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Testing Granger Causality under Dynamic Covariance

                  Manabu  ASAI 

                                

• Abstract 

The paper considers the Granger causality tests based on the hetersokedasticity-consistent 

covariance matrix of White (1980). The Monte Carlo experiments show that the conventional 

test over-rejects the null hypothesis of non-causality, while the proposed test works satisfac-

tory. The proposed test also has enough power. Using the data for the Standard and Poor's 

500 Composite Index, the paper examines the causalities among the return, volatility and 

trading ° volume. 

Keywords Granger Causality ; Heteroskedasticity. 

 1. Introduction 

   In general, it may be stated that there is the causality. from X to Y, if the change in X 

brings the , change in Y directly. At least, it requires three conditions for such a direct 

connection ; (i) X appears before Y does, (ii) there is a strong correlation between X and Y, 

and (iii) the correlation . between X and Y is not caused by other variables. We may test 

theoretical connection such as a hypothesis derived by economic theories, using regression 

models based on data of X and Y. The concept of causality proposed by Granger (1969) is 

widely spread, after Sims (1972) proposed an approach to test the Granger causality, in the 

framework of Vector AutoRegression (VAR) models. The idea of the Granger causality is 

that a cause cannot come after the effect. The test for Granger causality examines whether 

X helps forecast Y. 

   The VAR models considered in the paper accommodate the dynamic covariance, as in 

multivariate GARCH and stochastic volatility (SV) models. For the survey of multivariate 

GARCH and SV models, see the papers including McAleer (2005), Asai, McAleer and Yu 

(2006), and Chib, Omori and Asai (2009). Since high frequency time series, such .as weekly, 

daily or intraday data exhibits heteroskedasticity, and since some monthly data shows ARCH 

effects, it is necessary to deal with dynamic heteroskedasticity with unknown form.
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   We may take two approaches ; the first one is to construct Wald statistic based on the 

heteroskedasticity-consistent covariance matrix estimator of White (1980), while the second 

one is work with the robust Lagrange multiplier (RLM) tests proposed by Wooldridge (1990). 

Regarding the latter . approach for an univariate process, the conditional mean test of 

Wooldridge (1990) is the regression-based one, and it is robust to departures form the 

distributional assumptions which is not tested. Furthermore, it is valid in the presence of the 

unknown form of the conditional or stochastic variance. For example, Wooldridge (1991) 

proposed the RLM test for autocorrelation in the presence of ARCH effects, employing the 

results of Wooldridge (1990). The test is valid. in the presence of the GARCH or stochastic 

volatility process, which is also examined by the Monte Carlo simulations conducted by 

Silvapulle and Evans (1998) and Asai (2000). Unlike constructing the RLM tests for VAR 

models, it is straightforward to develop Wald statistic based on the White's estimator. Hence, 

the paper works with the Wald tests.

     The paper is organized as follows. Section 2 introduces our VAR model with heteros-

 kedasticity, and constructs the heteroskedasticity-corrected Granger causality tests. Section 

 3 conducts Monte Carlo simulations for examining the finite sample properties of the 

 heteroskedasticity corrected tests. Section 4 investigates the causal relationships of the 

 return, range, and trading volume for the daily data of Standard and Poor's 500 Composite 

 Index. Section 5 gives some concluding remarks. 

   2. Granger Causality Test 

     Let 'Yt=(ylt, ..., ymt)' be an m-dimensional vectors. Consider a VAR(p) model with 

 dynamic covariance, as follows : 

Yt=p+ o1 Yt_1+...+ OpYt-p+Hti2et,' ' (1) 

 where et — i.i.d.(0, Im), Ht is the process of m-dimensional positive definite matrix, p is the 

m-vector of parameters, and oh(h=1„ ..., p) are m m matrices of parameters. Assume that 

 the structure of Ht is unknown, and let the forth moment of Et. exist.

   Let ut = Hr t 2Et for convenience. Then, 

matrix form of the VAR model is given by 

Y=XB+ U, 

where 

Y = (y1... yT)', X =(e Y-1... Y-p), B' = 
  TxmTxkkxm

E(utIHt)=0 and E(ututIHt)=Ht. Now, the

(POi...Op)',

(2)
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       U =(u1...uT)',—(1,...,1)',Ym—(yl-h...yT-h)' 
 TxmTxl, 

with  k  =1  + mp. We may have another form of (3) as 

y=(X®Im)/3 + u 

• where 

• 

     Tmyxlkmx=vec(Y'),/9l=vec(B'),Tmxul=vec( U'), 

with E(uIHi, ...HT)=0 and 

/H1 O\ 
E(uu'IHi, ...HT) _. 

\OHT/ 
The OLS estimator of a is given by /3=[(X'X)-'X'®Im]y. Hence the covariance matrix of 

11 is given by V(4)=[(X'X)-1X'®Im]E[X(X'X)-114Im]•. 
   For the .case of homoscedasticity, it is straightforward to show E(uu'IE1, ...ET)= 

IT E, and hence we have V (/3) _ (X'X)-1 Ci E for constant covariance model. However, in 

the presence of heteroskedasticity, the conventional estimator for V(4"), that is 

(X'X)-1®2(3) 
with 2 T-10'0  and 0= Y— XB, is inappropriate. Generally, conventional t tests and F 

tests over-reject the null hypothesis. 

   The paper employs the Heteroskedasicity-Consistent Covariance matrix (HCC) 

estimator of White (1980), in order to have. . 

~u1ui O\ 

V  

• )=[(x'x)-'X'®Im][X(x'X)-'®Im] 
\o uTuT/(4) 

= ± [(X'x)-'4®Im](utut)[xt(X'X)-1®Im] 
t=1 

where xt(1 x k) is the row vector of X and ut(m x 1) is the column vector of U'. With the 

covariance matrix estimator (4), we can construct test statistics for linear restrictions, 

including the test for Granger causality. Under the null hypothesis Ho:R/3 = q, the test statistic 

   W =(Ra — q)'[R V )R']-1(R/3 — q) '(5) 
has the asymptotic X2 distribution with the degree of freedom which is equal to the number 

of restrictions.
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• 

   The idea of causality proposed by Granger (1969) is that a cause cannot come after the 

effect. Thus, if y; affects yt, the former should help improving the predictions of the latter 

variable. In the context of the VAR model, the concept is interpreted .as follows. 

 Granger Non-causality 

yi is not Granger-caused by y; if and only if cbi;,h=0 for h=1, 2, ..., p, where q ,h is the 

(i,j)-th element of Oh. 

   For convenience, let us denote yi yt for the case , that y; Granger-causes y;. For the 

Granger causality test, the test statistic (5) has the asymptotic x2 distribution with the degree 

of freedom p, under the null hypothesis of non-causality. 

 3. Monte Carlo Experiments 

   This section conducts Monte Carlo experiments to the accuracy of the size and power-of 

the Granger causality test based on the HCC estimator of White (1980). 

The data generating process (DGP) is the bivariate VAR(2) model with multivariate 

stochastic volatility; which is given by 

Yt=,u+B1 Yt_1+B2Yf_2+Ht'2ct, Et ̂ 'N(0,I2), 

    Ht=(exp(alt/2) 0exp(alt/2) 0 
           0 exp(a2t/2)PE 0 - exp(a2t/2) 

   00.95 00.2 0.:(6) 
      at 

      \+(0.95                        at~It, 7It N(0,PP), 
     0 0 0.980 0.1 

00 0 a1 c1 0.4    p=(0,Bl0 0),B2=(0.5 
                          b 0.5,Pec 1,Pn 0.4 1 

where H1/2 is based' on the Choleski decomposition, and (a, b, c) are specified as follows

(a, b, c)=

(0.0, 0.0, 0.0) DGP1 

(0.4, 0.0, 0.0) DGP2 

(0.0, 0. 4, 0.0) DGP3 

(0.0, 0.0, 0.3) DGP4 

(0.4, 0.0, 0.3) DGP5 

(0.0, 0.4, 0.3) DGP6

   The sample size considered here is T=100 and 500. Monte Carlo ' simulations are based 

on 10,000 replications. For the benchmark, . we work with the conventional tests based on (3).
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   Table 1 shows the empirical sizes of the tests at 5% nominal level, with 6 DGPs for T 

=100 . All empirical sizes of the conventional test are larger than the corresponding tests 

based on the HCC estimator of White (1980). The empirical) size of the corrected test for T 

=100 is about 10% in the experiment. Table 2 presents the empirical size for T =500, which 

shows the improvement of the empirical sizes for the tests with HCC, which are close to 0.05. 

             Table 1: Empirical Sizes at 5% Nominal Level for T=100

Granger-Causality  Test

DGP w/o Correction HCCM Estimator

Y2 to Y1 .Y1 to Y2 Y2 to Y1 Y1 to Y2

DGP1 0.127 0.127 0.093 0.103

DGP2 0.126 -- 0 .099

DGP3 0.126 0.097 --

DGP4 0.137 0.129 0.103 0.100
• DGP5 0.131 -- 0 .103

DGP6 0.133 0.095 --

 Note  : `HCCM estimator' stands for the heteroskedasticity-consistent 
covariance matrix estimator of White (1980). 

• 

 Table 2: Empirical Sizes at 5% Nominal Level for T=500

DGP

Granger-Causality Test

w/o CorrectionHCCM Estimator

 Y2 to Y1 Y1 to Y2 Y2 to Y1 Y1 to Y2

DGP1

DGP2

DGP3

DGP4

DGP5

DGP6

0.0770.078 0.060 0.061
--.0 .078 -- 0.057

0.078-- 0.055 --

0.075'0.074 0.057 0.059
--0 .072 . -- 0.053

0.080-- 0.057 --

 Note  : `HCCM estimator' stands for the heteroskedasticity-consistent 
     covariance matrix estimator of White (1980). 

• 

 Table 3: Rejection Frequencies at 5% Nominal Level for 

• 

       T=100

DGP
Granger-Causality Test with HCCM  Estimator

Y1 to Y1Y2 to Y1 Y1 to Y2 Y2 toY2

DGP1 0.958---- 0.966

DGP2 0.9830.899 - 0.970

DGP3 0.950--0.922 0.991

DGP4 0.937---- 0.961

DGP5 0.9760.855 -- 0.946'

DGP6 0.931--0.888 0.984

 Note  :
`HCCM estimator' stands for the heteroskedasticity-consistent 

covariance matrix estimator of White (1980).
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Table 4: Rejection Frequencies at 5% Nominal Level for 
     T=500

DGP
 Grant  er-Causality Test with HCCM Estimatortor

Yl to Y1 Y2 to Yl Y1 to Y2 Y2 to Y2

DGP1 1.000 1.000

DGP2 1.000 1.000 1..000

DGP3 1.000 1.000. 1.000

DGP4 1.000 1.000

DGP5 1.000 1.000 1.000

DGP6 1.000 1.000 1.000

 Note  : `HCCM estimator' stands for the heteroskedasticity-consistent 
     covariance matrix estimator of White (1980).

   With respect to the Granger causality test with HCC, Table 3 and 4 give the rejection 

frequencies under the alternative hypothesis at the nominal size of 5% for T=100 and T = 

500, respectively. Those tables indicate that tests have enough power , even for the small 

sample size of T=100.

4. Empirical Example

   The section examines . causalities among the stock returns, range and trading volume, 

based on the SVAR-causality, the partially instantaneous correlation , and the Granger 

causality for the daily data of S&P. 500 index. The sample period for the S&P 500 index is 

8/4/2005 to 8/2/2007, giving T=500 observations.

   Denote the stock return, range, and trading volume as yt, dt and vt, respectively . The 

range is defined as the difference between highest and lowest returns on day t , while the 

trading volume is the number of shares traded at day t. The log-range is sometimes used as 

a proxy of the return volatility. Recent development including Liesenfeld (2001), Alizadeh, 

Brandt and Diebold (2002). and Fleming, Kirby and Ostdiek (2006) show that these time series 

are supposed to contain unobservable stochastic process, say , of , ad, at 1 and at 2

   With the unobservable processes, they may be specified as 

yt = ayurexp(0.5at al),(7) 

lndt=cd+ad+ud,(8) 

vt = cvexp(at 1) + avu= exp(0.5at 2),(9) 

where ay, av, cd and cv are unknown parameters, and (ur, ud, utv) are disturbances: The 

equation (7) is the conventional specification of the stochastic volatility model . See Shephard 

(2005) and Chernov et al. (2003) for the recent development in the fields. The equation (8) is
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 obtained by Alizadeh, Brandt and Diebold (2002), implying that the log-range is the sum of 

 the log-volatility and noise. The equation (9) with the restriction of  ar'  =  ar  2 corresponds to 

 the bivariate mixture model of. Tauchen and Pitts (1983), and is applied to the analysis of 

 Andersen (1996), Liesenfeld (1998) and so on.

Alizadeh, Brandt and Diebold (2002) assume of, = af, based on the framework of the 

continuous-time stochastic volatility models. Andersen (1996) and Liseenfeld (1998) specified 

the relation as at =ar, but found a significant difference, compared to the univariate case 

regarding equation (9). 

   As the true structure of at = (a'V, ad, ar, ar2)' is unknown, the current paper will examine 

the relationships by Granger Causality tests on two kinds of trivariate processes, i.e., (yt, 

lndt, Vt) and (lnyt, lndt, lnvt), in order to derive implications regarding the structure. The 

former can be considered as a proxy of (yt, ad, exp(ar')), while the latter as .(at, ad, ar2). 

   The sample period for the S&P 500 index is 8/4/2005 to 8/2/2007, giving T=500 

observations. Let Pt is the price of stock on day t. Especially, the closing price is denoted as 

Pt . Then, the return is defined by rt =100 x {1nPt —1nPt 1}, while the return for the closing 

price is given by yt=100 x {1nPt —1nPt 1}. The range is defined by dt=max{rt}—min{rt}. The 

trading volume is the number of shares traded at day t. It was divided by 109, and the trend 

effect was removed.

   Table 5 presents the results for the tests for the Granger causality under the dynamic 

covariance, showing that y — (lnd,v), lnd -p lnd and v - (y,v), where x= x; 

means that xi causes x; in Granger's sense. Figure 1 shows the causality graph for return, 

trading volume and log-range. For the latent variables, ad depends on the past values of yt 

and itself, while al' also depends on the past values of yt and itself. An interesting result is 

that yt depends on the past values of vt (e). 

                     Table 5 : Results for Granger Causality : 
(yt, lndt, vA)

From
 Granger Causality

to Yt to In d: to v~

Yt

lndt

VA

3.232 67.751*

3.747 35.871*

13.071* 3.341

12.376*

2.985

31.708*

 Note  : ' denotes significant at five percent level.
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Figure  1:

 Log  Range

Table

Note :

Granger Causality Graph 

Y I

6 : Test Results for Granger Causality : 
(lnyl, lndt, lnvi)

From
Granger Causality

to  1n0 to lndt to lnvt

lnyi

lndt
lnvr .

15.644* 11.811*

18.337* 53.075*

4.449 8.452

4.627

4.097

35:499*

 '' denotes significant at five percent level
. 

Figure 2 Granger Causality Graph

Vol. XLI, No..1 2.3.4

LogY2

LogRange  Log(TV)2

     Table 6 and Figure 2 give the results for the Granger causality under the dynamic 

 covariance with respect to  (lnyr, lndt, lnvt), indicating that lny2 -L (lny2, lnd), lnd 

(lny2, lnd) and 1nv2 —4 lnv2. The causal relationships between lny2 and lnd seems to be 

 brought by a common factor between (at, ar). 

    Summing up the empirical results, the implications are as follows ; (R1) at 1 is not equal
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     to  at  2  ; (R2) a and av2 should be specified separately ; (R3) ad and al' may be specified by 

     the bivariate VAR model ; (R4) ad also depends on the past values of yt ; (R5) at 2 depends on 

     the past values of itself ; (R6) The conditional mean of yt depends on the past values of at . 

       5. Conclusions 

         Under the dynamic covariance, the paper considers the heteroskedasticity-corrected 

     Granger causality tests, based on White's (1980) estimator. Monte Carlo experiments show 

     that the heteroskedasticity-corrected test works satisfactory, and that the conventional tests 

      over-reject the null hypothesis of non-causality. The paper investigated the causalities 

     among the S&P 500 return, trading volume and volatility, by using the new approach. Several 

      new results are obtained. 
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