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Testing Granger Causality under Dynamic Covariance

Manabu ASAI

-Abstract
The paper considers the Granger causality tests based on the hetersokedasticity—consistent
covariance matrix of White (1980). The Monte Carlo ex-periments show that the conventional
test over-rejects the null hypothesis of non-causality, while the proposed test works satisfac-
tory. The proposed test also has enough power. Using the dafca for the Standard and Poor’s
500 ‘Composite Index, the paper examines the causalities among the return, volatility and
trading'voiume.
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1. Introduction

In general, it may be stated that there is the causality from X to Y, if the change in X
brihgs the change in Y directly. At least, it requireé three condi“cionslfor such a- direct
connection ; (i) X appears before Y does, (ii) there is a strong correlation between X and Y,
and (iii) the corrc_elation b'etween’ X and Y is not caused by ofher variables. We may test
theoretical .connectibn such as a hypothesis derived by economic theories, using regression
models based on data of X and Y. The concept of causélity ‘proposed by Gra’ngér (1969) is
widely spread, after Sims (1972) pvroposed an approach to test the Granger caﬁsality, in the
framework of Vector AutoRegression (VAR) models. The idea of the Grangef_ causality is
that a cause cannot come after the effect. The test for Gréhger caﬁsality examines whether

X helps forecast Y.

The VAR models considered in the papér éccommodate the dynamic covariance, as iﬁ
multivariate GARCH and vs‘tochastic Volatility SV) models. For tbhe survey of multivariate
GARCH and SV models, see the papers including McAleer (2005), Asai, McAleer and Yu-
(2006), and Chib, Qmori and Asai (2009). Since high frequenéy time series, such.as weekly,
daih./ or intraday data éxhibits heteroskedasticity, and since sorhe monthly data shows ARCH

effects, it is necessary to deal with dynamic heteroskedasticity with unknown form.
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We may take two approaches ; the first one is to construct Wald statistic based on the
heteroskedasticity-consistent covariance matrix estimator of W"hite'(19,80), while the second
one is work with the robust Lagrange multiplier (RLM) tests proposed by Wooldridge (1990).
Regarding the latter .approach for'an univariate process, the conditional mean test of
Wooldridge (1990) is the regression;based one, and it is robust to departures form the
distributional assumptions which is nnt tested. Furthermore, it is valid in the nresence of the
unknown form of the conditional or stochastic variance. For example, Wooldridge (1991)
proposed the RLM test for autocorrelation in the presence of ARCH effects, employing the
results of Wooldridge (1990). The test is valid-in the presence of the GARCH or st.ochastin
volatility process, which is also examined by the Monte Carlo simulations conducted by
Silvapulle and Evans (1998) and Asai (2000). Unlike constructing the RLM tests for VAR
models, it is straightforward to develop Wald statistic based on the White’s estimafor. Hence,

the paper works with the Wald tests.

" The paper is organized as follows. Section 2 introduces our VAR model with heteros-
kedasticity, and constructs the heteroskedasticity—corrécted Granger cauéali't_y tests. Section A
3 conducts Monte Carlo simulations for examining the finite sample properties of the
" heteroskedasticity corrected tests. Sec;tinn 4 invesfigatés the .causal relationships of the
return, range, and trading volume for the daily data of Standard and Poor’s 500 Compoéite .

Index: Section 5 gives} some concluding remarks.
2. Granger Causality Test

Let ¥:=(s1c, ..., yme)’ be an m-dimensional vectors. Consider a VAR(p) model with
dynamic covariance, 'as follows: ( ,‘
Yi=u+0Y.at+...+ 0 Yip+ Hi%, ' - - (1)
‘where e:~1.1.d (0, In), H: is the process of m—'dimensional positive definite matrix, x is the
m-vector of parameters, and @x(2=1,, ..., p) are m X m matrices of parameters. Assume that

the structure of Ht is unknown and let the forth moment of & exist.

Let u.=H;}"e. for convenience. Then, E(utle) 0 and E(wuiH:)=H,. Now the
matrix form of the VAR model is given by
Y=XB+U, (2)

where

T};:(!/n...?r)’, T))({;:(L Y—y.. Y.,), kg=(u@lm@p).,’
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T%Z(ul...ur)’, rfq:(l’ 1), X(-’;=(yx-;....yr-,.)’,

with £=1+mp. We may have another form of (3) as
y=(XQ®I.)8+u

where
Tmyxl=vec( Y, k£1=vec(B’), Tmzil=vec( U,

with E(«|H,, ...Hr)=0 and
/B 0
E(uw'|H,, ...Hr)=5=| -
0 H )
The OLS estimator of 8 is given by B=[(X'X)"'X'®In]y. Hence the covariancé matrix of
B is given by V(H)=[(X'X)" X ®LIE[X(X'X)"®1y]. -
For the case of hbmoscedasficity, it is straightforward to show E(wuz'|Z,...2r)=
" Ir®3, and hence we have V(8)=(X'X )“®Z for constant covariance model. However, in
the presence of heteroskedasticity, the conventional estimator for V( /§ ), that isA
(X'X)'®% (3)
with 2=7"'0'U and U= Y—XE, is inappropriate. Generally;'conventional t tests and F ‘

tests over-reject the null hypothesis.

The paper employs the Heteroskedasicity-Consistent Covariance matrix (HCC)
estimator of White (1980), in order to have o
. A% 731 0
V(B)=[(X'X)" X' ®1In] XX X)L
' 0 arits 4)
.
=X X) " @)@ @)z X X) " @]

" where xt(l X k) is the row vector of X and @.(mX1) is the column vector of U’. With the
covariance matrix estimator (4), we can construct test statistics for linear restrictions,

including the test for Granger causality. Und_er the null hypothesis Ho:RB8=g, the test statistic
- P .
W=RE-)|RV(DR | (RE-0)- | 0

has the asymptotic x° distribution with. the degree of freedom which is equal to the number

of restrictions.
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The idea of causality proposed by Granger (1969) is that a cause cannot come after the

“effect. Thus, if y; affects y:, the former should help improving the predictions of the latter .

variable. In the context of the VAR .model, the coneept is interpreted as follows.

Granger Non-causality , '
y: is not Granger-caused by y; if and only if ¢4.,=0 for 2=1,2, ..., p, where‘dn-,',;. is the -
(7,7)-th element of @x. s

For convenience, let us denote Y= Ui for the case that y; Granger causes ¥;. For the
Granger causality test, the test statistic (5) has the asymptotic x distribution with the degree .

of freedom p, under the null hypothesis of non- causahty
3. Monte Carlo Experiments

This sectlon conducts Monte Carlo experlments to the accuracy of the size and power-of

the Granger causahty test based on the HCC estimator of White (1980).

‘The data generating process (DGP) is the blvarlate VAR(2) model with multivariate
stochastic volatility, which is-given by '
Yi=u+B Y1+ B Yt-2‘|‘H1/26¢, Et "'N(O}'Iz),
Ht:(exp(am/Z) _ 0 )P (exp(au/Z) 0- )
: 0 “exp(az/2) 0 . exp(e/2)

[0\ [0.95 0 0.2 0 ' < ' 7 (e)
= + . a1 t+| . - |7, 77t~N(O,P7I)y . .
0 0 0.98 0 0.1 : o

0 0 0 0.5 a 1 ¢ 1 0.4
U= , Bi={ . , B:= , Pe= , Pr= ,
0/ Xo o/ \as 05 c 1 0.4 1

where H"? is based on the Cho]eskl decomposmon and (aq, b c) are specified as follows
(0.0,0.0,0.0) DGPl
(0.4,0.0,0.0) DGP2
(0:0,0.4,0.0) DGP3
(0.0,0.0,0.3) DGP4
(0.4,0.0,0.3) DGP5
(0.0,0.4,0.3) DGP6

The sample size considered here is 7=100 and 500. Monte Carlo simulations are based

(a, b, c)=1

on 10,000 replications. For the benchmark, we Work with the conventional tests based on (3). -
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Table 1 shows the empirical sizes of the tests at 5% nominal level, with 6 DGPs for T
=100. All empirical sizes of the conventional test are larger thén the corresponding tests
based on the HCC estimator of White (1980). The empiricall size of the corrected test for T
=100 is about 10% in the experiment. Table 2 presents the empirical size for 7 =500, which

shows the improvement of the empirical sizes for the tests with HCC, which are close to 0.05.

Table 1: Empirical Sizes at 5% Nominal Level for T=100

Granger-Causality Test
DGP w/o Correction HCCM Estimator
. Y2to Y1 Y1 to Y2 Y2 to Y1 Y1l to Y2

DGP1 10.127 0.127 0.093 0.103
DGP2 L= o 0.126 . -- - 0.099
DGP3 0.126 - 0.097 -
DGP4 0.137 0.129 0.103 0.100
DGP5 - 0.131 -- 0.103
DGP6 0.133 - 0.095 --

Note : ‘HCCM estimator’ stands for the heteroskedasticity-consistent o
covariance matrix estimator of White (1980).

Table 2: Emﬁirical Sizes at 5% Nominal Level for 7=>500

. Granger-Causality Testb
DGP w/o Correction HCCM Estimator
Y2to YI  Ylto Y2 Y2to Yl  Ylto Y2

DGP1 0.077 ’ 0.078 0.060 0.061
DGP2 - 0.078 - - 0.057
DGP3 0.078 ' - 0.055 --
DGP4 0.075" . 0.074 0.057 0.059
DGP5 - 0.072 LT 0.053
DGP6 0.080 - 0.057 -

Note: “HCCM estimator’ stands for the heteroskedasticity-consistent
covariance matrix estimator of White (1980).

Table 3: Rejection Frequencies at 5% Nominal Level for
T=100 : . :

DGP ) ' Granger—CauSality Test with HCCM Estimator
1 Ylto Yl Y2 to Y1 Y1 to Y2 Y2 to Y2
DGP1 0.958 - - 0.966
.DGP2 0.983 0.899 -- -+ 0.970
DGP3 0.950 - -- - 0.922 0.991
DGP4 0.937 -- ) - 0.961
DGP5 0.976 . 0.855 -- 0.946"
DGP6 0.931 - 0.888 0.984

Note : ‘HCCM estimator’ stands for the heteroskedasticity-consistent
covariance matrix estimator of White (1980).
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Table 4: Rejection Frequencies at 5% Nominal Level for
T=500 '

DGP Granger-Causality Test with HCCM Estimator
Y1 to Y1 Y2 to Y1 Y1 to Y2 Y2 to Y2

DGP1 - 1.000 - - 1.000
DGP2 1.000 1.000 - 1.000
DGP3 " 1.000 - 1.000. 11.000

.- DGP4 |- 1.000 - 1.000

. DGP5 1.000 1.000 *. - - © " 1.000
DGP6 1.000 -- 1.000 - 1.000

Note : ‘HCCM estimator’ stands for the heteroskedasticity-consistent ’
covariance matrix estimator of White (1980).

~ With respect to the Granger caiusality test With HCC, Tablé 3 and 4 give the rejection
frequenmes under the alternative hypothe51s at the nominal size of 5% for T'=100 and T=
500, respectlvely ‘Those tables indicate that tests have enough power, even for the small

sample size of T=100.
4. Empirical Example-

The section examines causalities among the stock returns, range aﬁd' trading volume,
based on the SVAR-causality, the partially instantéﬁeous correlation, and the Granger -
. causality for the daily data of S&P 500 index. The sample period for the S&P 500. 1ndex is
8/4/2005 to 8/2/2007, giving T=500 observations.

Denote the stock return, range, and trading volume as yt, d: and v:, respectively. The
range is defined as the difference between highest and lowest returns on day ¢, while the
trading volume is the number of shéres tfaded at day ¢. The log-range is sometimes used as
‘a prof(y of the return volatility. ARecent development including Liesenfeld (2001), Alizadeh,
Brandt and Diebold (2002) and Fleming, Ki;by and Ostdiek (2006) show that these time series -

are supposed to contain unobservable stochastic process, say, af, of, o' and a2

With the unobservable processes, they may be spec1f1ed as

ye=oyutexp(0.5a¥), - . ’ (7

) Ind,= cd+at+ut, V ‘ (8)
ve=coexp(a?) + o,ulexp(0.5a%), - ' : M

where 0y, 0v, ca and ¢y are unknown parameters, and (u?, u¢, u?) are disturbances: The
equation (7) is the conventional specification of the stochastic volatility model. See Shephard

(2005) and Chernov et al. (2003) for the recent development in the .fields. The equation (8) is
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obtained by Alizadeh, Brandt and Diebold (2002), implying that the log-range is the sum of
the log-volatility and noise. The equation (9) with the restriction of o 1= a?? corresponds to
. the bivariate mixture model of Tauchen and Pitts (1983), and is applied to the analysis of

Andersen (1996), Liesenfeld (1998) and so on.

‘Alizadeh, Brandt and Diebold (2002) assume a¥=caf, based on the framework of ‘tl'1e
continuous-time stochastic volatility models. Andersen (1996) and Liseenfeld (1998) specified
the relation as a¥=a?, but found a significant difference, compared to the univariate case

regarding equation (9).

As the true structure of a:=(a?, @?, a', a#*)’ is unknown, the current paper will examine
the relationships by Granger Causality tests on two kinds of trivariate processes, i.e., (s,
Ind:, v:) and (Ing?, Ind:, Inv?), in order to derive implications regarding the structure. The

former can be considered as a proxy of (y:, @, exp(af')), while the latter as (¥, a2, ).

~ The sample period for the S&P 500 index is 8/4/2005 to 8/2/2007, giving T =500
observations. Let P: is the price_ of stock on day ¢. Especially, the closing price is denoted és
Pf. Then, the return is defined by 7:=100X{InP:—InP<,}, while the return for the closing
price is given By ¥:=100% {InPf—1InPEy). The range is defiﬁed by d:=max{r.}—min{7.}. The
' trading volume is the number of shares traded at day t.-Iﬁ was divided by 10°%, and the trend

effect was removed.

Table 5 presents the results for the tests for the Granger causality under the dynamic
covariance, showing that v -, (Ind,v), Ind %, Ind and v—> (y,0), where J_:i—g—’ x;
means that z: causes z; in Granger’s sénsg. Figure 1 shows the causality graph for return, -
trading volume and log-range. For the latent variables, a¢ depends on the past Qélues of y:
and itself, while ¢ also depends on the past values of ¥: and itself. Aﬁ interesting result is

that v depends on the past values of ve (af).

Table 5: Results for Gfaﬁger Causality :
(y:, Inde, va)

: Granger Causality
From S
- to y: to Ind, to va
e 3.232 " 67.751° 12.376*
Ind: 3.747 35.871* 2.985
va 13.071*  3.341 31.708*

Note: “*’ denotes significanf at five percent level.



44 BF A MR B W& Vol. XLI, No.1-2+3-4

Figure 1: Granger Causality Graph
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Table 6: Test Results for Granger Causality :
(Iny?, Ind., Inv}) .

From Granger Causality’

© to Iny? to Ind. to Inv? -
Iny? 15.644* . 11.811* 4.627
Ind, 18.337* . 53.075° 4.097
v} 4.449 8.452 35.499*

" Note: *" denotes significant at five percent level.-’

Figure 2: Granger Causality Graph

 LogRange | Log(Tvy

(

. Table 6 and Figi.lre 2 give the results for the Granger causality under the dynamié
covariance with respect to (Ing?, Ind., Inv?), indicating that Iny? - (Ing? Ind), Ind -
(Ing?, Ind) and lnvzl—c> Inv?, The causal relationships between Iny? and Ind seems to be

brought by a common factor between (a?, af).

Summing up the empirical results, the implications are as follows ; (R1) ! is not equal
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to a??; (R2) af and a?? should be specified separately ; (R3) af and ! may be specified by
the bivariate VAR model ; (R4) af also depends on the past values of y¢ ; (RS) a?? depends on

the past values of itself ; (R6) The conditional mean of y: depends on the past values of af.
5. Conclusions '

Under the dynamic covariance, the palper considers the heteroskedasticity—-corrected
4 Granger causality tests, based on White’s (1980) estimator. Monte Carlo experiments show
that the heteroskedasticity- corrected test works satisfactory, and that the conventlonal tests
over-reject the null hypothe51s of non-causality. The paper mvestlgated the causahtles;
among the S&P 500 return, trading Volume and volatlhty, by using the new-approach. Several

new results are obtained.
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