 850dual window 1:99

1:SC/PC
SC/PC

99:LC/PC

Multi mode dual window  fiber coupler, P grade, 850nm, 1x2, 1/99, 900um, MMF f iber

Quantity: 4

Total Length: 2Meter

1meter 1meter

2meter
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Appendix B 

Troubleshooting the Experiments and the Best Know Method 

Troubleshooting Case (I)

 

Figure appendix B.1 proposed conceptual system configuration of HC-SPR sensor 

system for agricultural environment monitoring 

In order test the system configuration, the experiment has been carried on based on the 

diagram above (Figure appendix B.1). The details of the experiments has been 

explained in section 6.1.1.  

In the early stage of the experiment, two issues occurred.  

(i) The USB connection is frequently disconnected or the measuring PC system is 

restarted.  

(ii) The web camera data could not be viewed clearly or when web camera try to 

capture a video, the connection will be disconnected. 
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Figure appendix B.2 screen captured when issues occurred during the experiment.   

The figure appendix B.2 shown the disconnection of the USB server device and the 

unclear display of image from the web camera. 

The troubleshooting is carried on based on the two different tests.  

At first, the media converter II is replaced by the new media converter. The TX output 

from the media converter I (MC I) is measured. The results should that the TX loss 

output from MC I is –8.73dB. 

Then, the MC I is replaced by MC II in order to do the same measurement, and the 

result from MC II TX port is –10.20dB.  

 

Figure appendix B.3 measuring the output from MC I and MC II in the same system 

configuration.   
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Next, in the same configuration the position of the MC I (shown in figure appendix B.3) 

is replaced by new media converter to measure its TX port loss output. The results is 

-10.30dB, which is almost similar to MC II. This means that the light intensity of MC I 

is higher compare to other Media converter TX output. So, the uneven of the light 

intensity of the TX port of the MC I is the root cause of the unstable connection.  

Therefore, the MC I is replaced with the new media converter (figure appendix B.4) in 

this configuration and the experiments managed to get the successful result.  

 

Figure appendix B.4 measuring the output new media converter in the same system 

configuration.



108 

 

Data Collection Challenges 

Troubleshooting Case (II) 

 
Figure appendix B.5 verification experiment for data communications and sensing using 

the HC-SPR sensors 

 

 
Figure appendix B.6 verification experiment for data communications and sensing using 

the HC-SPR sensors over longer distance  

The detail of experiments show in Figure appendix B.5 and B.6 has been explained in 

section 5.2.2 and section 5.2.3. At the early stage of the experiment, the stable sensing 

data could not be retrieved. 

The results for short distance test (figure appendix B.5) of SPR sensor I and II is shown 

in figure appendix B.7. While figure appendix B.8 shows the results for longer distance 

test for SPR sensor I, II and III. All results show unstable output from the sensors.  
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Figure appendix B.7 Experiment results for SPR Sensor I and II for experiments in 

figure appendix B.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure appendix B.8 Experiment results for SPR Sensor I, II and III for experiments in 

figure appendix B.6. 
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Solution: 

The media converter and photodiode always adjusted their own base line value each 

time the electric power is supplied to them (in an experiment set up).     

 

If a new experiment or configuration is set up and the power of the media converter and 

photodiode is not reset, then the old base value will be use. Each experiment has 

different base line value even though the configuration could be considered the same.  

 

Therefore, each time before the next experiment, the power of the media converter and 

photodiode need to be restarted in order to retrieve a new base line value. By 

performing this steps each time before a new experiment ensure a stable sensor results 

as described in section 5.2.2 and section 5.2.3.  
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Appendix C 

 

Summary of Multi-points HC-SPR Sensors Experiment 

using LD light 

 
This section summarized the experiment the multi-point detection using HC-SPR 

sensors with LD light source from media converter. The data communications devices 

and its measuring devices such as media converter, Ethernet switch and NextStream into 

the test.  

There is about 14 different test has been conducted with different configuration in order 

to identify the feasibility of the sensors or the system configuration.  

Although the experiment results show that the system could not provide a stable result 

for measuring purpose, this steps is important in the study. The result from the 

experiments are essential to detect and analyze the existing issues; or to assist on 

making further improvement to the current system.  
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List for Experiment conducted for HC SPR Sensor 

Test Description  Slide  Result  

A- 15mm SPR test Test with 6dBATT - 15mmSPR Slide 1-4  Sensor responded, base line is considerable stable 

B - 2mm SPR test  Test with 9dBATT -2mmSPR Slide 5-9  Sensor responded, base line is considerable stable 

C - 5mm SPR test Test with 6dBATT -5mmSPR Slide 10-15 Sensor responded, result is not expected or not stable 

Test 1, 2, 3  Test with SPR15-5-2 Slide 16-27  Sensors responded; but the first test for 15mm seems to be weird. The respond for 2mm 

seem to be larger than 15mm. All 2mm involved result seem to be larger.  

*Why 2mm responded larger compare to 5mm or 15mm? 

Test 4  Test with SPR15-5-2 on 

different day  

Slide 28-34  Same test as above. All sensors responded accordingly. Stable graph result. But the 2mm 

sensor show better responded than other.  

Refer to slide 34 for clearer picture, however the dB is high for 2mm too (-5dB?) 

Test 5, 6  Test with 3dB ATT -SPR 2-5-15  Slide 35-44  Try the connection different from test 1-4 but the graph shown the results is unstable. 

Not sure if need a longer timing to get a stable baseline before start testing?? 

Test 7  Test with SPR 2-5-15 Slide 45-50 Repeat test 6 without Attenuator.  

The result is not positive too.  

Test 8  Test with SPR 2-2-2  Slide 52-57 2mm seem to be responded very well in Test 1-4 therefore try combination of 

2mm-2mm-2mm SPR without attenuator.  

The result is not responded well for Asabi (slide55).  

But Iline box seem to have little respond (slide56) 

Test 9  Test with 3dB ATT- SPR 2-2-2 Slide 59-63 Test with Attenuator, but result is not stable too. Before the test, the base line is not 

stable as well (slide 60) 

Test 10 Test with 3dB ATT- SPR 2-15 Slide 65-69 Results seem to be stable (slide67) except 2mm was not responded at first test. But 

cannot differentiate the sensor as the result is almost the same line for 15, 2&15.  

Test 11  Test with 3dB ATT- SPR 15-2 Slide 71-73 All sensors responded but I think the result is not very positive as the graph go 

descending.  
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Appendix D 

TIP-Type HC-SPR Sensor Verification Test  

 

Summary of the conducted verification test  

(i) Test to verify the feasibility of TIP-type HC-SPR sensor 
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(ii) Test to verify the feasibility of TIP-type HC-SPR 

sensor 

 
Summary of the test result 

Test Result based on Configuration C but measured using the OPM (handy) 

Using 10mm insertion length TIP-type HC-SPR sensor 

1.  MC-Circulator - 50:50(1310) - diagram refer to slide 18 

- measured the coupler output with OPM - -33.56 

- no link down 

- PD software can measure some changes when sensor immersed into water, but not 

Asabi.  

 

2.  MC-50:50(1310) - 90:10(850)- diagram refer to slide 19 

- measured the coupler 90:10(850) output with OPM - -24.03  

- no link down but  

- sensor measurement could not be taken when sensor immersed into water 

 

3.  MC-50:50(1310) - 50:50(850)- diagram refer to slide 19 

- measured the coupler 50:50(850) output with OPM - -25.15  

- no link down but  

- sensor measurement could not be taken when sensor immersed into water 

 

Test Result based on Configuration C ,  

- Step 1 -  measure using the PD and Asabi (SNMP Agent)  

- Step 2 - then measure using the OPM (handy) 

 

Using 10mm insertion length TIP-type HC-SPR sensor 

4. MC-50:50(1310) - 50:50(850) - diagram refer to slide 20 

- measured the coupler 50:50(850) output with OPM - -27.03(air) -29.70(water) 

- no link down but  

- when sensor immersed into water PD and Asabi- NO reaction  

 

5.   MC-50:50(1310) - 90:10(850)- diagram refer to slide 21 

- measured the coupler 50:50 output with OPM - -25.67(air) -27.66(water) 

- no link down but  

- when sensor immersed into water PD and Asabi- NO reaction  
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Using 5mm insertion length TIP-type HC-SPR sensor 

6. MC-50:50(1310) - 50:50(850)- diagram refer to slide 22 

- measured the coupler 50:50(850) output with OPM - -27.87(air) -29.44(water) 

- no link down but  

- when sensor immersed into water PD and Asabi- NO reaction  

 

7.   MC-50:50(1310) - 90:10(850)- diagram refer to slide 23 

- measured the coupler 50:50 output with OPM - -26.47(air) -27.49(water) 

- no link down but  

- when sensor immersed into water PD and Asabi- NO reaction  

 

 

Test Result based on Configuration C, however Attenuator is inserted into the system 

- Step 1 -  measure using the PD and Asabi (SNMP Agent)  

- Step 2 - then measure using the OPM (handy) 

 

Using 10mm insertion length TIP-type HC-SPR sensor 

8. MC-50:50(1310) - 90:10(850) -Attenuator(6dB)- diagram refer to slide 24 

- no link down  

- when sensor immersed into water PD and Asabi- has respond - graph quite stable 

 

Using 2mm insertion length TIP-type HC-SPR sensor 

9. MC-50:50(1310) - 90:10(850) -Attenuator(6dB)- diagram refer to slide 25 

- no link down  

- when sensor immersed into water PD and Asabi- has respond - graph quite stable 

 

Two points of TIP-type HC-SPR sensor, using  

10.MC-50:50(1310) -50:50(1310)- 50:50(850) -Attenuator(6dB)- diagram refer to slide 

26 

(i) sensors with insertion length 2mm and 10mm  

(ii) all 50:50 coupler (3 couplers) 

- link down as measured by NextStream 

- measured the coupler 50:50(1310) output with OPM - -29.7(air)  

-multiple-points could not be achieved, need further investigation 
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Appendix E  

Verification Test of HC-SPR Sensor using 

different Light Source and Configuration 

 

 

This section summarized the verification test of the HC-SPR Sensor by using different 

light source and system configuration. Before construct the system with the integration 

of sensing and data communications, some verification test need to be conducted.  

The purpose of the test is to find out the integration of the devices and their feasibility to 

obtain a stable sensing data. These verification tests is very important because the result 

able to show us which devices work best with sensor to provide a stable sensing result.  

These result could be used to identify the appropriate devices that use in the system 

integration for our study, 
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Summary of 2012 Experiments
Light

source
Sensor Coupler 

Duration
comment

c1-SPR Sensor LD ◎ 30mins Data from the test is between 3085~3090

c2-SPR Sensor LED ◎ 30mins Data from the test is between 3085~3089

d1-Coupler LD 99/1 40mins Data from the test is between 2568~ 2579

d2-Coupler LED 99/1 30mins Data from the test is between 2568~ 2579

j1-SPR+Coupler LD ◎ 99/1 30mins Data from the test is between 3055~ 1749

j2-SPR+Coupler LED ◎ 99/1 30mins Data from the test is between 150~ 152

L-SPR+Coupler (matching oil) LD ◎ 99/1 30mins

(I)Data from the test is between 2537~3192

(Differ 600) (Data from file 121121)

(II)Data from the test is between 1517~1950

Differ 453 (Data from file 121121 – experiment on 22nd)

(III)Data from the test is between 1081~1899

Differ 818 (Data from file 121121 – experiment on 22nd)

I-Circulator-SPR-Coupler LD ◎ 99/1 30mins Data from the test is between 815~2021, Data is not stable

II-SPR-Coupler 99% (OPM)

1%(ilineBox)
LD ◎ 99/1 10mins

Data from Power meter (1% output of coupler) is between 3212~

4095

Data from the OPM (99% output of coupler) is between -9.95 ~ -9.97

III-SPR-Coupler 99% -ILineBox LD ◎ 99/1 8hours
Data for about 8hours * Data from the test is between 3013~3019

Data is consider stable

IV-SPR-Coupler 50-50 LD ◎ 50-50 10mins

Data from Power meter is between 3162~ 3165

Data from the OPM is between -14.61 ~ -14.73

Both data is consider stable based on the result

II-SPR-500MMF-Coupler 99% (OPM)

1%(ilineBox)
LD ◎ 99/1 30mins

Data for about 30mins : Data is between 3500 ~ 1500, Data is not

stable

III-SPR-500MMF-Coupler 99% -ILineBox LD ◎ 99/1 30mins Data for about 30mins  : Data is between 3088~3084

V-SPR-Coupler 99%iLine-1%OPM LD ◎ 99/1 30mins
Data from OPM - -52.80~-51.85 (dBm)

Data from power meter – 3199~3204
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Appendix F 

Research Activities  

<Journal Paper Publication>  

1. Lee See GOH, Norikazu KUMEGAWA, Kazuhiro WATANABE, Norihiko 

SHINOMIYA  

Hetero-core Spliced Optical Fiber SPR Sensor System for Soil Gravity Water 

Monitoring in Agricultural Environments 

An International Journal of Computers and Electronics in Agriculture, ELSEVIER, 
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