
Development of data repositories for

glycan-related resources

March 2024

Yushi Takahashi

Contents

1 Introduction 4

1.1 Glycans and glycoconjugates . 4

1.2 Glycan structures . 6

1.2.1 Symbol Nomenclature For Glycans (SNFG) notation 7

1.2.2 Glycan text notations . 8

1.2.3 Subsumption relationships among glycan structures 10

1.3 Mass spectrometry as a primary experimental method in glycoscience research 11

1.4 Standard reporting guidelines . 13

1.5 Data repositories in proteomics and glycomics . 14

1.5.1 PRoteomics IDEntifications database (PRIDE) in the ProteomeXchange Con-

sortium . 14

1.5.2 MS-Viewer in Protein Prospector . 15

1.5.3 International glycan repository GlyTouCan . 15

1.5.4 Data repositories in glycomics . 18

GlycoPOST . 18

UniCarb-DR . 20

1.6 Purpose . 20

2 Methods 26

2.1 Infrastructure for developing data repositories . 26

2.1.1 Relational databases and querying with SQL 26

2.1.2 Three-tier client-server architecture . 29

2.1.3 Containerized virtualization technology . 29

2.1.4 Semantic Web technologies . 32

2.2 Applying functional programming techniques to the development of data repositories . 34

2.2.1 Advantages of functional programming . 36

i

2.2.2 Application of functional programming to this study 41

2.3 The design of the GlyComb system . 42

2.3.1 Fundamental technologies used to build the GlyComb system 42

2.3.2 Error checking of communication between the user interface and the API using

functional programming techniques . 44

2.3.3 Batch processing and validation of submitted data 47

2.3.4 RDF-ization of data registered in GlyComb . 48

2.4 System design to enable further collaboration between UniCarb-DR and GlycoPOST . 52

2.4.1 Re-designing the UniCarb-DR system to improve its reliability 52

2.4.2 Design of unified data submission flow between UniCarb-DR and GlycoPOST . 54

2.4.3 Additional MIRAGE-LC guideline support for two data repositories 55

2.4.4 Visualization of GlycoWorkbench files contained in projects in embargo submit-

ted to GlycoPOST . 55

3 Results 59

3.1 Development of a novel glycoconjugate data repository GlyComb 59

3.1.1 Design of input data format for GlyComb . 59

3.1.2 Overview of the GlyComb user interface . 61

Welcome screen and user login process . 61

Registration screen . 64

User profile screen and submission details screen 64

Entry list screen and entry details screen . 68

Search screen . 68

PMI Byonic-derived summary spreadsheet converter screen 68

Help screen . 68

3.1.3 Workflow for submitting and publishing data to GlyComb 74

3.1.4 Automatic extraction of glycopeptide and glycoprotein entries from summary

worksheets generated by PMI-Byonic . 75

3.1.5 Registration of glycopeptide and glycoprotein entries extracted from the PRIDE

and MS-Viewer repositories . 81

3.2 Strengthening the integration between UniCarb-DR and GlycoPOST 83

3.2.1 Unifying the data submission flow and cross-referencing 83

ii

3.2.2 Addition of MIRAGE liquid chromatography guidelines support to GlycoPOST 89

3.2.3 Visualization of GlycoWorkbench files during peer review period in GlycoPOST:

MiniCarb-Viewer . 89

3.2.4 Integration with GlyTouCan by obtaining GlyTouCan IDs from glycan structure

strings in GWS format . 93

4 Discussion 96

4.1 Knowledge integration between glycomics and glycoproteomics catalyzed by GlyComb 96

4.2 From integration of glycomics data repositories to integration of multi-omics knowledge 98

4.3 The value of reliable data repositories . 99

4.4 Future outlook . 100

5 Conclusion 102

Acknowledgements 104

Bibliography 105

List of Figures 115

List of Tables 118

List of Listings 119

A Appendix A 120

A.1 Source code . 120

A.1.1 GlyComb . 120

A.1.2 UniCarb-DR . 120

A.1.3 GlycoPOST . 120

iii

Abstract

Glycosylation is known as one of the major modifications to various biomolecules, including proteins

and lipids. Unlike DNA or protein molecules, glycans are diverse and complex branching structures

formed by bonds between monosaccharide molecules, called glycosidic bonds. As it is now known that

glycan molecules bound to proteins and lipids contribute to the fine-tuning of interactions between

their substrates and other biomolecules, advances in the field of glycoscience are becoming increasingly

important in many research areas, including medicine, pharmacy, and materials engineering.

To understand the precise interactions between various biomolecules in organisms, including pro-

teins, glycans, and lipids, the importance of large-scale multi-omics analysis is increasing. In order

to accelerate and promote such large-scale analysis, it is essential to share the results of various

experiments and analyses, and most recently, mass spectrometry and liquid chromatography tech-

nologies have increasingly produced large amounts of experimental data. For this purpose, many

public data repositories have been developed in recent years in the life science field as an infrastruc-

ture for researchers to upload and publish the results of their experiments on the Internet when they

write their papers. These data repositories include PRIDE (PRoteomics IDEntifications database)

and PeptideAtlas for proteomics, GlyTouCan, an international glycan repository which can assign a

unique identifier to each glycan structure, and GlycoPOST and UniCarb-DR for glycomics. These

data repositories assign a unique identifier to each submission from researchers, allowing them to

uniquely present their research data to readers by indicating the identifiers in their papers. The mis-

sion of these data repositories is to share and accumulate the extremely valuable experimental and

analytical results submitted by researchers in accordance with the FAIR (Findability, Accessibility,

Interoperability, and Re-usability) data principles.

In addition, in order to reanalyze these accumulated research data using computers, it is also nec-

essary to consider various experiment condition information, such as the sample preparation methods,

the types of reagents, solution concentrations, reaction times, and various settings of the analytical

equipments. For reporting such qualitative and quantitative experiment results, several standard

reporting guidelines have been proposed, including the “Minimum Information About a Proteomics

1

Contents

Experiment” (MIAPE) guidelines for proteomics, and the “Minimum Information Required for A

Glycomics Experiment” (MIRAGE) guidelines for glycomics. These guidelines in each research field

summarize the minimum experimental information that must be reported together when reporting

sample preparation methods, mass spectrometry experiments, liquid chromatography experiments,

and capillary electrophoresis experiments, for example.

In the field of glycoscience, several public data repositories have been developed and released un-

der the GlyCosmos project, including GlyTouCan, GlycoPOST and UniCarb-DR. GlycoPOST allows

researchers to submit their mass spectrometry-based experiment results in glycomics, including raw

data from mass spectrometers, according to the MIRAGE guidelines. UniCarb-DR is a data repos-

itory for mass spectrometry experiment identification results annotated using GlycoWorkbench, an

identification assistant software for glycomics mass spectrometry experiments, and according to the

MIRAGE guidelines, each of the identification results are should be submitted and made available

as well. In particular, GlycoPOST is expected to serve as a valuable foundation for the large-scale

reanalysis of a number of raw data from mass spectrometers by accumulating them.

These data repositories have established a foundation for accumulating and sharing much of the

data from glycoscience research. Unlike protein molecules, however, glycan molecules do not function

alone in organisms. Rather, they serve as modulators of the functions of substrate molecules such as

proteins and lipids. Therefore, in order to understand the functions of glycans in orgnisms, it is also

necessary to accumulate information on the substrates to which they are attached. Despite this need,

there has been no informatics infrastructure to collectively capture information on glycoconjugates

such as glycopeptides, glycoproteins, glycolipids, and glycosides. As for glycan structures, GlyTouCan

uniquely assigns an identifier to each glycan structure, allowing it to collect and store glycan structure

information. In order to collect and accumulate diverse glycoconjugate information while strictly

distinguishing the types of attached glycan structures and their binding sites, a system like GlyTouCan

that can assign a unique identifier to each glycoconjugate entry was necessary.

Moreover, there were some issues among the existing data repositories for glycomics. First, al-

though GlycoPOST and UniCarb-DR are both data repositories for submitting the results of mass

spectrometry experiments in glycomics, they are separate data repositories that are independent of

each other. Therefore, users need to submit data to these data repositories separately, even if they

are the results of the same experiment. Also, while GlycoPOST allows users to freely set the publi-

cation date of their submitted data, and in addition, allows only reviewers to view their submitted

data during the peer review period (embargo period) of the paper they have submitted for review,

2

Contents

UniCarb-DR is difficult to use for users who are in the process of writing a paper because submitted

data are immediately made public. Whereas GlycoPOST can accept a variety of data including raw

data obtained from experiments quickly, it does not have any data visualization or flexible search func-

tions due to this variability in the type of the data it accepts. On the other hand, UniCarb-DR can

visualize the results of mass spectrometry experiments annotated with GlycoWorkbench software, and

users can search registered data with various conditions, including peak information from mass spec-

trometry experiments, species, and glycan structure composition information, etc. Therefore, it was

important to strengthen the integration between these complementary data repositories to maximize

user-friendliness.

Based on this background, in this study, I conducted the following research as part of the devel-

opment of repositories for glycoscience-related data:

• Development of a novel data repository, GlyComb, to facilitate the accumulation of glycoconju-

gate information

• Improve user-friendliness by strengthening the integration between two existing data repositories,

GlycoPOST and UniCarb-DR

Through these efforts, I attempted to make these data repositories the basis of a comprehensive

system for future glycoscience research that can store information not only on glycan structures but

also on various glycoconjugates such as glycopeptides and glycoproteins. In this doctoral dissertation,

I report the results of these studies and provide a perspective on the possibilities of glycoinformatics

in glycoscience research.

Keywords: Data repository, Data integration, Glycoscience, Glycoproteomics, Glycomics, Semantic

web, Functional programming

3

Chapter 1

Introduction

1.1 Glycans and glycoconjugates

Glycans are the third major biological macromolecule after DNA and proteins, and they are biosyn-

thesized by glycosyltransferases and glycosidases. While glycosyltransferases add the carbohydrate

moiety of sugar-nucleotide molecules to their substrates as monosaccharides, glycosidases are involved

in the biosynthesis of glycan molecules by removing monosaccharide residues from their substrates.

Each monosaccharide molecule that constitutes a glycan molecule has more than five carbon atoms

in its carbon skeleton, and such monosaccharides usually form a cyclic structure in aqueous solution.

Here, the monosaccharide forming the five-membered ring is called furanose, and the monosaccharide

forming the six-membered ring is called pyranose. For example, the D-glucose molecule forms a cyclic

structure by a hemiacetal bond between an aldehyde group containing a C-1 carbon atom and an

OH group attached to a C-5 carbon atom in the molecule. When forming the ring structure, the C-1

carbon atom becomes a chiral carbon atom, which is called the anomeric carbon atom. There are two

types of anomers: α-anomers and β-anomers. For example, two different disaccharide structures can

be formed from two molecules of D-glucose: maltose when a glycosidic bond is formed between the

C-1 and C-4 carbon atoms, and gentiobiose when a glycosidic bond is formed between the C-1 and C-6

carbon atoms. These glycosidic bonds are called α-1,4 and β-1,6 bonds, respectively. The anomeric

information of the C-1 carbon atoms is included in the names of each bond. Figure 1.1 shows these

two types of disaccharide molecules resulting from the varying glycosidic bonds between two D-glucose

molecules.

Glycosylation is a biochemical reaction in which glycans are attached to substrates such as proteins

and lipids. By attaching to these substrates, glycans can contribute to fine-tuning the interactions

between their substrates and other biomolecules (Varki et al., 2022), It is known that glycosylated

4

Chapter 1. Introduction

Figure 1.1: Two disaccharide molecules, maltose (Glc α1-4 Glc) and gentiobiose (Glc
β1-6 Glc), are produced by a glycosidic bond between two D-glucose molecules. This
figure was taken from chapter 2 of Essentials of Glycobiology 4th edition (Varki et al.,

2022).

proteins are presented on the cell surface or secreted out of the cell to mediate various types of

intercellular communication, cell-extracellular matrix interactions, and cell-molecule interactions (Day

et al., 2015). Thereby, glycosylation to proteins and lipids is reported to be closely related to the

mechanisms of various diseases such as influenza, cancer, and muscular dystrophy (Skehel and Wiley,

2000; Michele et al., 2002; Bao et al., 2009). Therefore, the analysis of post-translational protein

modifications, including glycosylation, is essential to accurately understand the functions of each

protein molecule and the interactions among them.

Biomolecules which include glycan structures that are covalently bound to various substrates such

as proteins, peptides, lipids, and other compounds are called glycoconjugates; these can be broadly

classified into glycopeptides, glycoproteins, peptidoglycans, glycolipids, glycosides, and so forth. Sev-

eral major classes of glycosylation in glycoconjugates are well known. First, in amino acid sequences of

peptides and proteins, the glycan structures attached to the nitrogen atom in the asparagine residues

in the consensus sequence of Asn-X-Ser/Thr (X is any amino acid residue) are called N -linked glycan

structures and are known to have a core structure consisting of five monosaccharides including two

N -acetylglucosamine (GlcNAc) residues and three mannose (Man) residues. N -linked glycan struc-

tures are further classified into three types according to the type of remaining structure bound to the

terminal mannose residues: high mannose type, hybrid type, and complex type. Another major class

of glycan structures are those attached to oxygen atoms in serine or threonine residues in the amino

acid sequence called O-linked glycan structures; there are eight known core structures from Core-1 to

5

Chapter 1. Introduction

Core-8. Figure 1.2 shows examples of glycan structures in these classes.

Figure 1.2: Examples of N -linked glycan structures attached to asparagine residues and
O-linked glycan structures attached to serine/threonine residues in amino acid sequences.
This figure was taken from chapter 3 of Essentials of Glycobiology 4th edition (Varki et

al., 2022).

Recent advances in glycoproteomics have led to the mapping of N -glycosylation sites in biofluids

and cellular materials obtained from patients. This implies that the occupancy of N -glycosylation

sites in proteins and the signatures of glycopeptides could be used as biomarkers for the diagnosis of

neurological diseases such as Alzheimer’s disease and for the early detection of cancer (Chen et al.,

2021; Zhang et al., 2020; Sinha et al., 2019).

1.2 Glycan structures

Although the chemical formulas shown in Figures 1.1 and 1.2 accurately represent the structures of

glycan molecules, they have the disadvantage that it is difficult to understand what the structures

are at a glance, especially for biologists. Therefore, in the field of glycoscience research, the Symbol

Nomenclature For Glycans (SNFG) (Varki et al., 2015) notation is widely used to graphically represent

glycan structures by symbolically drawing frequently occurring monosaccharides. In addition, in the

field of glycoinformatics, where glycan-related information is analyzed using computers, various text

notations of glycan structures have been proposed to handle glycan structures on computers. In this

section, the standard representation formats for glycans are described.

6

Chapter 1. Introduction

1.2.1 Symbol Nomenclature For Glycans (SNFG) notation

In general, a monosaccharide molecule has many stereoisomers, making it difficult to distinguish a

monosaccharide structure represented by a chemical formula from other monosaccharide structures.

Therefore, to facilitate communication among scientists in the glycoscience community, the SNFG

notation is used to represent the symbolic structure of glycans. It uses nine colors and 12 shapes to

symbolically represent monosaccharide molecules commonly found in mammals and other organisms.

Figure 1.3 shows the list of monosaccharide symbols defined in SNFG as of December 15, 2023. Also,

Figure 1.4 shows the glycan structures shown in Figure 1.2, drawn using the symbols defined in the

SNFG monosaccharide notation.

Figure 1.3: Table of monosaccharide symbols defined in the SNFG notation as of
December 15, 2023.

7

Chapter 1. Introduction

Figure 1.4: The glycan structures shown in Figure 1.2, drawn using the symbols defined
in the SNFG notation.

1.2.2 Glycan text notations

In the field of glycoinformatics, various glycan structure notations have been developed to handle gly-

can structures on computers, including the IUPAC-condensed format, GlycoMinds LinearCode format

(Banin et al., 2002), KEGG Chemical Function (KCF) format (Kanehisa et al., 2004), GlycoCT format

(Herget et al., 2008), and the Web3 Unique Representation of Carbohydrate Structures (WURCS)

format (Matsubara et al., 2017). Here, I briefly describe two glycan structure notations that are

relevant to this study: the GlycoWorkbench sequence (GWS) format (Ceroni et al., 2008; Damerell

et al., 2012) and WURCS format. Using the example of the core structure of N -linked glycans shown

in Figure 1.5, in which the aldehyde group of the reducing terminal GlcNAc is reduced to alditol after

ring-opening, I compare the two notations of this structure in these two glycan structure notations.

The GlycoWorkbench sequence (GWS) format is a notation format used to describe glycan struc-

tures in GlycoWorkbench (Ceroni et al., 2008), a software program that assists in the identification of

the results of mass spectrometry experiments. Figure 1.5 (d) shows the core structure of the N -linked

glycan shown in Figure 1.5 (a) in GWS format. In GWS format, each monosaccharide information is

placed in order from the reducing end by separators “--”. Each glycosidic linkage information is placed

before the monosaccharide name of the non-reducing terminal side. For example, “4b1D-GlcNAc,p”

indicates that the pyranose form of D-GlcNAc is attached to the reducing end monosaccharide by a

β-1,4 bond.

The WURCS format, on the other hand, is a glycan structure notation format that can linearly and

8

Chapter 1. Introduction

Figure 1.5: The core structure of N -linked glycans, in which the aldehyde group of the
reducing terminal GlcNAc is reduced to alditol after the ring-opening. (a) A graphical
representation of this glycan structure drawn using SNFG monosaccharide notation and
the corresponding accession number, GlyTouCan ID (G62167DK), in GlyTouCan (Fujita
et al., 2021), the international glycan structure repository. The five background colors
respectively correspond to each component of the chemical formula shown in Figure
1.5 (b) and substring in the glycan text notations shown in Figures 1.5 (c) to (e). (b)
Chemical formula of this glycan structure from PubChem Substance (Kim et al., 2016)
(SID 252280436). The carbon atoms participating in the carbon skeleton of the reducing
terminal GlcNAc are numbered from 1 to 6. (c) Same glycan structure described in
GlycoCT format. In this notation, monosaccharide residues and linkage information are
described in separate sections. (d) Same glycan structure described in GWS format.
(e) Same glycan structure described in WURCS format. In this case, there are two α-
anomeric mannoses in the structure, resulting in this monosaccharide appearing twice in

the list of linkage information (red and blue).

9

Chapter 1. Introduction

uniquely describe glycan structures having ambiguous monosaccharide types and linkage information.

Moreover, it can also describe glycan structures that contain “repeating” or “fragmented” substruc-

tures, as well as structures that contain only monosaccharide composition information. In particular,

it is adopted as the standard glycan structure notation format in the international glycan structure

repository, GlyTouCan. As described later, mass spectrometry experiments are a major structural

identification method in current glycoscience research, and the glycan structures obtained as a result

of these experiments often do not contain information on some or all of the bonds in the structure, or

only contain information on the composition of monosaccharides. Thus, WURCS is capable of han-

dling such structures to uniquely assign accession numbers to them. In addition, the WURCS format

is highly compatible with Semantic Web technologies that enable integrated retrieval of information

among multiple databases, as will be described later. Therefore, it is important to use the WURCS

format for glycan structures as a means to retrieve various glycan-related resources on the Internet.

The glycan structure shown in Figure 1.5 is described in WURCS format as follows. Figure 1.5 (e)

shows the same N -linked glycan core structure shown in Figure 1.5 (a) in WURCS format. In this

format, the numbers of residues and bonds in the structure, the unique monosaccharide structures,

the sequence of monosaccharide residues, and the linkage information are separated by “/”.

1.2.3 Subsumption relationships among glycan structures

As described in the previous section, the WURCS format can uniquely represent glycan structures that

contain ambiguities. Taking full advantage of this property, GlyCosmos, one of the portal sites for

glycoscience research, defines relationships between glycan structures with respect to structural am-

biguity called “subsumption relationships” (Zhang and Edwards, 2021). This is a binary relationship

between glycan structures in which a glycan structure that contains more ambiguity in its structure

“subsumes” a more specific glycan structure. As of December 15, 2023, GlyCosmos classifies each

registered glycan structure into the following five levels.

1. Fully-defined saccharide

2. Linkage-defined saccharide

3. Topology

4. Monosaccharide composition

5. Base composition

10

Chapter 1. Introduction

The “Fully-defined saccharide” level refers to glycan structures in which all glycosidic linkage

information, including anomers and carbon numbers, has been identified. The “Linkage-defined sac-

charide” level classifies glycan structures that contain at least one identified glycosidic linkage infor-

mation in the structure. The “Topology” level is for glycan structures in which the links between all

the monosaccharides in the glycan are known, but none of the details of each linkage is known. In

the “Monosaccharide composition” level, only the number of monosaccharides whose stereochemistry

is defined, such as Gal and GlcNAc, is known, and no information on links is known. Finally, the

“Base composition” level classifies glycan structures that contain only the number of base types, such

as hexoses and deoxyhexoses, are known, but no information on links is known. Figure 1.6 shows

examples of glycan structures corresponding to each of these levels taking the core structure of a

N -linked glycan as an example.

Figure 1.6: An example of subsumption relationships between glycan structures. In
these five glycan structures, the structural information is more identified toward the right

side, and the structural information is more ambiguous toward the left side.

The subsumption relationships among glycan structures are useful for identifying existing glycan

structures that are related to a monosaccharide composition, for example, which is obtained mainly

from mass spectrometry experiments.

1.3 Mass spectrometry as a primary experimental method in glyco-

science research

In glycomics, glycan structures obtained by removing attached glycans on glycopeptides and glyco-

proteins using glycosidases such as PNGase F are subject to analysis. Also, the intact glycoproteomics

approach in glycoproteomics analyzes peptides and proteins that are still glycosylated to prevent loss

of information on the amino acid residues where the glycan structures are bound. The main exper-

imental analysis methods of them are tandem mass spectrometry experiments such as MS/MS or

LC-MS/MS.

11

Chapter 1. Introduction

For example, in MS/MS experiments, when two mass spectrometers are coupled and a specific

peak separated by the first mass spectrometer (MS1) is selectively introduced into the second mass

spectrometer (MS2), the selected ions are further broken down into smaller fragments in a collision

cell placed between MS1 and MS2. Then, more detailed structural information on the ion can be

obtained by querying the database for a more detailed peak list obtained by MS2. This allows the

identification of glycan structures in glycomics by MS/MS.

Researchers perform glycan structure identification manually by using assistant software such as

GlycoWorkbench. Figure 1.7 shows the user interface of GlycoWorkbench. GlycoWorkbench outputs

the results of glycan structure identification in GWP format. The results, as well as the raw data from

mass spectrometer, will be submitted to data repositories for glycomics data, such as GlycoPOST and

UniCarb-DR.

Figure 1.7: User interface of GlycoWorkbench 2.1 Stable (Build 157) running on macOS
Sonoma. Users can graphically draw glycan structures and view peak lists and fragment
information. By pasting the results processed by the mass spectrometer manufacturer’s
proprietary software onto GlycoWorkbench, users will be able to annotate the peak list

information.

On the other hand, LC-MS/MS is mainly used in glycoproteomics. Glycoproteins are cleaved

into glycopeptides using trypsin, chymotrypsin, and other proteases, and then separated by liquid

chromatography (LC) and sent to a mass spectrometer. They will be ionized and MS/MS experiments

12

Chapter 1. Introduction

will be performed. For the identification of glycopeptides, analysis software such as PMI-Byonic (Bern,

Kil, and Becker, 2012) and MaxQuant (Tyanova, Temu, and Cox, 2016) are used.

In the case of PMI-Byonic, researchers need to enter the raw data of the peak lists obtained from

the experiments, as well as the original glycoprotein sequence information (FASTA format) and a list of

proteases used. Then, the glycopeptides are identified by matching each peak list against the database.

The peaks that match the structures in the database are called peptide-spectrum matches (PSM), and

are output as identification results. Unfortunately, since there are many isomers in the monosaccharide

molecules that constitute glycans, this method in most cases provides only compositional information

about the glycan structures bound to the glycopeptides. The identification results obtained in this

way are now submitted together with the raw data from the mass spectrometry experiments to the

data repository for proteomics under the ProteomeXchange Consortium (Deutsch et al., 2020), which

will be described later.

1.4 Standard reporting guidelines

Sharing the experiment and analysis results of mass spectrometry and other methods among re-

searchers around the world is extremely important for the purpose of confirming the reproducibility of

the experiment and for knowledge discovery through large-scale data analysis using computers. In or-

der to validate the reproducibility of an experiment, it is necessary to report not only the experimental

data itself, but also the conditions of the experiment (e.g., sample preparation, type of reagents used,

reaction time, etc.) and the software tools used for the analysis. Many standard reporting guidelines

have been proposed to share such information in the life science field in accordance with the FAIR

(Findability, Accessibility, Interoperability, and Re-usability) data principles (Wilkinson et al., 2016).

Major guidelines include MIAME (Minimum Information About a Microarray Experiment) (Brazma

et al., 2001) for microarray experiments, MIAPE (The Minimum Information About a Proteomics Ex-

periment) (Taylor et al., 2007) for proteomics experiments, and STRENDA (Standards for Reporting

Enzymology Data) (Tipton et al., 2014) for enzyme information.

For glycomics, a reporting guideline called MIRAGE (Minimum Information Required for A Gly-

comics Experiment) (York et al., 2014) has been proposed by the Beilstein-Institut as a reporting

guideline for various glycan-related information, including the results of mass spectrometry experi-

ments. As of December 15, 2023, the following eight reporting guidelines are available on the Internet

(although some are still in manuscript in preparation).

13

Chapter 1. Introduction

• Sample Preparation (Struwe et al., 2016)

• Mass Spectrometric Analysis (Kolarich et al., 2013)

• Glycan Microarray Analysis (Liu et al., 2016)

• Liquid Chromatography Analysis (Campbell et al., 2019)

• NMR Glycan Recognition (Manuscript in preparation)

• NMR Glycan Structures (Manuscript in preparation)

• Capillary Electrophoresis Analysis (Lageveen-Kammeijer et al., 2022)

• Lectin Microarray Analysis (Manuscript in preparation)

These reporting guidelines specify the minimum experimental information to be reported when

writing a publication based on the experimental results.

1.5 Data repositories in proteomics and glycomics

Each experiment and analysis result data with appropriate metadata such as experiment conditions

and softwares used for the analysis in accordance with the standard reporting guidelines is uploaded to

public data repositories on the Internet, where a unique identifier is assigned to the data. This allows

researchers to be able to use the identifier to uniquely indicate the experiment results to readers around

the world in their papers. In the field of glycoscience, there is also a data repository that assigns an

identifier to the glycan structure itself, rather than to the experimental data. Here, I briefly introduce

the data repositories and related tools currently used in proteomics and glycomics that are relevant

to this study.

1.5.1 PRoteomics IDEntifications database (PRIDE) in the ProteomeXchange
Consortium

The ProteomeXchange Consortium is an international pipeline for standardized data submission and

sharing in proteomics and includes major data repositories in the field of proteomics. Currently, the

consortium consists of six members: PRoteomics IDEntifications database (PRIDE) (Perez-Riverol

et al., 2022), PeptideAtlas (Van Wijk et al., 2021), MassIVE (Choi et al., 2020), jPOST (Okuda et al.,

2017), iProx (Ma et al., 2019), and Panorama Public (Sharma et al., 2018). Users can perform a

14

Chapter 1. Introduction

cross search on ProteomeCentral (Jarnuczak and Vizcaíno, 2017) for information on all submissions

to these data repositories.

PRIDE is one of the initial members of the consortium along with PeptideAtlas and is a data

repository to which users can submit any type of proteomic dataset from a variety of experimental

workflows. As of December 25, 2023, 25,237 submissions have been published in the PRIDE Archive.

Identification results from mass spectrometry experiments obtained from glycoproteomics experiments

are submitted in various formats such as MS-Excel files, CSV files, TSV files, etc., together with the raw

data, to this data repository. Figure 1.8 shows the user interface of PRIDE displaying the submission

assigned accession number PXD035445. Users can freely download the submitted experiment data

from this screen.

1.5.2 MS-Viewer in Protein Prospector

Protein Prospector (Darula et al., 2011) is a software and database package for mass spectrometry

experiments in proteomics developed at the University of California, San Diego, and MS-Viewer (Baker

and Chalkley, 2014) is the spectrum viewer included in it. Researchers can upload peak list files

obtained from mass spectrometry experiments as well as results files containing annotations for the

peak lists to MS-Viewer, allowing visualization of mass spectrometry results in web browsers. It

supports various results file formats, such as Mascot (Perkins et al., 1999) CSV and MaxQuant, so

files obtained from various types of mass spectrometry experiment analysis software can be visualized.

Since the results of mass spectrometry experiments uploaded to MS-Viewer are published on the

Internet at the same time they are visualized, MS-Viewer also functions as a data repository for mass

spectrometry result data. As of August 2, 2023, 124 submissions have been published in the MS-Viewer

Repository Browser. Figure 1.9 shows the user interface of the MS-Viewer Repository Browser.

1.5.3 International glycan repository GlyTouCan

GlyTouCan is the international glycan repository that assigns a unique identifier, GlyTouCan ID, to

each glycan structure. Experimental methods used to identify glycan structures, such as mass spec-

trometry experiments, do not always identify all the types of monosaccharides and linkage information

between the monosaccharides in the glycan structures. Therefore, GlyTouCan must be able to deal

with ambiguous glycan structures lacking some information. This functionality of GlyTouCan has

been achieved based on the representation of each glycan structure as a string in the WURCS format.

15

Chapter 1. Introduction

Figure 1.8: User interface of PRIDE data repository as of October 6, 2023 displaying
the submission assigned accession number PXD035445. Users can download the submit-

ted files from this screen via the FTP server.
16

Chapter 1. Introduction

Figure 1.9: User interface of MS-Viewer Repository Browser as of October 4, 2023.
Users can visualize and browse the archive of annotated mass spectrometry experiment

results on web browsers.

17

Chapter 1. Introduction

The WURCS glycan structure notation can represent not only glycans containing ambiguous monosac-

charides and glycosidic linkages, but also glycans containing fragmented substructures and structures

containing only monosaccharide composition information. This means that all glycan structures that

can be obtained by mass spectrometry experiments can be represented in WURCS format, which can

thus be assigned a unique identifier, and thus GlyTouCan plays an important role in glycomics and

glycoproteomics. Therefore, it has been adopted as the recommended repository for glycan data and

is used to integrate glycan data in the GlySpace Alliance (Aoki-Kinoshita et al., 2020), which includes

GlyCosmos, GlyGen (York et al., 2020), and Glycomics@ExPASy (Mariethoz et al., 2018).

In addition, GlyTouCan is built on top of Semantic Web technologies. This allows users to write

queries using a query language called SPARQL (Hogan, 2020) to perform cross-database queries

against a wide variety of information stored in many databases on the Internet, and to obtain various

information related to the target glycan structure all at once. As of December 25, 2023, 223,014 glycan

structures are registered in GlyTouCan. Figure 1.10 shows the core structure of the N -linked glycan

identified by GlyTouCan ID G22768VO on GlyTouCan.

1.5.4 Data repositories in glycomics

In glycomics, two data repositories, GlycoPOST (Watanabe et al., 2021) and UniCarb-DR (Rojas-

Macias et al., 2019), are publicly available under the GlyCosmos (Yamada et al., 2020) project.

Although both of these data repositories are based on the MIRAGE guidelines for mass spectrometry

experimental data in glycomics, each has its own unique advantages. This section describes the

characteristics of these data repositories.

GlycoPOST

GlycoPOST is a data repository where various types of experimental data, including raw data ob-

tained from mass spectrometers, can be submitted following MIRAGE sample preparation guidelines

and mass spectrometric analysis guidelines. GlycoPOST provides a unique MIRAGE-related infor-

mation storing unit called “presets” to facilitate the registration of MIRAGE guideline information.

Since submitters can reuse their own existing presets, they can greatly save time when submitting

data obtained from experimental conditions that are similar to those of previously submitted data.

GlycoPOST is designed for highly efficient data upload. The front-end application running on the

web browser and the back-end application running on the server cooperate with each other to divide

a large file into small data chunks of about 1 MB, which are sent in parallel at high speed. Each data

18

Chapter 1. Introduction

Figure 1.10: Display screen of each glycan structure entry in GlyTouCan as of Oc-
tober 6, 2023. Here, the details of the core structure of N -linked glycans assigned the
GlyTouCan ID G22768VO are displayed. In addition to the string representation of the
glycan structure described in WURCS format, links to various related external resources

are also available.

19

Chapter 1. Introduction

chunk sent to the server side is merged to restore the original file on the server. This enables the

transmission of huge files in a very short period of time.

In addition, GlycoPOST allows submitters to freely set the publication date of their submitted

data. Thus, during the peer review period (embargo period) of a paper, they can make their submitted

data available only to reviewers, and after the paper is published, they can switch the submitted data

to general public access. However, due to the nature of the various types of data it can accept,

GlycoPOST does not implement any functionality to analyze or visualize the contents of individual

submitted files.

As of December 25, 2023, 293 submissions have been registered, of which 218 are publicly available.

Figure 1.11 shows the submission list screen of GlycoPOST.

UniCarb-DR

UniCarb-DR, similar to GlycoPOST, is a data repository for submitting the results of mass spec-

trometry experiments following the sample preparation and mass spectrometric analysis guidelines of

MIRAGE. However, while GlycoPOST can accept arbitrary data including raw data obtained from

mass spectrometers, UniCarb-DR can only accept mass spectrometry experiment results annotated

using GlycoWorkbench in GWP format. By virtue of the fact that it only accepts data in a certain

format, UniCarb-DR provides rich visualization functionalities for the results of mass spectrometry

experiments. It also provides flexible search functions for submitted mass spectrometry experiment

results using metadata such as species information, monosaccharide composition information, etc.

Unlike GlycoPOST, submitted data are published immediately, and submitters are not allowed to

specify the date of publication of their data in advance.

As of December 25, 2023, 74 submissions have been registered, including 1,710 results of glycan

structure identification. Figure 1.12 shows the identification result of a glycan structure contained in

one submission registered in UniCarb-DR with spectral data.

1.6 Purpose

With the development of multiple data repositories such as GlyTouCan, GlycoPOST, and UniCarb-

DR, the infrastructure for the accumulation and sharing of data in glycoscience research is now being

established. However, unlike proteins, lipids, and other biomolecules, glycans do not function alone

in organisms but rather serve as modulators of substrate functions by attaching to the substrates.

20

Chapter 1. Introduction

Figure 1.11: Submission list screen on GlycoPOST as of December 26, 2023 showing
submissions that have been published after the embargo period. Submissions for which
publication information was not entered at the time of registration are marked as “Pre-
publication”, and the submitter can set a PubMed ID or a DOI as publication information
even after the submission has been published. Users can search for specific submissions

by entering search words such as ID or species name.

21

Chapter 1. Introduction

Figure 1.12: Display screen of a glycan structure identification result registered in
UniCarb-DR as of October 4, 2023. The glycan structure identified as a result of the
experiment is displayed as an image, as well as a chart for spectral data and metadata

entered following the MIRAGE guidelines.

22

Chapter 1. Introduction

Therefore, to advance our understanding of the functions and roles of glycans, it is necessary to

accumulate information not only on glycans but also on the substrates to which they attach, such as

proteins and lipids.

For example, glycoproteomics is an important field for understanding how proteins are regulated

by glycans. With current technologies, glycoproteins are identified using various mass spectrometry

techniques combined with orthogonal methods, but in the end, the data usually consist of identified

peptides and glycosylation sites annotated with one or more monosaccharide compositions (hereafter

referred to as glycan structures). In order to integrate this data with current protein-centric and

glycan-centric databases, it is crucial to have a standardized system to identify glycoconjugates, and

in particular glycoproteins and glycopeptides. Such a public data repository for storing and sharing

glycoconjugate data, including glycopeptides and glycoproteins, was lacking, thus hindering the effi-

cient accumulation of glycoconjugate knowledge. It is true that the UniProtKB database (The UniProt

Consortium, 2023), for example, contains glycosylation information for each protein entry. However,

because UniProtKB assigns an identifier only at the protein level, while each glycosylation site may

have a publication reference, it is currently not possible to search for a specific set of glycosylation

patterns on a particular peptide sequence, which may have a particular relevance to a disease state.

Glycopeptide and glycoprotein profiles identified in glycoproteomics experiments reported in the lit-

erature are often compiled into MS Excel or CSV files and either provided as Supplementary Data or

uploaded together with raw data of liquid chromatography-tandem mass spectrometry (LC-MS/MS)

experiments to a proteomics data repository participating in the ProteomeXchange Consortium such

as PRIDE. However, since there is no standardized format for these files, each researcher submits their

own data in their preferred format. This means that in order to collect and analyze experimental re-

sults containing specific glycopeptides or glycoproteins from such data repositories, these uniquely

formatted files must be opened and processed individually, which is a time-consuming process.

To overcome these issues, a new data repository for depositing glycoconjugate data to accelerate

glycoscience research was needed, and thus we developed GlyComb, a new data repository for such

data. The data deposited in GlyComb will enable the unique identification of glycopeptides and

glycoproteins contained in glycoproteomics experiment results submitted to GlycoPOST, and to link

the glycan data with GlyTouCan identifiers. Currently, GlyComb can assign a unique identifier to a

set of glycosylation information associated with a specific peptide sequence or UniProt ID, which can

be registered and published as a glycopeptide or glycoprotein entry, respectively. GlyComb is now

publicly available on the Internet at https://glycomb.glycosmos.org, and users can access this new

23

https://glycomb.glycosmos.org

Chapter 1. Introduction

web resource using a web browser. We have aimed to make GlyComb user-friendly, providing tools

that make it easy to upload glycopeptide and glycoprotein information to register.

In addition, although both GlycoPOST and UniCarb-DR are MIRAGE-compiliant data reposito-

ries for mass spectrometry experimental data in glycomics, they have different characteristics. While

GlycoPOST is more oriented toward hosting large raw data from analyzers, UniCarb-DR focuses on

collecting and visualizing the results of annotated mass spectrometry experiments. Due to the fact

that each has been developed and maintained separately, these are completely separate data reposi-

tories, and there were no cross-links at all between the submissions in each repository. However, from

the data submitter’s point of view, it is obviously inconvenient to have to separately submit raw data

from mass spectrometry experiments and their identification result to separate data repositories. In

addition, while GlycoPOST allows the submitters to freely set the publication date of the submitted

data, UniCarb-DR immediately announces the submitted data to the public. This makes it difficult

for users to use UniCarb-DR because they have to submit and publish their identification result data

to be referenced in the paper under review to UniCarb-DR in advance. Previously, several attempts

have been made to promote collaboration between the two data repositories to some extent, such

as the introduction of a common login system between them. However, for example, in proteomics,

ProteomeXchange provides extensive cross-linking among different data repositories, allowing users

to cross-search between multiple data repositories from the same ProteomeCentral website, and the

data repositories are being linked so that they operate as an integrated whole system. In order to

take advantage of these two complementary glycomics data repositories more than ever before, more

enhanced integration between them was needed. Therefore, we investigated the possibilities of fur-

ther collaboration between GlycoPOST and UniCarb-DR in order to improve user convenience, and

implemented some new features. As a result, a unified data submission flow to these two data repos-

itories was implemented to achieve cross-referencing between the respective data of GlycoPOST and

UniCarb-DR. In addition, by obtaining GlyTouCan IDs from the glycan structures described in the

GWS format, the linkage between these two data repositories and GlyTouCan was strengthened.

Such data repositories are inherently expected to continue to run over the long term. Therefore,

when new analysis software becomes mainstream or new versions of existing software are released

in the future, it would be desirable to be able to submit the products of such software to these

data repositories and extract data from them without any problems. To meet this requirement,

these data repositories must be able to safely add or extend functionality without destroying existing

functionalities. However, this is a very difficult requirement because it is impossible to expect all

24

Chapter 1. Introduction

possible future changes in advance when developing a data repository. In fact, the Kinoshita lab

took over the development of UniCarb-DR, which was originally developed at Gothenburg University

in Sweden, however, the programs at that time were not designed for specification changes such as

URL changes or login system changes, and various functions such as search functions and dataset

submission functions failed to work. It was also difficult to identify the locations of programs where

such problems occurred and the causes of them.

Thus, to ensure the long-term stable running of these data repositories and to enable them to meet

the requirements of adding and extending functionality with relative ease, in this study I adopted

several statically typed programming languages with expressive type systems (Pierce, 2002) as the

technology for developing these data repositories, and applied techniques and idioms for safe software

development with functional programming (Hudak, 1989) that have been used and studied in com-

puter science for many years. This enables us to develop data repositories more reliably, and also to

support the future development of new functions such as the linkage of these data repositories without

destroying the existing functions.

25

Chapter 2

Methods

2.1 Infrastructure for developing data repositories

In this section, I describe the fundamental technologies used in this study to develop the data reposi-

tories.

2.1.1 Relational databases and querying with SQL

Database management systems (DBMSs) are used to store data in a wide variety of systems around

the world, from in-house user management systems to large e-commerce sites. While many differ-

ent types of DBMS software have been developed, including document stores such as MongoDB

(Bradshaw, Brazil, and Chodorow, 2019) and key-value stores including Redis (Carlson, 2013) and

Memcached (Fitzpatrick, 2004), the most commonly used type of DBMS as of 2023 is RDBMS

(relational database management system). Figure 2.1 shows (a) the breakdown of categories of

different 417 DBMS softwares by their model and (b) the popularity of each category listed in

the DB-Engines website, a knowledge base of relational and NoSQL database management sys-

tems (https://db-engines.com/en/ranking_categories). From Figure 2.1 (b), it is evident that

RDBMSs are the most popular of the many categories of database management softwares.

A relational database is a database based on a relational model of data, invented by Edgar F.

Codd (Codd, 1970) in the 1970s. In the relational model, data are organized into one or more tables.

Each column in a table represents an attribute of the data to be stored. On the other hand, each row

is called a record or a tuple, and represents one data entity which is an N-tuple having N attributes.

Entities stored in each table refer to each other using their own identifiers as foreign keys, thereby

eliminating duplication of information among entities and enabling efficient data storage. Figure 2.2

shows an example of the tables in the relational model.

26

https://db-engines.com/en/ranking_categories

Chapter 2. Methods

Figure 2.1: Breakdown of database management systems (DBMSs) by database model
as of December 2023. (a) A breakdown of the 417 different database management systems
published on DB-Engines, categorized by database model (e.g. RDBMS, key-value stores,
etc.). Note that some systems belong to more than one category. (b) A breakdown of the
popularity of each database model, calculated based on DB-Engines’ own ranking scores.
The sum of all scores is normalized to 100%. These scores are calculated considering the
number of websites that mention the system, trending information from search engines
such as Google Trends, and the frequency of technical discussions about the systems on

sites such as Stack Overflow.

Figure 2.2: Example of the tables in the relational model. Here, the column table,
which stores detailed information on columns used in HPLC experiments, and the man-
ufacturer table, which stores the manufacturer’s information on the columns, are shown.
These are real examples of tables used in UniCarb-DR as of January 19, 2024. By
referencing the manufacturer table from the column table using the manufacturer_id

attribute, data can be stored without duplicate information in the database.

27

Chapter 2. Methods

A query language called SQL is used to perform queries such as retrieving, inserting, deleting,

and joining data in a relational database. Using SQL, it is possible to combine multiple tables in a

database and retrieve entities that match specified conditions in a concise way. Figure 2.3 shows an

example of SQL query to retrieve information from the tables shown in Figure 2.2.

Figure 2.3: Example of SQL query to retrieve information. (a) This table is constructed
by joining the two tables shown in Figure 2.2, using the manufacturer_id of each table as
a key. (b) This is a SQL query to retrieve the column_id, model, and packing_material
attributes of the record from the derived table shown in (a) whose manufacturer’s name
is “SSI LabAlliance” or “Zirchrom”. The data retrieved by this query corresponds to the
cells highlighted in yellow in (a). (c) This is the result table containing the data retrieved

by the query shown in (b).

MySQL(DuBois, 2013), MariaDB (Kenler and Razzoli, 2015), and PostgreSQL (Douglas and Dou-

glas, 2003) are the most popular open-source RDBMSs that can be used free of charge. Each of

the data repositories developed in this study also uses a relational DBMS for storing user informa-

tion and submission data. Concretely, MariaDB is used for GlyComb, MySQL for GlycoPOST, and

PostgreSQL for UniCarb-DR. While RDBMSs are generally high performance, it has been difficult

to integrate data from many databases and data repositories developed using RDBMSs in life science

research. To overcome this problem, many efforts have been made in recent years to link and integrate

databases and data repositories using Semantic Web technologies, as described later. In this study,

GlyComb registers data once registered in a relational database to a triplestore, a database that is

compatible with Semantic Web technologies, after performing data validation during batch processing.

This allows GlyComb to be linked to a various data resources, including GlyTouCan and others.

28

Chapter 2. Methods

2.1.2 Three-tier client-server architecture

The data repositories developed in this study are all in the form of web applications that can be

accessed and used using web browsers. Therefore, the structure of these data repositories all follow

the three-tier client-server architecture. In this architecture, the entire web application is divided into

three tiers: presentation tier, logic tier, and data tier. The roles of each tier are as follows:

• Presentation tier: This tier contains the user interface to interact with the user. The program

in this tier runs on the web browser of the user’s computer.

• Logic tier: This tier contains the application logic that runs on the server. It communicates

with the database in the data tier in response to user requests sent from the presentation tier

and returns responses to the presentation tier.

• Data tier: This tier contains the relational database managed by the RDBMS. It extracts,

inserts, updates, and deletes data in the database according to SQL queries issued by the logic

tier.

By dividing the application into multiple tiers in this way, it is easier to maintain and modify the

entire application. Figure 2.4 shows a conceptual diagram of this architecture as a whole and the

typical process at each tier when updating the screen at the presentation tier.

2.1.3 Containerized virtualization technology

One of the challenges in software development is that it is difficult to ensure the reproducibility of the

environment in which the software works. Software often runs well on the computer used in its devel-

opment, however, when it is attempted to run in a production environment on a server, it fails to run

properly due to some errors. This can be caused by various reasons, such as the hardware or operating

system of the computer used during the development being different from that used in the production

environment. As a means of minimizing such problems, a technology called containerized virtualiza-

tion, as typified by Docker (Merkel, 2014), has been gaining attention in recent years. Containerized

virtualization technology allows developed software to run in a lightweight virtual environment called

a “container”. Within a container, software developers can explicitly specify the dependent libraries

and their versions, which greatly improves the reproducibility of the software’s working environment.

Furthermore, once created, container environments can be shared and reused as “container images”

across multiple computers, making it easy to reproduce the exact same environments on production

29

Chapter 2. Methods

Figure 2.4: Conceptual diagram of a three-tier client-server architecture and a typical
process flow during a screen update of the user interface. First, a screen update request
is sent from the presentation tier to the logic tier in response to the user’s operation on
the web browser (1). Then, the application in the logic tier running on the server issues
an SQL query to obtain the data needed to render the new screen from the database in
the data tier (2). The database returns the data retrieved according to that SQL query
to the logic tier (3), which transforms that data and returns new screen data for the

presentation tier (4).

30

Chapter 2. Methods

servers. Each of the data repositories developed in this study is built as multiple container-based ap-

plications using Docker and docker-compose, a tool for managing multiple containers together. This

allows these data repositories to run stably on a wide range of computers capable of running Docker,

making it easier to keep them running over the long term. Figure 2.5 shows a conceptual diagram

illustrating an example of a system based on multiple containers.

Figure 2.5: Example of a system based on multiple containers. By using container-
ized virtualization technology as typified by Docker, for example, Nginx (Reese, 2008),
a typical web server used to serve static files, Java (Bloch, 2008), a programming lan-
guage very popular for developing server-side applications running on the logic tier, and
MariaDB, an RDBMS running on the data tier, can run in independent and separate
containers. Since each container is executed by a container engine running on the host
computer’s operating system, rather than directly on the operating system, the influence
of the operating system can be minimized, ensuring highly reproducible environments
on a variety of computers. For example, GlyComb, the data repository developed in
this study, is also constructed by collaborating Nginx, Java, and MariaDB running in

independent containers, as shown in this figure.

31

Chapter 2. Methods

2.1.4 Semantic Web technologies

The Semantic Web, proposed by Tim Berners-Lee, is an extension of the existing World Wide Web to

make all data on the Internet machine-readable (Berners-Lee, Hendler, and Lassila, 2023). The conven-

tional World Wide Web is oriented toward human readability, assuming that people read documents

directly on the Internet, and thus forms a “web of documents” in which documents are interconnected

using hyperlinks among documents. In contrast, the Semantic Web aims to create a “web of data” in

which all data on the Internet are interlinked.

In order to establish the Semantic Web, it is necessary to have a framework for representing all

kinds of data on the Internet and for defining semantics and concepts for them. By defining semantics

for the data, computers will be able to infer information from links among the data according to

certain rules. The Semantic Web adopts Resource Description Framework (RDF) (Manola, Miller,

and McBride, 2004) as a technology to provide this framework.

RDF represents all information in the “subject-predicate-object” form, also known as a triple. The

subject, predicate, and object are all described using uniform resource identifiers (URIs). However,

only object may be a literal value representing a concrete string, number, or other value. If a triple is

considered as a graph structure, the subject and object correspond to two nodes respectively, and the

predicate corresponds to an edge. Thus, by accumulating multiple triples, they can be combined to

obtain a single directed graph structure. Such a graph structure is called a knowledge graph. Figure

2.6 shows (a) an example triple and (b) a part of the graph structure about glycan structures using

RDF that is actually used in GlyTouCan.

There are several formats for describing triple-based information in RDF. Among them, the Turtle

format (Beckett et al., 2014) is the most commonly used in the field of bioinformatics because of its

concise syntax and convenience. Figure 2.7 describes triples in the graph structure shown in Figure

2.6 (b) in Turtle format. The prefix declarations that appear at the beginning of the file define a set

of local prefixes to describe long URI in a shortened form. Using these local prefixes, for example, the

URI http://purl.jp/bio/12/glyco/glycan#Saccharide can be shortened to glycan:Saccharide,

resulting in a better readability of a set of triple definitions.

The vocabulary used to assign meanings to entities in RDF is called an ontology. Various on-

tologies have already been developed to express various meanings in the Semantic Web. In the field

of glycoinformatics, GlycoRDF (Ranzinger et al., 2015) for describing glycan-related information and

32

Chapter 2. Methods

Figure 2.6: Examples of triple and graph structure composed of a set of triples ex-
pressed in RDF. (a) The subject, predicate, and object in the triple are represented as
URIs. The subject and object in a triple are linked by a predicate, mapping them to
a graph structure with two nodes and one edge, respectively. (b) This is a part of the
glycan structure information in GlyTouCan expressed in RDF. Each subject can be an
object in another triple, and each object can be a subject in another triple, resulting in

a large knowledge graph from a set of triples.

Figure 2.7: An example of RDF described in the Turtle format. In this format, triples
that share the same subject can be separated by a semicolon to avoid redundant repetition

of the subject.

33

Chapter 2. Methods

GlycoCoO (Yamada et al., 2021) for describing glycoconjugate-related information have been de-

veloped as ontologies. For example, glycan:Resource_entry, glycan:has_Resource_entry, and

glycan:Saccharide in Figure 2.7 are the vocabularies defined in GlycoRDF.

Information described using RDF will be stored in a database for Semantic Web technologies

called triplestore (Rohloff et al., 2007). The stored data can be retrieved by querying the database

using a query language called SPARQL (Hogan, 2020). For example, Figure 2.8 shows an exam-

ple of SPARQL query to retrieve a list of subjects whose predicate is rdf:type and whose ob-

ject is glycan:Saccharide against a triplestore containing GlyTouCan’s RDF data. By execut-

ing this query, all GlyTouCan IDs assigned to glycan structures registered in GlyTouCan, including

http://rdf.glycoinfo.org/glycan/G22768VO, etc., can be retrieved. Figure 2.9 shows the result of

this SPARQL query.

Figure 2.8: An example of a SPARQL query. The syntax of SPARQL is similar to the
Turtle format, and defining the prefixes allows redundant URI descriptions to be omitted.
Here is a SELECT statement that retrieves resources that match the conditions described

in the WHERE clause.

2.2 Applying functional programming techniques to the develop-

ment of data repositories

To enable continuous improvement of data repositories used in the long-term and to be flexible to

future extensions, in this study I employed several statically typed programming languages with ex-

pressive type systems for the development, as well as several functional programming techniques that

are the result of research in the field of computer science for safe software development. Functional

programming is a declarative programming paradigm based on the theoretical foundation of the com-

putational model called the lambda calculus formulated by Alonzo Church in the 1930s (Church, 1936;

Church, 1941). It is a universal model of computation known to be equivalent to the Turing machine

(Church, 1936; Kleene, 1936; Turing, 1936; Turing, 1937), the model of computation invented by

Alan Turing and the basis of today’s computers, and is used as one of the theoretical foundations

of modern programming languages. Unlike the imperative programming paradigm adopted by many

34

Chapter 2. Methods

Figure 2.9: Results of an example SPARQL query. This shows the results of the
SPARQL query shown in Figure 2.8 against GlyTouCan’s SPARQL endpoint (https:
//ts.glytoucan.org/sparql) as of October 4, 2023. Since the query is for obtaining
all glycan structure information registered in GlyTouCan, a large list of GlyTouCan IDs

is obtained as a result of this operation.

35

https://ts.glytoucan.org/sparql
https://ts.glytoucan.org/sparql

Chapter 2. Methods

programming languages, functional programming does not construct a program by a sequence of in-

structions to the computer, rather it constructs a program by composing and applying functions to

form larger ones. Lisp (McCarthy, 1960), ML (Milner, 1972; MacQueen, Harper, and Reppy, 2020),

Haskell (Marlow et al., 2010; Hudak et al., 2007), and other languages belonging to the functional

programming language family have been used mainly only in academia for several decades, however,

in the 2010s, C++11 (Meyers, 2014) and Java 8 (Urma, Fusco, and Mycroft, 2014), which are widely

used in industry, also introduced lambda expressions, a feature derived from functional languages.

Therefore, functional programming has been attracting attention from the industrial world in recent

years. Furthermore, in recent years, development using the Haskell language has been reported at

EMBL (European Molecular Biology Laboratory) in the bioinformatics field (Coelho et al., 2019),

and it is expected that safe application development using functional programming will spread to the

bioinformatics field as well.

2.2.1 Advantages of functional programming

Here I will briefly introduce some characteristics of functional programming compared to the conven-

tional procedural or object-oriented programming. To begin, many procedural programming languages

allow a series of operations to be packaged together as a reusable unit, known as a function or subrou-

tine. Such functions can take certain inputs as parameters, perform calculations using those values,

and return some value as its output. For example, the following program written in the Python lan-

guage includes the function area, which takes the radius of a circle as an argument and calculates and

returns the area of that circle.

Listing 2.1: Example of a function definition in the Python language
pi = 3.141592

def area(radius):
return radius * radius * pi

In this program, pi and radius are called variables and are used to give names to arbitrary

values such as numbers or strings. In addition, a variable can be reassigned a value, so that the

value corresponding to its name can be updated. The function area defined here can be called by

giving a concrete value for the parameter variable, such as area(5.0). As a result, the function

will return the result value 78.5398. However, this is not a function in the mathematical sense.

In mathematics, a function means a mapping of inputs to outputs, and the same input values are

always calculated to the same output values. In contrast, in the program shown above, the value

36

Chapter 2. Methods

of the variable pi may be reassigned at some point during the execution of the program to update

the corresponding value. Consequently, giving the same input value to this function does not always

result in the same output value being returned. While reassignment to variables is convenient in the

development of small programs, it is not convenient in the development of large programs, such as

data repository development, when the value of a variable may be updated by reassignment sometime

in the future. This causes the problem that it becomes difficult for programmers to figure out if the

program always calculates the correct value. This also increases the possibility of accidentally breaking

existing functionality when adding new functionality to a data repository.

On the other hand, in functional programming, a function is defined as a function in the mathe-

matical sense. In the case of the definition of the area function shown above, the fact that it depends

on the mutable variable pi, which can be freely reassigned, makes the area function different from

mathematical functions. Therefore, in functional programming, mutable variables such as pi are not

used, but rather immutable variables whose names, once defined and associated with a particular

value, cannot be reassigned thereafter. By ensuring that the value of the variable pi is never updated,

the function is guaranteed to always calculate the correct area value for the given radius value as

input. This property of a function that always returns the same output value for the same input value

just like a mathematical function is called referential transparency. The following is the same function

defined using Haskell, one of the most popular functional programming languages.

Listing 2.2: An example of a function definition in the Haskell language
pi :: Double
pi = 3.141592

area :: Double -> Double
area radius = radius * radius * pi

In addition, functions are defined as first-class citizens in functional programming languages, al-

lowing programmers to treat functions as values in the same way as numbers, strings, etc. This means

not only that a function can be given a name with a variable as its value, but also that it can be

passed as a parameter to another function, or return another function as the result value of it. Such

functions that take functions as parameters or return a function as a result value are called higher-

order functions. For example, suppose we write a program that computes the square of each of the

integers from one to ten, extracts only the numbers less than 30, and sums them up. It can be written

procedurally in the Python language as a function like the following:

37

Chapter 2. Methods

Listing 2.3: Example of procedurally defined function in Python language
def calc():

nums = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

squares = []
for n in nums:

squares.append(n * n)

less_than_30 = []
for n in squares:

if n < 30:
less_than_30.append(n)

total = 0
for n in less_than_30:

total += n

return total

Calling this program by writing calc() produces 14, the result of 1 + 4 + 9, as expected. In

contrast, in functional programming, such programs can be written concisely using the map function,

the filter function, and the foldl function, which are defined as higher-order functions in various

functional programming languages. For example, this calc function can be expressed in the Haskell

language as follows:

Listing 2.4: Example of a function defined in the Haskell language using higher-order

functions
import Data.Function ((&))

calc :: () -> Int
calc () =

[1..10]
& map (\n -> n * n)
& filter (< 10)
& foldl (+) 0

When this function is called as calc (), 14 will be returned as the result value as in the previous

example. In this function, the following operations are applied in order to a list containing integers

from one to ten.

• The map function generates a new list containing 1, 4, 9, 16, 25, 36, 49, 64, 81, 100, which is the

result of squaring each integer from one to ten in the list. In this case, the part \n -> n * n

represents an anonymous function that takes one integer parameter and returns the result of

computing its square. Therefore, the map function is a higher-order function that takes another

function as its parameter.

38

Chapter 2. Methods

• A new list is generated by the filter function, in which integers greater than ten are removed

from the list generated by the map function. In this case, the part (< 10) represents an anony-

mous function, or a predicate, that takes an integer as its parameter and returns a boolean value

indicating whether the value is less than ten. This is a shorthand notation for the anonymous

function \n -> n < 10.

• The foldl function performs convolution of each element in the list (1, 4, 9) generated by the

filter function, and the elements are summed up in order from the left side with an initial

value of zero. In this case, the part (+) represents an anonymous function that takes two integer

parameters and returns their sum. This is a shorthand notation for the anonymous function

\a e -> a + e. Of the two parameters a and e, e is set to one of the integers in the original

list, from left to right. On the other hand, a is an accumulator variable containing the total

result of the list to the left of the current e value.

Utilizing a series of higher-order functions as tools not only reduced the number of lines in the

program, but also reduced the number of long-lived variables that exist throughout the execution of

the calc function, such as the squares variable found in the version written in the Python language.

Variables such as n that appear in functions passed as parameters to higher-order functions are ex-

tremely short-lived variables that exist only during the execution of the corresponding higher-order

function. This contributes to reducing the possibility of mistakes, such as programmers accidentally

referencing the value of a different variable.

Syntaxes such as if and for statements, which appear in the version written in the Python lan-

guage, are fundamental tools in modern programming languages for explicitly controlling the control

flow of a program in terms of conditional branches and repetition, respectively. However, before Eds-

ger W. Dijkstra’s proposal of the structured programming paradigm (Dijkstra, 1968), the control flow

of these programs was controlled by utilizing the goto statement, a feature that allows programmers

to directly access the jump instructions provided by the CPUs. However, programs written in such an

unordered manner are difficult to maintain, and the development of large-scale programs is extremely

difficult. As the structured programming paradigm became more common, the if and for statements

became a means for programmers to utilize the CPU’s basic jump instructions in an orderly fash-

ion. As a result, they became the vocabulary for expressing program structure, such as “conditional

branching” and “repetition”. This allowed programmers to begin expressing the structure of their

39

Chapter 2. Methods

programs abstractly, away from the actual operating principles of the computer. Higher-order func-

tions introduced by functional programming languages, such as the map, filter, and foldl functions,

provide programmers with a rich vocabulary for expressing the intent of their programs at a higher

level of abstraction than the if and for statements. For example, the map function, when used with

a list, can express the process of transforming (mapping) each element in the list using a function

passed as a parameter. Therefore, it is guaranteed that the new list generated as a result of the map

function will always contain the same number of elements as those in the original list. This clearly

gives more information to programmers reading the program than the for statement, which has no

meaning beyond repetition. Thus, in functional programming, the use of higher-order functions not

only reduces the amount of code, but also expresses the intent of the program in a way that is more

easily understood by humans. This allows for more productive development of larger programs, such

as data repositories.

Type systems are what further strengthen these advantages of functional programming. In pro-

gramming languages, a type system is a computationally tractable syntactic method for ensuring the

absence of certain behaviors by classifying every part (term) in a program according to the type of

the value computed from it (Pierce, 2002). For example, integers, floating point numbers, strings,

and boolean values are all distinguished by the type system as different data types. Statically typed

programming languages are equipped with a type checker, which allows programmers to automati-

cally check for the presence of a certain kind of error, called type errors, in the program. If a program

contains incorrect operations, such as adding strings and integers, the type checker will report a type

error. Thus, programmers can know without actually executing the program that there is a problem

in it and that it needs to be fixed. This reduces the possibility of unintentionally breaking program

functionality when modifying an existing program.

In many programming languages, it is possible to define new user-defined data types that contain

values of multiple data types. In addition to that, functional programming languages can define “data

types that may have several different structures”. The following is an example of such a data type

definition in the Haskell language.

Listing 2.5: Example of data type definition in the Haskell language
data Option a = None | Some a

Here, the value of the data type Option a is constructed from either None or Some data construc-

tors. This data type represents the fact that the value “may be absent (None), or it may be present

40

Chapter 2. Methods

(Some).” For example, the data type of the value Some 123 would be Option Int. Since a variable of

Option Int data type may contain the value None, this data type represents the fact that there may

or may not be an integer inside. If programmers try to use values of this data type for arithmetic oper-

ations as if they were ordinary integers, the type system will tell them before program execution that

they are about to be used incorrectly by generating a type error. This helps programmers realize that

they can perform that calculation only after checking whether this value indeed contains an integer

value or not. Thus, the use of such data types in a program can explicitly indicate to programmers

that there is a possibility that a particular operation may fail for some reason, such as a network

failure, and the value may not be calculated. In other words, data types also serve as documentation

between programmers in a program. This will facilitate the development of data repositories for mul-

tiple people and make the handover smoother. Furthermore, by defining the map function described

earlier for data types such as Option a in the same way as for lists, it is possible to safely describe

an operation that is executed only when the value exists. While functional programming languages

represent the possibility of program errors as data types in this way, existing industrial languages

have used the convention of returning an invalid value, called “null,” in the event of an error, or have

utilized a mechanism called an exception handling. However, none of these allow the type system

to detect possible errors before the program is executed, and as a result, if a programmer forgets to

write code to check for errors in the program, the program will crash due to run-time errors. If such a

crash occurs in a data repository, for example, the data upload process by researchers will fail, or the

data extraction process for uploaded files will terminate abnormally in the middle. Even if an analysis

function that takes a long time to execute is incorporated into the data repository, it may become

an unreliable function that causes the program to terminate abnormally in the middle of the process.

Therefore, in the development of large programs such as data repositories, it is considered extremely

effective to utilize data types and type systems through functional programming to deal with errors

to improve the reliability of the system as a whole.

2.2.2 Application of functional programming to this study

In this study, I used several statically typed languages as programming languages for developing the

data repositories. First, the user interface of GlyComb was developed primarily using the TypeScript

(Cherny, 2019) language, with some functionality developed using the Scala (Odersky, Spoon, and

Venners, 2008) language. Although the TypeScript language itself does not strictly belong to the family

of functional programming languages, it takes advantage of the benefits of functional programming

41

Chapter 2. Methods

through the combined use of a library called fp-ts1. These programming languages make it easy to

write reliable programs that rely on the referential transparent functions described in the previous

section, and to write programs using a variety of vocabularies with higher-order functions. In addition,

the program for UniCarb-DR, which was previously written in the old-style Java language, had several

broken functions such as search and dataset submission functions, and it was difficult to identify the

cause of errors because checks for the invalid “null” values were missing everywhere in the program.

Therefore, the system was completely rewritten in the Scala language to improve it into a more robust

and reliable system using more functional programming techniques. The Scala language is compatible

with the Java language, which is very widely adopted in the software development industry, and is

a language that combines the different programming paradigms of object-oriented programming and

functional programming. For example, the Option a data type shown in the previous section can be

defined in the Scala language as follows, with compatibility with object-oriented programming such

as the Java language.

Listing 2.6: Example of data type definition in the Scala language
sealed abstract class Option[+A]

case object None extends Option[Nothing]

final case class Some[+A](value: A) extends Option[A]

As described in more detail in later sections, the application of functional programming techniques

with these languages enabled the GlyComb and UniCarb-DR programs to check for possible errors

not only through programmer attention but also through type checking by the type systems. It is

expected that this will allow the data repositories to continue to expand their functionality over time

without breaking existing functionality in the future.

2.3 The design of the GlyComb system

2.3.1 Fundamental technologies used to build the GlyComb system

The GlyComb server-side system consists of several components. We developed most of the server-

side logic, including the application programming interface (API), using the Java 17 programming

language. As a relational database management system to directly store each entry submitted by users,

we adopted the MariaDB Community Server. We also employed OpenLink Virtuoso Open Source
1https://gcanti.github.io/fp-ts/

42

https://gcanti.github.io/fp-ts/

Chapter 2. Methods

Edition 7 for our implementation of a triplestore that stores the RDF-ized information converted

from the relational database. For the RDF data insertion into this triplestore, we utilize SPARQList

(Katayama and Kawashima, 2017). All these server-side components are running on our on-premise

servers, which are built on containerized virtualization technology based on Docker (Merkel, 2014).

To develop the front-end application, including the user interface that runs in web browsers, we

used TypeScript for the majority of the development. We also used Node.js (Tilkov and Vinoski,

2010) with a number of JavaScript libraries, including Webpack (Zammetti, 2020), to generate a

JavaScript bundle file that web browsers can interpret. We also developed a conversion software

to extract GlyComb input entries from the summary spreadsheet file generated from PMI-Byonic.

For the development of this tool, we adopted the Scala programming language and used the Scala.js

(Doeraene, 2013) compiler to generate a JavaScript bundle file that runs in web browsers. Then, we

embedded the bundle file in the front-end application so that it is available from the user interface.

In the development of GlyComb, each component is managed separately by Git (Loeliger and

McCullough, 2012), a popular version control software for source code and configuration files, and

each is hosted on an on-premise server in Kinoshita Lab. The following is the eight major components

related to the GlyComb system (the URLs of the respective Git repositories are listed in the footnotes).

(i) User interface programs that run on web browsers2

(ii) Reusable custom component library for the user interface3

(iii) Utility software for extracting the identification results of glycoproteomics experiments in PMI

Byonic-derived spreadsheet files4

(iv) Public APIs (application programming interfaces) for user interface programs5

(v) Relational database-related configurations and private APIs for communicating with the database6

(vi) DTO (data transfer object) declarations commonly used by both public and private API pro-

grams7

2https://gitlab.glyco.info/glycosmos/glycombgroup/components
3https://gitlab.glyco.info/glycosmos/glycombgroup/library/glycomb-ui-libraries
4https://gitlab.glyco.info/glycosmos/glycombgroup/library/comberter
5https://gitlab.glyco.info/glycosmos/glycombgroup/api
6https://gitlab.glyco.info/glycosmos/glycombgroup/backend
7https://gitlab.glyco.info/glycosmos/glycombgroup/library/glycomb-data-model

43

https://gitlab.glyco.info/glycosmos/glycombgroup/components
https://gitlab.glyco.info/glycosmos/glycombgroup/library/glycomb-ui-libraries
https://gitlab.glyco.info/glycosmos/glycombgroup/library/comberter
https://gitlab.glyco.info/glycosmos/glycombgroup/api
https://gitlab.glyco.info/glycosmos/glycombgroup/backend
https://gitlab.glyco.info/glycosmos/glycombgroup/library/glycomb-data-model

Chapter 2. Methods

(vii) Batch processing programs to validate submitted data stored in the relational database and

RDF-ize it8

(viii) Triple store-related configuration files for storing RDF-ized submission data9

Of these components, all but (i), (ii), and (iii), which run in the web browser of the user’s computer,

run in a separate Docker container and interoperate with each other as shown in the conceptual diagram

in Figure 2.10.

2.3.2 Error checking of communication between the user interface and the API
using functional programming techniques

GlyComb is implemented as a web application that researchers access using a web browser on their

own computers and browse and submit their data from the user interface displayed on the browser.

Consequently, it is necessary to have frequent communication between the user interface and the APIs

running on the server. However, since the communication is between programs running on different

computers, this communication may inevitably fail due to network failures or other factors. Moreover,

if the data uploaded by a researcher is in a format that GlyComb cannot accept, it will also result

in an error. Therefore, such communication requires proper handling of errors caused by various

factors. If such errors are not properly handled, for example, the programs on the user interface could

implicitly crash in the background without the researchers noticing while they are in the middle of

using GlyComb, and it could stop working as they intended. To prevent such problems, GlyComb’s

user interface was developed by applying functional programming techniques to force programmers to

properly handle errors in any sort of communication that might fail. For example, the following is a

program written in the TypeScript language that the user interface executes in the web browsers to

retrieve the number of glycopeptide entries currently published in GlyComb from the API.

Listing 2.7: Example program to get the number of published glycopeptide entries

from GlyComb’s API
const responseOpt = await fetchFromGlyCombApi<AccessionCountResponse>({

url: 'https://glycomb.glycosmos.org/api/accessions-count?datatype=Glycopeptide',
method: 'GET',
contentType: 'application/json',
authorizationRequired: false,

});

if (Option.isSome(responseOpt)) {
this.glycopeptideAccessionCount = responseOpt.value.contents;

8https://gitlab.glyco.info/glycosmos/glycombgroup/batch
9https://gitlab.glyco.info/glycosmos/glycombgroup/endpoint

44

https://gitlab.glyco.info/glycosmos/glycombgroup/batch
https://gitlab.glyco.info/glycosmos/glycombgroup/endpoint

Chapter 2. Methods

Figure 2.10: Conceptual diagram of the entire GlyComb system composed of multiple
Docker containers. The dashed arrows in the figure represent the flow of data between
each container and the web browser on the user’s computer. (a) The user interface
program (i), the custom component library (ii), and the utility software for extracting
data from spreadsheets derived from PMI-Byonic (iii) in the above list of components,
are combined by Webpack with other JavaScript libraries into a bundle file that runs in
the web browser. This artifact will be hosted as a static file on the container running the
Nginx web server. (b) The container running the public APIs written in Java receives all
requests directly from the user’s web browser and returns responses to it by interacting
with the private APIs. (c) The private APIs are also written in Java and retrieve data
from the relational database or insert data into it in response to requests from the public
API container and return the results. In this way, GlyComb keeps the data in the
database container secure by allowing only private APIs that are not exposed to users
to interact with the database container. (d) The database container running MariaDB,
which is an RDBMS, stores raw submission data submitted by users. (e) The container
running the OpenLink Virtuoso server, which is a triplestore, accumulates RDF-ized
submission data that is normalized and generated during batch processing. (f) The
batch processes that validates user submission data, RDF-izes it, and stores it in the
triplestore using SPARQList are also written in Java. These processes are scheduled to
run automatically every several hours in a temporary container that is short-lived and

immediately discarded after the batch execution.

45

Chapter 2. Methods

}

In this program, responseOpt is a variable having Option data type that expresses the possibility

of error in functional programming. The fetchFromGlyCombApi function is a generic function that is

frequently used throughout the GlyComb user interface to communicate with the APIs. It returns a

Some value if the data was successfully fetched from the API, and returns a None value if the fetch

failed. Thanks to this function, GlyComb’s user interface was written without the need for exhaustive

checking for invalid “null” values or cumbersome exception handling, and with a minimum effort to

perform the necessary error handling. Here, this result value is directly assigned to the responseOpt

variable.

In addition, if the fetch of data from the API fails, the fetchFromGlyCombApi function will auto-

matically display an error message on the user interface as shown in Figure 2.11 to clearly indicate

to the user that the communication has failed before returning a None value. Therefore, this user

interface program eliminates the need to explicitly write a process to display error messages for each

communication between the server and the web browser. This prevents, in principle, the issue of

forgetting to display error messages.

Figure 2.11: Example of a pop-up on the GlyComb user interface displaying an error
message. fetchFromGlyCombApi function automatically displays such error messages
when communication fails or an error is returned from the API. Thus, there is no implicit

program crash without the user’s awareness.

It is expected here to get the number of glycopeptide entries from the API on the server in JSON

(JavaScript Object Notation) (Bray, 2014) format as shown below.

Listing 2.8: Example response from the API showing the number of published gly-

copeptide entries
{

"errcode": "",
"contents": 99228,
"logs": {

"url": "http://glycomb-api:4567/api/accessions-count"
}

}

That is, the number of published glycopeptide entries returned by the server will be stored in the

contents field in the response. Additionally, the errcode field is set to an error code when the server

46

Chapter 2. Methods

determines that the request from the web browser is invalid. In that case, the contents field would

be empty and would not contain the data requested by the web browser. The fetchFromGlyCombApi

function used by the GlyComb user interface is designed to automatically check for error codes in the

errcode field. If it does, it automatically displays the appropriate error message as in Figure 2.11 and

returns a None value as the result.

As a result, the responseOpt variable will take one of two states, “may contain the JSON-formatted

data described above, or may not”. Although the web browser does send a request to the API on the

server to obtain the number of published glycopeptide entries, since the responseOpt variable is of

type Option, if a programmer mistakenly tries to treat it as a number, then the type checker will report

a type error. This allows the programmer to fix the mistake without actually running the program on

the web browser. This avoids the problem that programmers release the programs without realizing

their mistakes. To verify whether a value actually exists in the responseOpt variable, and to retrieve

the value if it does, we can use the Option.isSome function provided by the fp-ts library, as shown

in the program above, to check the status of the responseOpt variable.

2.3.3 Batch processing and validation of submitted data

GlyComb accepts GlyTouCan ID and PMI-Byonic-like own monosaccharide composition notation as

glycan structure notation in glycopeptide and glycoprotein entries, thus it is necessary to normalize the

submitted entries in order to check whether they have already been registered by other users previously.

However, such verification and validation could be a time consuming process. Therefore, GlyComb

adopts a data validation system based on batch processing in order to validate submitted data without

sacrificing the ease of use for the users. The system uses two separate databases for different purposes:

a relational database (MariaDB) and a triplestore (OpenLink Virtuoso). First, any submission data

entered by users is initially stored in the MariaDB relational database via GlyComb’s public and

private APIs. During this data upload process, a brief data check is performed in which only the

format of the submitted data by users is verified. At this point, all user submitted data is not yet

publicly accessible on GlyComb. The users can publish their submitted data to the public only after

the formal data validation process is completed. The formal data validation process runs automatically

on the server as a batch process, a periodically executed process. All newly registered submissions

to the relational database are validated by this process, and the submission data are normalized by

converting any glycan structure data in them to GlyTouCan IDs or by retrieving the actual amino

47

Chapter 2. Methods

acid sequence data of the glycoprotein entry specified with the UniProt ID from UniProt’s API. Figure

2.12 (a) illustrates this series of processes.

Only submitted data that has passed this validation process with no errors found can be made

publicly available later. The user can make the passed entries publicly available on the “User Profile”

screen of on GlyComb. The published entries are later automatically converted to RDF data (RDF-

ization) by another batch process and stored in the triplestore, OpenLink Virtuoso. Figure 2.12 (b)

illustrates the flow of this process.

2.3.4 RDF-ization of data registered in GlyComb

In order to facilitate integration with various existing resources, including GlyTouCan, GlyComb

is built on top of Semantic Web technologies. To convert the glycopeptide and glycoprotein entries

submitted by researchers into RDF data that can be stored in a triplestore, we used the glycoconjugate

ontology (GlycoCoO), an ontology for standardizing glycoconjugate data as RDF data. This ontology

is an extension of GlycoRDF for standardizing glycomics information. Currently, GlyComb only stores

glycopeptide and glycoprotein entries, whereas GlycoCoO is an ontology that can represent various

glycoconjugate data including glycolipids. Therefore, we converted each entry of GlyComb into RDF

data by adopting only a part of the definition of this GlycoCoO ontology. Figure 2.13 shows the RDF

schema for representing a peptide sequence with only one glycosylated peptide residue as RDF data

using GlycoCoO. In RDF, all data is encoded into a triple of subject, predicate, and object, which

form a directed graph with the subject and object as nodes and the predicate as edges.

The RDF data stored in the triplestore can be freely retrieved, even by users not registered

with GlyComb, by issuing a SPARQL query on GlyComb’s SPARQL endpoint (https://glycomb.

glycosmos.org/sparql). Users can also submit SPARQL queries to the SPARQL endpoint program-

matically. This allows GlyComb to provide flexible data retrieval functionalities along with data from

existing glycoscience research resources such as GlyTouCan and GlyCosmos. Figure 2.14 shows an

example SPARQL query for this SPARQL endpoint and its search results.

48

https://glycomb.glycosmos.org/sparql
https://glycomb.glycosmos.org/sparql

Chapter 2. Methods

Figure 2.12: The flow of validation and RDF-ization of submitted data through batch
processing. (a) First, user submission data is stored in the relational database, MariaDB,
via the public and private APIs, as represented by the solid black line. Then, a Docker
container for validation of the submission data will be launched by a periodically executed
batch process. This container retrieves the newly registered submission data from the
relational database via the private APIs as shown in (i) and (ii) and performs the data
validation and normalization. Subsequently, the status of this process (success or failure)
and the normalized data will be stored again in the relational database as shown in (iii)
and (iv). (b) For RDF-ization process, a temporary working Docker container will be
launched by a batch process in the same way. Published submission data is retrieved from
the relational database via the private APIs as shown in (i) and (ii), and the RDFization
process is performed. The resulting RDF data will be stored in the triple store, OpenLink

Virtuoso as shown in (iii).

49

Chapter 2. Methods

F
ig

ur
e

2.
13

:
R

D
F

sc
he

m
a

of
G

ly
C

om
b

re
pr

es
en

tin
g

a
gl

yc
op

ep
tid

e
en

tr
y

w
ith

th
e

gl
yc

an
st

ru
ct

ur
e

“H
ex

N
A

c(
4)

H
ex

(7
)N

eu
A

c(
1)

”
bi

nd
in

g
to

th
e

as
pa

ra
gi

ne
re

sid
ue

at
re

sid
ue

nu
m

be
r

8
of

th
e

pe
pt

id
e

se
qu

en
ce

“D
IL

T
I-

LA
N

T
T

LQ
IT

C
R

”.
T

hi
s

R
D

F
da

ta
is

pa
rt

of
a

gl
yc

op
ep

tid
e

en
tr

y
w

ith
G

ly
C

om
b

ID
G

C
00

17
EF

,
w

hi
ch

wa
s

de
riv

ed
fro

m
m

ou
se

va
sc

ul
ar

en
do

th
el

ia
l

gr
ow

th
fa

ct
or

re
ce

pt
or

2
(V

EG
FR

2)
(U

ni
Pr

ot
ID

:
P3

59
18

).
In

th
is

di
re

ct
ed

gr
ap

h,
ea

ch
no

de
re

pr
es

en
ts

a
su

bj
ec

t
or

an
ob

je
ct

,
an

d
a

pr
ed

ic
at

e
is

re
pr

es
en

te
d

be
tw

ee
n

th
e

su
bj

ec
t

an
d

th
e

ob
je

ct
as

an
ed

ge
in

th
e

su
bj

ec
t-

to
-o

bj
ec

t
di

re
ct

io
n.

A
ll

gl
yc

an
st

ru
ct

ur
e

in
fo

rm
at

io
n

en
te

re
d

by
re

se
ar

ch
er

s
is

no
rm

al
iz

ed
to

th
e

co
rr

es
po

nd
in

g
G

ly
To

uC
an

ID
s

an
d

co
nv

er
te

d
to

R
D

F
da

ta
th

ro
ug

h
ba

tc
h

pr
oc

es
sin

g
on

th
e

se
rv

er
.

O
ra

ng
e

bo
xe

s
re

pr
es

en
t

cl
as

se
s

in
R

D
F,

an
d

bl
ue

bo
xe

s
re

pr
es

en
t

lit
er

al
va

lu
es

in
R

D
F.

50

https://www.uniprot.org/uniprotkb/P35918/entry

Chapter 2. Methods

Figure 2.14: Example of a SPARQL query against the GlyComb SPARQL endpoint
and its search results. (a) A screenshot of GlyComb’s SPARQL endpoint (https:
//glycomb.glycosmos.org/sparql) as of December 30, 2023. Here, a SPARQL query
is entered in the text area to retrieve the list of GlyComb entry IDs, containing the
GlyTouCan ID G02281EI (https://glytoucan.org/Structures/Glycans/G02281EI)
corresponding to the monosaccharide composition “Hex(4)HexNAc(5)Fuc(1)” as the gly-
cosylation data. (b) By clicking the “Execute Query” button, the search against the
triplestore is executed and a list of GlyComb entries that match the condition will be

retrieved.

51

https://glycomb.glycosmos.org/sparql
https://glycomb.glycosmos.org/sparql
https://glytoucan.org/Structures/Glycans/G02281EI

Chapter 2. Methods

2.4 System design to enable further collaboration between UniCarb-

DR and GlycoPOST

2.4.1 Re-designing the UniCarb-DR system to improve its reliability

First of all, it was necessary to recover the functionality and improve the stability of UniCarb-DR,

whose search and data submission functions were broken. To accomplish this, I first investigated the

entire source code of UniCarb-DR. As a result, it was found that the UniCarb-DR program at that time

was scattered with ad hoc checks for the invalid “null” values everywhere, and it was also difficult to

distinguish the parts that potentially caused errors from those that did not. Therefore, I attempted to

reimplement UniCarb-DR aiming to obtain the benefits of functional programming in the development

of UniCarb-DR as well. I rewrote all of UniCarb-DR’s server-side programs, which were written in

the older version of the Java programming language, entirely in the Scala programming language.

Eventually, all previously broken UniCarb-DR functionality was restored, dramatically improving the

stability and maintainability of UniCarb-DR.

Here I will briefly introduce some of the techniques that contributed to the dramatic improvement

in maintainability of UniCarb-DR. First, the primary cause of the error-prone behavior and the need

for ad hoc error checking everywhere in the previous UniCarb-DR was due to the data stored in the

relational database. Figure 2.15 shows the actual data of the table that stores column information

used in HPLC experiments in UniCarb-DR. The most notable data in this table is the data stored in

the rightmost column named type_chromatography. This attribute is supposed to be filled in with

the type of chromatography experiment performed, however, since it is not mandatory, this attribute

is left empty in some rows. However, besides those rows, there are also rows where this attribute

is marked as [NULL]. Both of these mean that no value was entered for the type_chromatography

attribute, but one means “an empty valid string is stored,” while the other expresses the absence of

data by storing a “null” value. This means that when these values are retrieved from the database by

a program, they must be checked twice: once for being an empty string and once for being an invalid

“null” value. The reason why this is troublesome is that programmers must manually map the myriad

of tables and their attributes in the database to the variables in the UniCarb-DR server-side program,

making it very difficult to write a program that does not make mistakes about which attributes need

to be checked for a “null” value and which others need to be checked for an empty string. Even worse,

updating the definitions of tables in the database still requires the programmer to manually modify

the server-side program, however, if this modification contains leaks, it can cause unintended program

52

Chapter 2. Methods

crashes, which are generally quite time-consuming to identify the cause.

Figure 2.15: Actual table that stores column information used in HPLC experiments in
the UniCarb-DR database. Each row in this table is a record representing an entry in one
column used in the experiment, and each column in the table represents its attributes.
Due to the mixing of empty strings and “null” values in the table to indicate the absence
of data, the error checking of the previous UniCarb-DR server-side program had resulted
in an error-prone. This screenshot was generated using DBeaver 23.3.1 Community

edition.

To fundamentally solve these inefficient issues, I adopted Slick10 as a library for accessing rela-

tional databases from the Scala programming language. Slick is a functional programming-friendly

library, and its feature called Slick code generator11 can exhaustively collect the names and type

information of the myriad tables and their attributes in a database, and automatically generate appro-

priate data type definitions for programs written in the Scala language to access the database based

on that information. Using this feature, when an attribute in a table that may contain a “null” value

is retrieved from the database using the Scala language, its data type will automatically be set to the

Option type, allowing efficient development while benefiting from static type checking by the type

checker. For example, since the type_chromatography attribute in the above table contains some

“null” values, if this attribute is retrieved using Slick, the data type of this data is automatically
10https://scala-slick.org
11https://scala-slick.org/doc/3.2.0/code-generation.html

53

https://scala-slick.org
https://scala-slick.org/doc/3.2.0/code-generation.html

Chapter 2. Methods

considered as the Option[String] type in the Scala language. For Option[String] type values, it is

easy to convert the value to an empty string if it is a None value and to retrieve the actual string if it

is a Some value. This eliminates the problem of having to double-check for errors when the result is a

“null” value or an empty string. Furthermore, if the definitions of tables or attributes in the database

have been changed, by simply re-running Slick code generator, the latest data type information in

the database can be retrieved and reflected in the code base of the Scala program. This fundamentally

avoids the problem of mismatch between server-side source code and table definitions in the database.

When a programmer attempts to retrieve a string in the database that may contain a “null” value

using Slick, a value of data type DBIOAction[Option[String], NoStream, Effect.Read] will be

generated. This means that Slick will now access the database and read the data (Effect.Read),

resulting in a value of type Option[String]. In fact, the map function is defined for this data type

as well as the list and Option types. By using this function, it is possible to write a conversion

operation for a value of type Option[String] obtained from a database while preserving the context

of “this value is obtained by reading from a database” as the data type information. This allows the

programmer to interpret the contextual information that the value was generated depending on some

read operation from the database by looking at the data type of the value when reading this source

code. Thus, by applying functional programming techniques, programmers can easily read detailed

information about the program’s behavior without actually executing the it. As a result, it is expected

that the future development of UniCarb-DR will be even more productive than before and the system

can be used as a more reliable system.

2.4.2 Design of unified data submission flow between UniCarb-DR and Glyco-
POST

There was an issue between UniCarb-DR and GlycoPOST, as submitting data separately would have

resulted in inconsistent cross-referencing between them. Additionally, in fact, the size of GlycoWork-

bench files submitted to UniCarb-DR greatly varies from file to file depending on the amount of stored

data. Owing to this fact, when researchers try to register large files to UniCarb-DR, the upload process

sometimes fails due to timeouts. To solve these issues, it is necessary to establish a unified new data

submission flow for the two data repositories. Fortunately, GlycoPOST implements the public APIs

to programmatically retrieve various information about a submission that has already been published.

With the public APIs, the data contained in the submission can also be downloaded programmatically.

Therefore, if a submission published on GlycoPOST contains GlycoWorkbench files that UniCarb-DR

54

Chapter 2. Methods

can interpret, a program that automatically downloads the files and registers them to UniCarb-DR

can be periodically executed on the on-premise server every day as a batch process. By running

this program, the identification results of mass spectrometry experiments included in newly published

submissions on GlycoPOST can be automatically registered to UniCarb-DR and their contents can

be visualized with it. That is, it is possible to achieve unification of data submission flows to both

data repositories by allowing researchers to submit all data, including GlycoWorkbench files, to Gly-

coPOST instead of UniCarb-DR. The beauty of this mechanism is that all of the previous problems

of UniCarb-DR can be avoided automatically. First, since GlycoPOST’s public APIs only search and

retrieve submissions that have already been published on GlycoPOST, it is no longer necessary to im-

plement a new function to set the data publication date in UniCarb-DR. Furthermore, this mechanism

also eliminates concerns about registration timeouts with UniCarb-DR, since UniCarb-DR downloads

data from GlycoPOST rather than accepting file uploads. Consequently, we decided to withdraw the

data submission form of UniCarb-DR. Figure 2.16 shows a conceptual diagram of the unified new data

submission flow for both data repositories.

2.4.3 Additional MIRAGE-LC guideline support for two data repositories

The UniCarb-DR data submission form allows users to enter not only information regarding MIRAGE

sample preparation guidelines and mass spectrometric analysis guidelines, but also non-MIRAGE-

compliant metadata regarding HPLC experiments associated with mass spectrometry experiments.

This is due to the fact that UniCarb-DR was developed at such time that the MIRAGE liquid chro-

matography guidelines had not yet been proposed. Therefore, if the UniCarb-DR submission form is

removed, HPLC-related information that could previously be registered in UniCarb-DR will no longer

be able to be registered. To solve this problem, we have updated GlycoPOST so that the metadata for

liquid chromatography experiment guidelines, which were officially published in MIRAGE, can now

be entered into GlycoPOST. This allows metadata that could previously be entered in UniCarb-DR

to be entered in GlycoPOST, thus unifying the data submission flow without reducing the amount of

metadata.

2.4.4 Visualization of GlycoWorkbench files contained in projects in embargo sub-
mitted to GlycoPOST

Furthermore, in order to visualize the identification results of MS/MS experiments in glycomics during

the peer review period, we have implemented a new function called MiniCarb-Viewer in GlycoPOST,

55

Chapter 2. Methods

Figure 2.16: Conceptual diagram showing the overall picture of the unified new submis-
sion flow to the two data repositories. As indicated by the solid black line, all submissions
from researchers, including GlycoWorkbench files, will now be submitted to GlycoPOST
rather than UniCarb-DR, and these submissions will be stored in its relational database
via GlycoPOST’s public API. Then, after the embargo period, the data in the submis-
sions can be retrieved from outside using GlycoPOST’s public APIs. As a batch process,
the server-side program of UniCarb-DR can query the public APIs of GlycoPOST every
other day to fetch information about newly published submissions from the database
of GlycoPOST, as shown in (a) and (b). At that time, if the newly published submis-
sion contains some GlycoWorkbench files, UniCarb-DR will store the contents in its own
relational database, as shown in (c). During the construction of such a workflow, the
GlycoPOST source code was modified to run within multiple Docker containers rather

than within the native environment.

56

Chapter 2. Methods

which enables the visualization of identification results in GlycoWorkbench files included in the sub-

missions that are not yet publicly available in GlycoPOST by extracting the visualization function

embedded in UniCarb-DR as a separate component. This enabled the reviewers to visually check

the identification results contained in unpublished submissions in GlycoPOST that are referenced

from papers in the peer review period. Figure 2.17 shows a conceptual diagram of the linkage be-

tween MiniCarb-Viewer and the GlycoPOST containers. Unlike UniCarb-DR, the data registered in

MiniCarb-Viewer are the contents of GlycoWorkbench files contained in private submissions during

the embargo period. Thus, the data stored in the MiniCarb-Viewer database needed to be reachable

only for users who are logged in to GlycoPOST. To achieve this, access to MiniCarb-Viewer can only

be done via the public API of GlycoPOST. One of the major potential problems is that the size of

GlycoWorkbench files varies widely from file to file, as mentioned earlier, causing timeout errors when

registering their contents to the MiniCarb-Viewer database. To overcome this obstacle, we focused on

the implementation of event-driven batch processing, which runs automatically and asynchronously

in the background for every data registration request. The logic of MiniCarb-Viewer running on the

server is built on top of Play Framework (Richard-Foy, 2014), a web application framework for the

Scala programming language, which is powered by Akka (Roestenburg, Williams, and Bakker, 2016),

a proven asynchronous processing engine. By utilizing the Akka engine, we successfully implemented

a event-driven batch process that fires with each registration request of a submission to GlycoPOST,

resulting in the registration of GlycoWorkbench file contents to MiniCarb-Viewer without generating

timeout errors. The registration process of the GlycoWorkbench file by this batch process is set to

retry up to 10 times taking into account that some errors may occur during the execution. The wait-

ing time between each attempt is doubled, from 5 minutes, to 10 minutes, to 20 minutes, and so on.

This reduces the probability of registration process failure due to short-term server failure without

consuming excessive server resources.

Moreover, with the implementation of gws2wurcs API (https://api.glycosmos.org/gws2wurcs)

as an API of the GlyCosmos portal, which can obtain GlyTouCan IDs from GWS format strings,

GlyTouCan IDs can now be obtained from the glycan structures in GWS format that are included

in GlycoWorkbench, and this function enables collaboration between these two data repositories and

GlyTouCan.

57

https://api.glycosmos.org/gws2wurcs

Chapter 2. Methods

Figure 2.17: Conceptual diagram showing the collaboration between GlycoPOST con-
tainers and MiniCarb-Viewer containers. When a submission request is sent to Glyco-
POST by a researcher, as shown in (i), GlycoPOST updates the status in the relational
database, as shown in (ii), and then returns the result of the request acceptance, as shown
in (iii) and (iv). In this process, when GlycoPOST receives the request, it will also asyn-
chronously send a registration request to MiniCarb-Viewer, as indicated by the red dotted
line (a), if the GlycoWorkbench files are included in the submission. MiniCarb-Viewer
then attempts to register the contents of those files to its relational database as indi-
cated by the solid red line (b). This process may take some time depending on the size of
the files. However, since this is an asynchronous process independent of the registration
request to GlycoPOST, GlycoPOST does not need to wait until it receives notification
from MiniCarb-Viewer that the registration is complete. Thus, it can return its response
to the researcher immediately. Compared to regular batch processes, event-driven batch
processing, which is fired by such a request, has the advantage of extremely short latency

until the process is started.

58

Chapter 3

Results

3.1 Development of a novel glycoconjugate data repository Gly-

Comb

3.1.1 Design of input data format for GlyComb

LC-MS/MS is now the primary method used by researchers around the world for glycoproteomics

experiments to determine which residues in peptide and protein amino acid sequences are attached by

which glycan structures (Thaysen-Andersen and Packer, 2014). Because monosaccharides generally

have multiple isomers (e.g., D-glucose, D-galactose, D-mannose, etc.), it is very difficult to assign a

specific isomer to each monosaccharide in a glycan for the molecular weight observed in an experiment.

Therefore, most of the results obtained from this mass spectrometry-based approach only contain the

monosaccharide composition that constitutes a glycan molecule, and not the fully-defined structure of

the glycan molecule (Lee et al., 2016). Figure 3.1 (a) shows a conceptual diagram of a glycopeptide

using the SNFG monosaccharide symbol notation. Also, Figure 3.1 (b) shows a conceptual diagram of

a glycopeptide in which the glycan structures attached to the peptide are represented by GlyTouCan

IDs.

In GlyComb, we adopted a tab-separated values (TSV) format in which the amino acid sequence

of a peptide, the residue numbers of glycan modifications, and the glycan structures are delimited

by tab characters as the input format for submitting glycopeptide entries. For glycoprotein entry

submissions, we adopted a similar TSV format, in which the UniProt ID for the protein, the attached

residue numbers, and the glycan structures are delimited by tab characters. If a attached residue

number is unknown, users can use the “?” character instead of the residue number. For the glycan

representation, we adopted a glycan composition notation similar to that used in PMI-Byonic as one

of the glycan structure notations. Moreover, to be able to accept ambiguous linkage information

59

Chapter 3. Results

Figure 3.1: Conceptual diagram of glycopeptides illustrated using SNFG monosac-
charide notation symbols. The “?” character assigned to each symbol indicates the
linkage information (number of backbone carbon atoms participating in the covalent
bond and anomeric configuration) of the monosaccharide molecule is unknown. Glyco-
proteomics experiments may result in multiple potential glycosylation possibilities for
the same amino acid residue on a peptide obtained by protease treatment of the protein
sequence with trypsin or other proteases. For each glycan structure represented symbol-
ically, only the monosaccharide composition information is provided instead of the exact
molecular structure using (a) PMI Byonic-like notation and (b) GlyTouCan IDs. In
GlyTouCan, each glycan structure assigned a GlyTouCan ID is described using WURCS
format, which can also express glycan composition information. Therefore, GlyTouCan

IDs can also be used to represent glycan composition information.

60

Chapter 3. Results

and accurate monosaccharide composition information, GlyTouCan IDs can be used to specify the

glycan structures. Thus currently, GlyComb accepts a peptide sequence or a UniProt ID and a set

of related glycosylation information - that is, the number of the glycosylated residue and the glycan

structure binding to it - as a valid GlyComb entry and assigns a unique GlyComb ID to it. Figure

3.2 (a) and (b) show examples of valid glycopeptide inputs to GlyComb, described using two different

glycan structure notations. As shown in Figure 3.2 (b), additional UniProt ID information can be

specified in the fourth column for glycopeptide entries to specify the source protein of the specified

peptide sequence. Figure 3.2 (c) shows an example of a glycoprotein entry in GlyComb. Unlike

glycopeptide entries, glycoprotein entries contain a UniProt ID in the first column. Since protein

sequence information corresponding to a UniProt ID is occasionally updated, changed, inactivated,

or deleted in UniProt, glycoprotein information submitted with a UniProt ID is subject to strict

validation by referring to the exact sequence information during the registration process in GlyComb.

3.1.2 Overview of the GlyComb user interface

In this section, an overview of GlyComb’s user interface is described, and the functions of each screen

are briefly summarized.

Welcome screen and user login process

Figure 3.3 (a) shows a screenshot of the GlyComb welcome screen. By using the public APIs running

on the server, the number of unique glycopeptide and glycoprotein entries registered in GlyComb is

displayed on the screen as statistical information. By entering a GlyComb ID, which is the accession

number of GlyComb, in the text field at the top right of the screen, users can jump to the detail

screen of the corresponding entry having that GlyComb ID. In order to log in to GlyComb, users first

must agree to our cookie policy by clicking the “Accept & Close” button on the pop-up window at the

bottom of this screen. This cookie policy pop-up will not appear again if the user agrees to it only

once. After that, users can log in to GlyComb by clicking the “Sign in with Google” button at the

top right of the screen and entering their Google account email address and password.

If the login process is successful, a green pop-up window appears at the top right of the screen, as

shown in Figure 3.3 (b), with a message indicating that the login is complete. However, if the login

process fails for some reason, a red pop-up window with an error message, as shown in Figure 3.3 (c),

will appear instead. GlyComb defines the following error codes as a way to indicate the reason for

61

Chapter 3. Results

Figure 3.2: (a) Example of glycopeptide input entry to GlyComb using PMI Byonic-
like composition notation of glycan structures, corresponding to the conceptual diagram
of the glycopeptide shown in Figure 3.1 (a). (b) Example of a glycopeptide input entry
to GlyComb representing a glycopeptide described using the GlyTouCan IDs shown in
Figure 3.1 (b). In the glycopeptide input, a UniProt ID can also be optionally specified in
the fourth column. Detailed information on the glycan structures corresponding to each
GlyTouCan ID is available at https://glytoucan.org. (c) Example of a glycoprotein

entry to enter into GlyComb described using GlyTouCan IDs.

62

https://glytoucan.org

Chapter 3. Results

Figure 3.3: Welcome screen and login process to GlyComb using Google account. (a) A
screenshot of the welcome screen as of December 31, 2023. Users can log in to GlyComb
with their Google account after accepting our cookie policy. (b) If the login process is
successful, a green pop-up window will appear on the top right of the screen, indicating
that the user has successfully logged in. (c) If an error occurs during the login process
for any reason, a red pop-up window containing a message indicating the reason for the

error appears instead.

63

Chapter 3. Results

Table 3.1: Error codes for errors that may occur during the login process. These error
codes are shared between the user interface and server-side logic, and appropriate error
messages will be displayed on the user interface when an error occurs on the server side.

Error code Reason
gcb-auth001 Failed to retrieve user information from Google servers.
gcb-auth002 Failed to save and update user information to the relational database.

login failure and displays appropriate error messages on the user interface when an error occurs on

the server (Table 3.1).

Registration screen

Figure 3.4 (a) through (d) are screenshots of the data registration screen of GlyComb. Researchers

need to submit glycopeptide or glycoprotein entries to GlyComb in TSV format as described in the

previous section. Entry data sent to GlyComb, either using the text area of the screen in Figure

3.4 (a) or by file upload, are first briefly checked for their format on the server, and the results are

displayed on the screen in Figure 3.4 (b). Entries with no problems are marked with a green “3”,

but if any errors or warnings occur, error or warning messages will appear in red or yellow, as shown

in Figure 3.4 (c). Similar to the login process described earlier, GlyComb defines a list of error and

warning codes that can occur in this quick input check process as Table 3.2.

If there are no errors in Figure 3.4 (b), then the registration of the entries to GlyComb is completed

by clicking the “Submit” button at the bottom of the screen as shown in Figure 3.4 (d). As mentioned

previously, these registered entries are not immediately published to the public on GlyComb, rather,

they need to undergo data validation in a batch process afterward.

User profile screen and submission details screen

The details of entries that a researcher previously registered to GlyComb will be listed on the user

profile screen. Figure 3.5 (a) is a screenshot of the user profile screen. The contents submitted by

the user previously are displayed at the bottom of the screen as a table for each glycoconjugate type.

By clicking on the submission number corresponding to each submission, the user can browse the

details of that submission (Figure 3.5 (b)). Submissions that have completed validation but are still

unpublished can be published to the public from this screen.

64

Chapter 3. Results

Table 3.2: Error and warning codes for errors that may occur during the entry regis-
tration process. These error codes are shared between the user interface and server-side
logic, and appropriate error messages will be displayed on the user interface when an
error occurs on the server side. Note that the error code “gcb-input-validationE003” has

been omitted here because it is already obsoleted.

Error code Reason

gcb-input-validationE001 An error code indicating that the amino acid residue number bound
to a glycan is out of the range of the specified amino acid sequence.

gcb-input-validationE002 An error code indicating that the number of columns in a line of the
TSV file is too small.

gcb-input-validationE004 An error code indicating that a non-existent GlyTouCan ID was
found in the input entry.

gcb-input-validationE005 An error code indicating that the amino acid residue number bound
to a glycan is invalid.

gcb-input-validationE006 An error code indicating that an internal SPARQList API call failed
inside the GlyComb server.

gcb-input-validationE007 An error code indicating that the GlyTouCan ID corresponding to
the input monosaccharide composition data could not be found.

gcb-input-validationE008 An error code indicating that an internal GlyCosmos API call failed
inside the GlyComb server.

gcb-input-validationW001 A warning code indicating that a duplicate line was found in the
input entry.

65

Chapter 3. Results

F
ig

ur
e

3.
4:

R
eg

ist
ra

tio
n

sc
re

en
fo

r
gl

yc
op

ep
tid

e
an

d
gl

yc
op

ro
te

in
en

tr
ie

s
to

G
ly

C
om

b
as

of
D

ec
em

be
r

31
,2

02
3.

(a
)

T
he

re
se

ar
ch

er
sm

us
tfi

rs
ts

el
ec

tw
he

th
er

to
re

gi
st

er
gl

yc
op

ep
tid

e
or

gl
yc

op
ro

te
in

en
tr

ie
sb

y
cl

ick
in

g
ei

th
er

th
e

“G
ly

co
pe

pt
id

es
”

ta
b

or
th

e
“G

ly
co

pr
ot

ei
ns

”
ta

b
at

th
e

to
p

of
th

e
sc

re
en

.
En

tr
y

da
ta

in
T

SV
fo

rm
at

ca
n

th
en

be
up

lo
ad

ed
to

G
ly

C
om

b
by

co
py

in
g

an
d

pa
st

in
g

it
in

to
th

e
te

xt
ar

ea
,o

r
by

se
le

ct
in

g
a

fil
e

to
up

lo
ad

fro
m

th
e

“I
np

ut
fro

m
fil

e”
m

en
u

on
th

e
le

ft
ha

nd
sid

e
of

th
e

sc
re

en
an

d
th

en
cl

ick
in

g
th

e
“S

ub
m

it”
bu

tt
on

at
th

e
bo

tt
om

of
th

e
sc

re
en

.
(b

)
T

he
up

lo
ad

ed
en

tr
ie

s
un

de
rg

o
a

qu
ick

fo
rm

at
ch

ec
k

on
th

e
se

rv
er

,a
nd

th
en

a
co

nfi
rm

at
io

n
sc

re
en

w
ill

be
di

sp
la

ye
d.

If
no

pr
ob

le
m

s
we

re
fo

un
d

in
th

e
en

te
re

d
en

tr
y,

a
gr

ee
n

“3
”

m
ar

k
w

ill
ap

pe
ar

on
th

e
le

ft
ha

nd
sid

e
of

th
e

sc
re

en
.

(c
)

If
an

y
er

ro
rs

or
wa

rn
in

gs
oc

cu
r

w
hi

le
ch

ec
ki

ng
th

e
en

te
re

d
en

tr
y,

a
m

es
sa

ge
w

ill
be

di
sp

la
ye

d
in

re
d

or
ye

llo
w

in
di

ca
tin

g
th

e
re

as
on

fo
r

th
e

er
ro

r
or

wa
rn

in
g.

(d
)

If
no

pr
ob

le
m

s
ar

e
fo

un
d

w
ith

th
e

up
lo

ad
ed

en
tr

ie
s,

th
e

re
gi

st
ra

tio
n

pr
oc

es
s

w
ill

be
co

m
pl

et
ed

by
cl

ick
in

g
th

e
“S

ub
m

it”
bu

tt
on

at
th

e
bo

tt
om

of
th

e
sc

re
en

.

66

Chapter 3. Results

Figure 3.5: User profile screen and submission details screen as of December 31, 2023.
(a) At the bottom of the user profile screen, a table listing the user’s previous submissions
is displayed. The status of each submission is as follows: “pending”, a submission that has
not yet passed the validation in batch processing; “unpublished”, a submission that has
been successfully validated; “published”, a submission that has already been published to
the public. (b) The submission details screen allows the researcher to review the content
and, if the submission is still unpublished after the validation, to publish it to the public.

67

Chapter 3. Results

Entry list screen and entry details screen

Entries that have been registered in GlyComb, validated by batch processing, and published to the

public by the researcher are freely accessible to users who have not registered as users with GlyComb.

GlyComb displays the list of published glycopeptide entries and the list of published glycoprotein

entries separately. Figure 3.6 is the list screen and the individual entry detail screen for published

glycopeptide entries, and Figure 3.7 is those for published glycoprotein entries.

Search screen

As of December 2023, GlyComb only supports the exact match search for published entries. Figure

3.8 shows an example of the use of this search function. By entering entry data in the TSV format in

the text area shown in Figure 3.8 (a) and clicking the “Search” button at the bottom of the screen,

the corresponding entry detail screen will be displayed as shown in Figure 3.8 (b) if the entered entry

is already registered in GlyComb. In the next release of GlyComb, we plan to greatly improve this

functionality. With this update, it will be possible, for example, to search only for glycopeptide entries

with a specific amino acid sequence or glycoprotein entries bound to a specific glycan structure.

PMI Byonic-derived summary spreadsheet converter screen

In order to facilitate the preparation of TSV files that GlyComb can interpret, GlyComb provides a

function that allows researchers to extract glycopeptide and glycoprotein entries for GlyComb directly

from the analysis results of glycoproteomics experiments exported from PMI-Byonic. Figure 3.9 shows

an example of the use of this function. Since PMI-Byonic outputs the analysis results as a spreadsheet

file compatible with MS Excel, it is possible to read this file on this screen to extract the entry data

as shown in Figure 3.9 (b).

Help screen

A help screen is also provided that explains the use of GlyComb and the TSV format for entry

submission in detail. Figure 3.10 is a screenshot of the help screen. In addition, I have also prepared

a video that briefly explains the process of submitting entries to GlyComb and how to publish the

submission, which is available on the GlyCosmos channel on YouTube (https://www.youtube.com/

watch?v=-1-MUYW_wtk). This video is also embedded in the help screen.

68

https://www.youtube.com/watch?v=-1-MUYW_wtk
https://www.youtube.com/watch?v=-1-MUYW_wtk

Chapter 3. Results

Figure 3.6: The list screen and the individual entry detail screen for published gly-
copeptide entries as of December 31, 2023. (a) The list screen of published glycopeptide
entries. (b) In the detail screen of each entry, which glycan structure is bound to which
residue of the amino acid sequence is displayed in a table format. Residues in the amino
acid sequence bound to the glycans are highlighted in green. In addition, since all gly-
cosylation data are normalized to a format using GlyTouCan IDs during the validation
process, all glycan structures displayed here are assigned GlyTouCan IDs. At the bottom

of this screen, the UniProt IDs associated with this entry are listed.

69

Chapter 3. Results

Figure 3.7: The list screen and the individual entry detail screen for published glyco-
protein entries as of December 31, 2023. (a) The list screen of published glycoprotein
entries. (b) In the detail screen of each entry, the amino acid sequence corresponding
to the input UniProt ID and a set of glycosylation information are displayed. Since the
amino acid sequence corresponding to a UniProt ID may change occasionally, GlyComb
obtains the sequence corresponding to the input UniProt ID and stores it in the database
during the validation and normalization processes performed in batch processing. This
fixes the amino acid sequence data corresponding to the glycoprotein entry, thus the

amino acid sequence displayed on this screen will never change.

70

Chapter 3. Results

Figure 3.8: Exact match search screen for entries registered in GlyComb as of December
31, 2023. (a) By entering entry data in TSV format in the text area and clicking the
“Search” button at the bottom of the screen, researchers can execute an exact match
search. (b) If the entered entry has already been registered and published in GlyComb,

the detail screen for that entry will be displayed.

71

Chapter 3. Results

Figure 3.9: Example usage of PMI Byonic-derived summary spreadsheet converter.
(a) As described in detail later, researchers select the spreadsheet file from which they
intend to extract entry data and specify the range from which to read the data on this
screen. (b) The extracted entry data is displayed in the text area. Researchers can also
save the extraction results as a plain text file by clicking the button displayed in this

text area.
72

Chapter 3. Results

Figure 3.10: Help screen of GlyComb as of December 31, 2023. It includes detailed
instructions on how to use GlyComb, such as how to log in to GlyComb and how to
submit entries, etc. It also explains in detail the format of entries to be submitted to

GlyComb.

73

Chapter 3. Results

3.1.3 Workflow for submitting and publishing data to GlyComb

GlyComb is currently available on the Internet, and researchers can submit their glycopeptide and

glycoprotein entries in the format described in the previous section at https://glycomb.glycosmos.

org/registration after user login with their own Google account. If they are not logged in, they can

only browse the list of entries that have already been published. In addition, in order to accept input

from researchers who do not have a Google account, we plan to add login methods other than Google

accounts, such as identifiers issued by the Open Researcher and Contributor ID (ORCID) (Haak et al.,

2012).

GlyComb provides two ways for researchers to submit their input entries: copy and paste input

from the clipboard using the text area on the screen (Figure 3.11 (a)) or by file upload of TSV or MS

Excel files (Figure 3.11 (b)). Multiple entries can be submitted at once by consecutively specifying

them in the same file or text area. Blank lines can be included between the entries. Since GlyComb

assigns different GlyComb IDs to different peptide sequences or UniProt IDs, GlyComb automatically

distinguishes different peptide sequences and UniProt ID when multiple input entries are submitted

at once. As shown in Figure 3.11 (c), a confirmation screen is displayed when submitting input data,

allowing researchers to confirm their submission to GlyComb after their submission.

When input entries are submitted to GlyComb, researchers will first receive submission numbers

for each input entry (Figure 3.11 (d)). These submission numbers can be downloaded and saved as

a text file. Instead of immediately issuing a GlyComb ID for each registered entry, GlyComb adopts

a batch validation system whereby input entries are validated together later during batch processing

before accession numbers are issued. Furthermore, glycopeptide and glycoprotein entries assigned

GlyComb IDs are not automatically opened to the public, and each GlyComb entry with a GlyComb

ID will not be opened to the public unless the researcher who registered the entry explicitly follows

the publication procedure for each entry using the submission number issued when the registration

was completed. Each entry can be made public from the user profile screen, which can be accessed

via the URL https://glycomb.glycosmos.org/user_profile after logging in to GlyComb. Figure

3.11 (e) shows the form for making each entry public. By clicking on the “Open to the public” button

on the screen, an input form for entering the submission number corresponding to the entry the user

wishes to make public will be displayed. By entering the submission numbers on each line in this text

area and clicking on the “I understand and wish to proceed” button, the GlyComb entry publication

procedure will be completed. If other researchers have already registered the exact same glycopeptide

74

https://glycomb.glycosmos.org/registration
https://glycomb.glycosmos.org/registration
https://glycomb.glycosmos.org/user_profile

Chapter 3. Results

or glycoprotein entries in GlyComb, each entry will be assigned the same GlyComb ID. It is of course

possible for a researcher to publish his/her own entry, which is one of those entries, even if other

researchers have not published them. GlyComb guarantees that entries assigned a GlyComb ID will

not have their content changed or deleted at all in the future. This means that even if researchers

notice a mistake in an entry once they have registered it, they will not be able to update its content.

Therefore, if there is an entry in GlyComb that contains any errors, it must be re-registered with the

corrected data as a new entry in GlyComb. In fact, we assume that registering data in GlyComb is

only the initial phase of the accumulation of glycoconjugate information. As a next phase, we plan to

curate and annotate the deposited data and link it to existing knowledge in knowledge bases such as

GlyCosmos. There, it is expected that only accurate data, or data with evidence, will be incorporated.

Consequently, incorrect data will be left as unreferenced information in the GlyComb repository.

3.1.4 Automatic extraction of glycopeptide and glycoprotein entries from sum-
mary worksheets generated by PMI-Byonic

In order to assist users in uploading their glycoproteomics data into GlyComb, we decided to pro-

vide utility software to convert glycopeptide and glycoprotein identification results generated from

glycoproteomics experimental analysis software tools commonly used by glycoproteomics researchers

directly into a set of input entries for GlyComb. As a first step, we have implemented and embed-

ded into the GlyComb system a conversion software to extract input entries for GlyComb from the

summary spreadsheet file generated from PMI-Byonic. This software is now available at https://

glycomb.glycosmos.org/byonic-summary-worksheet-converter and can be used in web browsers.

PMI-Byonic performs in silico variable modification searches of protein sequences against reference

databases to identify glycopeptide sequences, and outputs sequence information with sufficient peptide

fragment ion evidence as a peptide-spectrum match (PSM) into the summary spreadsheet (Bern, Kil,

and Becker, 2012; Bagdonaite et al., 2022). Figure 3.12 shows the workflow of our conversion software.

Figure 3.12 (a) shows an example of a summary worksheet generated by PMI-Byonic. This data was

prepared by partially modifying the contents of a Byonic summary spreadsheet contained in one of

the datasets published in the PRIDE Data Repository as PXD012629 (https://www.ebi.ac.uk/

pride/archive/projects/PXD012629). Users can first select which entry to generate, glycopeptide

entry or glycoprotein entry, in our conversion software. In order to generate glycopeptide entries for

GlyComb, the peptide sequence information contained in column C, the attached glycan structure

information contained in column D, and the type of modification information contained in column

75

https://glycomb.glycosmos.org/byonic-summary-worksheet-converter
https://glycomb.glycosmos.org/byonic-summary-worksheet-converter
https://www.ebi.ac.uk/pride/archive/projects/PXD012629
https://www.ebi.ac.uk/pride/archive/projects/PXD012629

Chapter 3. Results

Figure 3.11: Workflow for registering and making glycopeptide entries publicly avail-
able in GlyComb. First, researchers access the entry registration screen (https://
glycomb.glycosmos.org/registration) after logging into GlyComb with their Google
account. They can either (a) copy and paste the entries they want to register from the
clipboard into the text area on the screen, or (b) select an MS Excel file or TSV file
to upload. When uploading a file, they can choose the worksheet to be read or select
the columns to be read. (c) A confirmation screen to verify that the submission content
is correct will be displayed. (d) GlyComb displays a submission number instead of the
GlyComb ID, which is the accession number, when the submission of an input entry is
completed. By using these submission numbers, researchers can later make their regis-
tered entries open to the public. (e) A confirmation screen to make each registered entry
available to the public (https://glycomb.glycosmos.org/user_profile). Through
batch processing on the GlyComb server, they are assigned unique GlyComb IDs within
a few hours after the input entries are submitted and each entry is ready to be published.
By entering the submission numbers generated when the glycopeptide or glycoprotein
entries were submitted, one per line, and clicking the button at the bottom of the pop-up
window, researchers can make multiple GlyComb entries they have submitted open to

the public at once.

76

https://glycomb.glycosmos.org/registration
https://glycomb.glycosmos.org/registration
https://glycomb.glycosmos.org/user_profile

Chapter 3. Results

E in this worksheet are required. On the other hand, to generate a glycoprotein entry, the peptide

start residue number in the amino acid sequence of the protein in column L and the protein name

containing a UniProt ID in column S are additionally required.

The conversion software expects the strings contained in each column to follow the grammars,

written in the extended Backus-Naur form (EBNF) (McCracken and Reilly, 2003), which is commonly

used to define the grammar of programming languages. Furthermore, the parser program for the input

summary spreadsheet was written in the Scala language using a parser combinator library1 so that it

could be written with a similar appearance to the grammar written using EBNF, and then converted

to JavaScript using the Scala.js compiler so that it can run in web browsers. In the definition of a

grammar using EBNF, the pattern that appears on the left hand side of the ::= symbol is the pattern

that expands to the pattern on its right hand side. The pattern on the right-hand side contains

references to other patterns and string literals surrounded by double quotation characters such as

"Hex", and consequently it is possible to determine whether the root pattern matches the entire input

string recursively. In addition, { ptn }∗ is used to represent a pattern that matches zero or more

repeats of ptn, { ptn }+ is used to represent a pattern that matches one or more repeats of ptn,

and [ptn] is used to represent a pattern that matches zero or only one match of ptn. Furthermore,

ptn1 | ptn2 represents a pattern that matches either ptn1 or ptn2. Here, the following six patterns are

assumed to have already been defined as primitives for simplicity.

• uppercaseLetter : A pattern that matches any single uppercase alphabetic character from "A"

to "Z".

• lowercaseLetter : A pattern that matches any single lowercase alphabetic character from "a" to

"z".

• digit : A pattern that matches any single character from "0" to "9".

• anyChar : A pattern that matches any single character.

• integer : A pattern that matches any integer, such as "12".

• realNumber : A pattern that matches a signed real number, such as "+287.139".

The peptide sequence string with the mass of the modifications such as "L.HQDIDS[+730.264][+

287.139]T[+730.264][+287.139]R.G" is expected to match the peptide pattern defined as follows.
1https://github.com/scala/scala-parser-combinators

77

https://github.com/scala/scala-parser-combinators

Chapter 3. Results

Note that the "." characters at both ends of the string represent cleavages in the peptide sequence

by proteases.

peptide ::= [anyChar "." ["[" score "]"]] { aaWithScore }+ ["." anyChar]

aaWithScore ::= aa { "[" score "]" }∗

score ::= realNumber

aa ::= uppercaseLetter

The glycan structure string attached to the peptide sequence is expected to match the following

glycans pattern. Since the glycan structure strings may be described by several completely different

patterns, this conversion software expects the glycans pattern to be one of two different patterns,

glycansPtn1 and glycansPtn2. The glycansPtn1 pattern expects comma-separated pairs of monosac-

charide composition strings and their masses, such as "HexNAc(2)Hex(2)NeuAc(1) 287.1389,HexN

Ac(2)Hex(2)NeuAc(1) 287.1389" On the other hand, the glycansPtn2 pattern expects a comma-

separated sequence of only monosaccharide composition strings, such as "HexNAc(2)Hex(6)Phospho

(1),HexNAc(2)Hex(2)Fuc(1)".

glycans ::= glycansPtn1

| glycansPtn2

glycansPtn1 ::= glycan { "," glycan }∗

glycan ::= glycanComposition " " score

score ::= realNumber

glycansPtn2 ::= glycanComposition { "," glycanComposition }∗

glycanComposition ::= { composition "(" count ")" }+

composition ::= "HexNAc"

| "Hex"

| "Fuc"

| "dHex"

| "NeuAc"

| "NeuGc"

| "Phospho"

| "Sulphate"

count ::= integer

78

Chapter 3. Results

The type of modification data is expected to match the modi f ications pattern defined below.

Similar to the glycan structure strings, this data can also be entered in several different formats. The

modi f icationsPtn1 pattern can accept strings such as "C[+57], N[+1956]", "C[+57]*3, N[+1038]",

"C[+57], N[+714][+1794]", and "T[+287]*2[+730][+1021]" while the modi f icationsPtn2 pattern

can accept strings such as "S10(OGlycan / 802.2855); M34(Oxidation / 15.9949); M36(Oxidation /

15.9949)" and "N35(NGlycan / 2974.9306); M46(Oxidation / 15.9949)".

modi f ications ::= modi f icationsPtn1

| modi f icationsPtn2

modi f icationsPtn1 ::= modPtn1 { ", " modPtn1 }∗

modPtn1 ::= uppercaseLetter { "[" score "]" ["*" count] }∗

count ::= integer

modi f icationsPtn2 ::= modPtn2 { "; " modPtn2 }

modPtn2 ::= uppercaseLetter pos "(" modType " / " score ")"

pos ::= integer

modType ::= "NGlycan"

| "OGlycan"

| "Oxidation"

score ::= realNumber

The format of the peptide start residue number in the amino acid sequence of the protein is simply

expected to match an unsigned integer string such as "67".

position ::= integer

Finally, the protein name strings containing UniProt IDs such as ">sp|P35918|VGFR2_MOUSE Vas

cular endothelial growth factor receptor 2..." are expected to match the proteinName pattern

defined as follows.

79

Chapter 3. Results

proteinName ::= pre f ix uniProtId su f f ix

pre f ix ::= anyChar "|"

| anyChar pre f ix

uniProtId ::= { idChar }+

idChar ::= uppercaseLetter

| lowercaseLetter

| digit

| "-"

su f f ix ::= "|" { anyChar }∗

In order to determine the residue to which the glycan structure is binding, this software compares

the mass information of the modification and looks for a residue whose mass information of the

modification to the amino acid residue is very close (this threshold value is set to <1.0). Taking

into account that some Byonic summary spreadsheets provide the mass of the glycan structure as an

integer, we have determined the value of this threshold. When a worksheet is selected, a data range

setting form is displayed, as shown in Figure 3.12 (b). With this form, users can choose whether to

generate glycopeptide or glycoprotein entries, select the worksheets to be scanned in that spreadsheet

file, and specify the columns that contain each kind of information. After filling out this form, by

clicking the button at the bottom of the screen, the conversion will be executed and the conversion

results will be displayed as shown in Figure 3.12 (c).

When extracting glycoprotein entries, this software automatically retrieves the amino acid sequence

information corresponding to the UniProt IDs in the spreadsheet from the UniProt database. Then,

the glycosylated peptide sequence information is matched with the residue number information where

that peptide sequence starts on the protein to ensure that these data are consistent. This ensures that

users will generate glycoprotein entries for proteins having valid UniProt IDs. As for the substituent

information in glycan structures, this software currently supports only two substituents, “Phospho”

and “Sulfate”. This is due to the limited number of substituent types supported by the program

provided by GlyCosmos for converting glycan composition strings to WURCS format, which is used

by our software to verify whether the detected glycan composition strings are in a valid format. We

plan to address other substituents such as “Methyl” and “Acetyl” in collaboration with the GlyCosmos

development team. During the conversion process, communications with the GlyCosmos server occur

to check whether the GlyTouCan IDs have already been assigned for each glycan structure. However,

80

Chapter 3. Results

all other information in the spreadsheet selected by the user will not be sent to the server side.

Therefore, all conversion processes are performed locally in the user’s web browser.

Although PMI-Byonic is indeed a software used by a large number of glycoproteomics researchers,

it is a paid software and not all researchers use it. In addition to commercial software such as PMI-

Byonic and Mascot (Perkins et al., 1999), other freely available software such as Protein Prospector

and GlycReSoft (Maxwell et al., 2012) are also being used to analyze the results of glycoproteomics

experiments. Therefore, to encourage more researchers to submit glycoproteomics data to GlyComb,

we plan to add more conversion software so that identification results generated from a wide range of

glycoproteomics software can be input into GlyComb.

3.1.5 Registration of glycopeptide and glycoprotein entries extracted from the
PRIDE and MS-Viewer repositories

Figure 3.13 shows a breakdown of glycopeptide and glycoprotein entries registered in GlyComb as

of August 31, 2023. In order to collect glycopeptide and glycoprotein information identified from

existing glycoproteomics studies available on the Internet, we surveyed a number of data repositories

for proteomics experiments that are members of the ProteomeXchange Consortium. We found that

identification results were uploaded as comma-separated values (CSV), TSV or MS Excel files in

each contributor’s own format. First, in order to extract glycopeptide and glycoprotein entries from

those research results using the conversion software mentioned in the previous section, we collected

PMI-Byonic-generated identification summary spreadsheets of glycoproteomics experiments from the

submissions published in the PRIDE database. As a result, we obtained 1,465 PMI-Byonic-generated

summary spreadsheet files from 24,145 submissions currently available in the PRIDE Archive (https:

//www.ebi.ac.uk/pride/archive/) as of August 8, 2023. We generated input datasets for GlyComb

from these spreadsheet files using our conversion software, resulting in 95,125 unique glycopeptide

entries and 24,831 unique glycoprotein entries.

In addition, we examined 683 entries corresponding to MS-Viewer Keys published in the MS-Viewer

repository (https://msviewer.ucsf.edu/prospector/cgi-bin/msform.cgi?form=msviewrep), which

is built into Protein Prospector, a suite of proteomics experimental analysis software and database.

As a result, we successfully obtained a total of 3,189 glycopeptide entries that can be entered into Gly-

Comb and 1,096 glycoprotein entries that can be entered into GlyComb out of 19 MS-Viewer entries.

The glycosylation information published in the MS-Viewer repository included ambiguous data that

had multiple candidates for the amino acid residue number to be modified in the peptide sequence,

81

https://www.ebi.ac.uk/pride/archive/
https://www.ebi.ac.uk/pride/archive/
https://msviewer.ucsf.edu/prospector/cgi-bin/msform.cgi?form=msviewrep

Chapter 3. Results

Figure 3.12: Data extraction workflow from summary worksheets generated by PMI-
Byonic. (a) Example summary worksheet of a glycoproteomics experiment generated
from PMI-Byonic. (b) By selecting one spreadsheet file, a form for specifying whether
to generate glycopeptide or glycoprotein entries and setting the range of data to be read
will be displayed. (c) The conversion results of the selected spreadsheet information can
be easily copied to the clipboard or saved as a text file. In this example, we specified
that rows 2 through 8 in the selected worksheet are to be read, and any duplicate results
of each row are automatically removed from the conversion results. In the same way,
rows in the worksheet that do not have glycosylation information are not reflected in the

conversion result.

82

Chapter 3. Results

as well as multiple candidates for the glycan structure to be bound. These ambiguous glycosylation

data were excluded from the conversion candidates when we extracted the input entries to GlyComb.

We are planning to extend the GlyComb system so that such ambiguous data can also be stored in

GlyComb in the future.

After registration of all of these data, each entry was assigned a GlyComb ID. Based on the

assigned IDs, we investigated how many entries extracted from the PRIDE repository overlapped

with those from the MS-Viewer repository (Figure 3.14). As a result, we found that 13 glycopeptide

entries and 4 glycoprotein entries overlapped. Such a comparison would have been extremely difficult

to perform without these GlyComb IDs. Table 3.3 is a breakdown of these overlapped glycopeptide

entries, showing the GlyComb ID of each entry, the corresponding accession numbers of the PRIDE

and MS-Viewer repositories containing them, and the associated UniProt IDs.

3.2 Strengthening the integration between UniCarb-DR and Glyco-

POST

3.2.1 Unifying the data submission flow and cross-referencing

As mentioned in the previous section, we first removed the data submission form from UniCarb-

DR in order to unify the data submission flow between GlycoPOST and UniCarb-DR. With this

change, all future additions of any data to UniCarb-DR will be made from a batch program that

retrieves newly published submission data in GlycoPOST. This batch program will run once daily

on the GlyCosmos server. This program obtains the submission list data published in GlycoPOST

by invoking GlycoPOST’s public APIs. It compares the retrieved list of all published submissions

with the list of submissions already registered in the UniCarb-DR database, and obtains a list of

submissions that have been newly published in GlycoPOST since the last time the batch program was

executed. Then, it downloads the GlycoWorkbench files included in the list from GlycoPOST.

During this process, the project id (GPST000128, etc.) assigned to each GlycoPOST submission and

the file id (f_0000005579, etc.) assigned to each file in the submission can also be obtained from the

GlycoPOST API at the same time. We included these two IDs in the URL of the screen for browsing

the contents of the GlycoWorkbench file contained in each submission. This allows us to determine

the URL of the screen for browsing the GlycoWorkbench file in each submission to GlycoPOST as

follows:

83

Chapter 3. Results

Figure 3.13: Percentage of (a) glycopeptide entries and (b) glycoprotein entries regis-
tered in GlyComb categorized by glycosylation class as of August 31, 2023. There are
99,240 glycopeptide entries registered in GlyComb in total, of which 59 % (58,682 entries)
contain only N -linked glycosylation and 41 % (40,203 entries) contain only O-linked gly-
cosylation. There were 74 registered glycopeptide entries containing both N -linked and
O-linked glycosylation, and 281 glycopeptide entries containing neither of these. For
glycoprotein entries (b), a total of 26,953 glycoprotein entries were registered in Gly-
Comb, of which 79 % (21,359 entries) contained only N -linked glycosylation and 20 %
(5,440 entries) contained only O-linked glycosylation. There are 137 registered glyco-
protein entries that contain both N -linked and O-linked glycosylation, and 17 entries
that are neither of these. There are 40 glycopeptide entries with UniProt IDs among
the 281 glycopeptide entries having neither N -linked nor O-linked glycosylation, whereas
the remaining 241 entries do not contain any UniProt ID information. Among these 40
entries, 30 entries are derived from 17 glycoprotein entries having neither N -linked nor
O-linked glycosylation, while the remaining 10 entries form N -linked or O-linked gly-
coproteins with other glycopeptide entries. Furthermore, out of these 281 glycopeptide
entries, the modified residues of 270 entries are undefined, while the modified residues
of the remaining 11 entries are amino acid residues other than asparagine, serine, and
threonine. Two of these entries are considered C-Man modified to tryptophan residues,
while the remaining nine entries are modifications to other amino acid residues, including

alanine, arginine, and tyrosine.

84

Chapter 3. Results

Figure 3.14: (a) A Venn diagram showing the number of glycopeptide entries extracted
from PRIDE and MS-Viewer overlapped with each other, and (b) a Venn diagram show-
ing the number of glycoprotein entries extracted from each repository overlapped with
each other. As of August 8, 2023, 95,125 glycopeptide entries and 24,831 glycoprotein
entries were extracted from the PRIDE repository and 3,189 glycopeptide entries and
1,096 glycoprotein entries were extracted from the MS-Viewer repository. By comparing
the GlyComb IDs assigned to these entries extracted from both repositories, 13 glycopep-

tide entries and 4 glycoprotein entries were found in both.

85

Chapter 3. Results

Table 3.3: Breakdown of the 13 overlapping glycopeptide entries extracted from
the PRIDE and MS-viewer repositories. Note that there are two GlyComb ID pairs,
GC017098-GC0170AE (red pair) and GC0170B3-GC0173AC (blue pair), sharing the
same peptide sequence, but they were assigned different GlyComb IDs because of the
different glycosylation patterns. By assigning IDs to these glycopeptide entries, GlyComb
could facilitate comparison of the results of glycoproteomics experiments submitted to

different data repositories.

GlyComb ID Glycopeptide Entry PRIDE Project
Accession ID

MS-Viewer Accession ID
(MS-Viewer Key) UniProt ID(s); Protein Name

GC001E29 PXD018048 PPV000097 (xjfsua8jyd) P05154; Human plasma serine
protease inhibitor

GC001E35 PXD018048 PPV000097 (xjfsua8jyd) P02765; Human
alpha-2-HS-glycoprotein

GC001E55 PXD018048 PPV000108 (ix1tmqvo4h) P05154; Human plasma serine
protease inhibitor

GC00A221 PXD020196 PPV000002 (dil8ljwmkv)
Q9Z1M0, A2VCP3; Mouse P2X
purinoceptor 7, Mouse P2X
purinoceptor

GC00A31C PXD020196 PPV000002 (dil8ljwmkv),
PPV000046 (tbguwfn09u)

P97797; Mouse tyrosine-protein
phosphatase non-receptor type
substrate 1

GC00A8D9 PXD020196 PPV000045 (qunwxqxpy4),
PPV000094 (ncoivkfko4)

P97426; Mouse eosinophil cationic
protein 1

GC00B193 PXD020648 PPV000097 (xjfsua8jyd) P02649; Human apolipoprotein E

GC00BCAE PXD023943 PPV000097 (xjfsua8jyd) P04196; Human histidine-rich
glycoprotein

GC017098 PXD035445 PPV000046 (tbguwfn09u) Q02819; Mouse nucleobindin-1

GC0170AE PXD035445 PPV000002 (dil8ljwmkv),
PPV000045 (qunwxqxpy4) Q02819; Mouse nucleobindin-1

GC0170B3 PXD035445 PPV000002 (dil8ljwmkv)
P12023, Q6GR78; Mouse
amyloid-beta precursor protein,
Mouse amyloid-beta A4 protein

GC017134 PXD035445 PPV000046 (tbguwfn09u)

P24593, Q07079; Human
insulin-like growth factor-binding
protein 5, Mouse insulin-like
growth factor-binding protein 5

GC0173AC PXD035445 PPV000046 (tbguwfn09u) P12023; Mouse amyloid-beta
precursor protein

86

https://glycomb.glycosmos.org/glycopeptide-entry?accession_number=GC001E29
https://www.ebi.ac.uk/pride/archive/projects/PXD018048
https://msviewer.ucsf.edu/prospector/cgi-bin/mssearch.cgi?search_name=msviewrep&report_title=MS-Viewer%20Repository&ms_viewer_accession=PPV000097&
https://msviewer.ucsf.edu/prospector/cgi-bin/mssearch.cgi?search_name=msviewer&report_title=MS-Viewer&rows_per_page=100&search_key=xjfsua8jyd&
https://www.uniprot.org/uniprotkb/P05154/entry
https://glycomb.glycosmos.org/glycopeptide-entry?accession_number=GC001E35
https://www.ebi.ac.uk/pride/archive/projects/PXD018048
https://msviewer.ucsf.edu/prospector/cgi-bin/mssearch.cgi?search_name=msviewrep&report_title=MS-Viewer%20Repository&ms_viewer_accession=PPV000097&
https://msviewer.ucsf.edu/prospector/cgi-bin/mssearch.cgi?search_name=msviewer&report_title=MS-Viewer&rows_per_page=100&search_key=xjfsua8jyd&
https://www.uniprot.org/uniprotkb/P02765/entry
https://glycomb.glycosmos.org/glycopeptide-entry?accession_number=GC001E55
https://www.ebi.ac.uk/pride/archive/projects/PXD018048
https://msviewer.ucsf.edu/prospector/cgi-bin/mssearch.cgi?search_name=msviewrep&report_title=MS-Viewer%20Repository&ms_viewer_accession=PPV000108&
https://msviewer.ucsf.edu/prospector/cgi-bin/mssearch.cgi?search_name=msviewer&report_title=MS-Viewer&rows_per_page=100&search_key=ix1tmqvo4h&
https://www.uniprot.org/uniprotkb/P05154/entry
https://glycomb.glycosmos.org/glycopeptide-entry?accession_number=GC00A221
https://www.ebi.ac.uk/pride/archive/projects/PXD020196
https://msviewer.ucsf.edu/prospector/cgi-bin/mssearch.cgi?search_name=msviewrep&report_title=MS-Viewer%20Repository&ms_viewer_accession=PPV000002&
https://msviewer.ucsf.edu/prospector/cgi-bin/mssearch.cgi?search_name=msviewer&report_title=MS-Viewer&rows_per_page=100&search_key=dil8ljwmkv&
https://www.uniprot.org/uniprotkb/Q9Z1M0/entry
https://www.uniprot.org/uniprotkb/A2VCP3/entry
https://glycomb.glycosmos.org/glycopeptide-entry?accession_number=GC00A31C
https://www.ebi.ac.uk/pride/archive/projects/PXD020196
https://msviewer.ucsf.edu/prospector/cgi-bin/mssearch.cgi?search_name=msviewrep&report_title=MS-Viewer%20Repository&ms_viewer_accession=PPV000002&
https://msviewer.ucsf.edu/prospector/cgi-bin/mssearch.cgi?search_name=msviewer&report_title=MS-Viewer&rows_per_page=100&search_key=dil8ljwmkv&
https://msviewer.ucsf.edu/prospector/cgi-bin/mssearch.cgi?search_name=msviewrep&report_title=MS-Viewer%20Repository&ms_viewer_accession=PPV000046&
https://msviewer.ucsf.edu/prospector/cgi-bin/mssearch.cgi?search_name=msviewer&report_title=MS-Viewer&rows_per_page=100&search_key=tbguwfn09u&
https://www.uniprot.org/uniprotkb/P97797/entry
https://glycomb.glycosmos.org/glycopeptide-entry?accession_number=GC00A8D9
https://www.ebi.ac.uk/pride/archive/projects/PXD020196
https://msviewer.ucsf.edu/prospector/cgi-bin/mssearch.cgi?search_name=msviewrep&report_title=MS-Viewer%20Repository&ms_viewer_accession=PPV000045&
https://msviewer.ucsf.edu/prospector/cgi-bin/mssearch.cgi?search_name=msviewer&report_title=MS-Viewer&rows_per_page=100&search_key=qunwxqxpy4&
https://msviewer.ucsf.edu/prospector/cgi-bin/mssearch.cgi?search_name=msviewrep&report_title=MS-Viewer%20Repository&ms_viewer_accession=PPV000094&
https://msviewer.ucsf.edu/prospector/cgi-bin/mssearch.cgi?search_name=msviewer&report_title=MS-Viewer&rows_per_page=100&search_key=ncoivkfko4&
https://www.uniprot.org/uniprotkb/P97426/entry
https://glycomb.glycosmos.org/glycopeptide-entry?accession_number=GC00B193
https://www.ebi.ac.uk/pride/archive/projects/PXD020648
https://msviewer.ucsf.edu/prospector/cgi-bin/mssearch.cgi?search_name=msviewrep&report_title=MS-Viewer%20Repository&ms_viewer_accession=PPV000097&
https://msviewer.ucsf.edu/prospector/cgi-bin/mssearch.cgi?search_name=msviewer&report_title=MS-Viewer&rows_per_page=100&search_key=xjfsua8jyd&
https://www.uniprot.org/uniprotkb/P02649/entry
https://glycomb.glycosmos.org/glycopeptide-entry?accession_number=GC00BCAE
https://www.ebi.ac.uk/pride/archive/projects/PXD023943
https://msviewer.ucsf.edu/prospector/cgi-bin/mssearch.cgi?search_name=msviewrep&report_title=MS-Viewer%20Repository&ms_viewer_accession=PPV000097&
https://msviewer.ucsf.edu/prospector/cgi-bin/mssearch.cgi?search_name=msviewer&report_title=MS-Viewer&rows_per_page=100&search_key=xjfsua8jyd&
https://www.uniprot.org/uniprotkb/P04196/entry
https://glycomb.glycosmos.org/glycopeptide-entry?accession_number=GC017098
https://www.ebi.ac.uk/pride/archive/projects/PXD035445
https://msviewer.ucsf.edu/prospector/cgi-bin/mssearch.cgi?search_name=msviewrep&report_title=MS-Viewer%20Repository&ms_viewer_accession=PPV000046&
https://msviewer.ucsf.edu/prospector/cgi-bin/mssearch.cgi?search_name=msviewer&report_title=MS-Viewer&rows_per_page=100&search_key=tbguwfn09u&
https://www.uniprot.org/uniprotkb/Q02819/entry
https://glycomb.glycosmos.org/glycopeptide-entry?accession_number=GC0170AE
https://www.ebi.ac.uk/pride/archive/projects/PXD035445
https://msviewer.ucsf.edu/prospector/cgi-bin/mssearch.cgi?search_name=msviewrep&report_title=MS-Viewer%20Repository&ms_viewer_accession=PPV000002&
https://msviewer.ucsf.edu/prospector/cgi-bin/mssearch.cgi?search_name=msviewer&report_title=MS-Viewer&rows_per_page=100&search_key=dil8ljwmkv&
https://msviewer.ucsf.edu/prospector/cgi-bin/mssearch.cgi?search_name=msviewrep&report_title=MS-Viewer%20Repository&ms_viewer_accession=PPV000045&
https://msviewer.ucsf.edu/prospector/cgi-bin/mssearch.cgi?search_name=msviewer&report_title=MS-Viewer&rows_per_page=100&search_key=qunwxqxpy4&
https://www.uniprot.org/uniprotkb/Q02819/entry
https://glycomb.glycosmos.org/glycopeptide-entry?accession_number=GC0170B3
https://www.ebi.ac.uk/pride/archive/projects/PXD035445
https://msviewer.ucsf.edu/prospector/cgi-bin/mssearch.cgi?search_name=msviewrep&report_title=MS-Viewer%20Repository&ms_viewer_accession=PPV000002&
https://msviewer.ucsf.edu/prospector/cgi-bin/mssearch.cgi?search_name=msviewer&report_title=MS-Viewer&rows_per_page=100&search_key=dil8ljwmkv&
https://www.uniprot.org/uniprotkb/P12023/entry
https://www.uniprot.org/uniprotkb/Q6GR78/entry
https://glycomb.glycosmos.org/glycopeptide-entry?accession_number=GC017134
https://www.ebi.ac.uk/pride/archive/projects/PXD035445
https://msviewer.ucsf.edu/prospector/cgi-bin/mssearch.cgi?search_name=msviewrep&report_title=MS-Viewer%20Repository&ms_viewer_accession=PPV000046&
https://msviewer.ucsf.edu/prospector/cgi-bin/mssearch.cgi?search_name=msviewer&report_title=MS-Viewer&rows_per_page=100&search_key=tbguwfn09u&
https://www.uniprot.org/uniprotkb/P24593/entry
https://www.uniprot.org/uniprotkb/Q07079/entry
https://glycomb.glycosmos.org/glycopeptide-entry?accession_number=GC0173AC
https://www.ebi.ac.uk/pride/archive/projects/PXD035445
https://msviewer.ucsf.edu/prospector/cgi-bin/mssearch.cgi?search_name=msviewrep&report_title=MS-Viewer%20Repository&ms_viewer_accession=PPV000046&
https://msviewer.ucsf.edu/prospector/cgi-bin/mssearch.cgi?search_name=msviewer&report_title=MS-Viewer&rows_per_page=100&search_key=tbguwfn09u&
https://www.uniprot.org/uniprotkb/P12023/entry

Chapter 3. Results

https://unicarb-dr.glycosmos.org/references/PROJECT_ID/FILE_ID

As a result, hyperlinks to corresponding files on GlycoPOST can be obtained. Conversely, by

storing the project id of each GlycoPOST submission on UniCarb-DR, the URL of the corresponding

GlycoPOST submission where the GlycoWorkbench file is published can be obtained as shown below:

https://glycopost.glycosmos.org/entry/PROJECT_ID

Consequently, bidirectional hyperlinks between the corresponding submissions of GlycoPOST and

UniCarb-DR were obtained, thus implementing a cross-referencing function between them. Figure

3.15 shows the cross-reference relationship between GlycoPOST and UniCarb-DR. As shown in this

figure, identification results included in submissions published on GlycoPOST are automatically reg-

istered in UniCarb-DR, and the two data repositories can now be cross-referenced. Users can now

automatically visualize the identification results simply by submitting their raw experimental data

with the identification results to GlycoPOST. By clicking on the images of each glycan structure dis-

played on the right hand side in Figure 3.15, each identification result will be visualized as shown in

Figure 3.16 with a chart of the actual peak list.

Figure 3.15: Cross-references between GlycoPOST and UniCarb-DR. The submission
browsing screen of each data repository has a hyperlink to the corresponding entry in

the other data repository, and users can freely jump between them.

87

Chapter 3. Results

Figure 3.16: Visualization screen of identification results obtained from GlycoPOST as
of October 4, 2023. Users can now automatically visualize the identification results simply
by submitting their raw experimental data with the identification results to GlycoPOST.

88

Chapter 3. Results

3.2.2 Addition of MIRAGE liquid chromatography guidelines support to Glyco-
POST

To add support for the guidelines for liquid chromatography experiments proposed in MIRAGE to

GlycoPOST, we first prepare an Excel template spreadsheet that allows users to easily fill in and

upload various liquid chromatography experiment information. GlycoPOST provides its own Excel

template spreadsheet for inputting MIRAGE guideline information. Users can easily input experi-

mental condition information into GlycoPOST by uploading this file to GlycoPOST after filling in

it. Previously, only MIRAGE sample preparation guidelines and mass spectrometric analysis guide-

lines could be entered in this template file. Therefore, a new worksheet was added to this file to

input liquid chromatography guidelines information. Figure 3.17 shows the worksheet for inputting

MIRAGE-compliant liquid chromatography experimental guideline information. This updated Excel

template file was reviewed by members of the international MIRAGE committee and adopted for

input of liquid chromatography information into GlycoPOST.

Subsequently, we updated the GlycoPOST user interface, server-side program, and database in-

formation. This allows users to add liquid chromatography experiment guidelines along with the

existing sample preparation guidelines and mass spectrometric analysis guidelines as metadata describ-

ing experimental information when submitting data to GlycoPOST. Figure 3.18 shows the updated

GlycoPOST file submission form.

3.2.3 Visualization of GlycoWorkbench files during peer review period in Glyco-
POST: MiniCarb-Viewer

UniCarb-DR can only visualize the contents of GlycoWorkbench files included in submissions that

have already been published on GlycoPOST. However, it would be useful to be able to visualize the

identification results of submissions that have not yet been made publicly available on GlycoPOST

for the submitter and reviewers during the peer review period. Therefore, we also addressed the

visualization of identification results in GlycoPOST submissions, which are not yet publicly available.

To achieve this, we separated the visualization function of UniCarb-DR as a separate compo-

nent. We then utilized this component to develop a new private API, independent of UniCarb-DR

and accessible only from GlycoPOST, which we named MiniCarb-Viewer. MiniCarb-Viewer registers

GlycoWorkbench files submitted to GlycoPOST in its own private database like UniCarb-DR, and

performs the necessary data analysis for visualization. This provides a data visualization function

89

Chapter 3. Results

Figure 3.17: The template Excel spreadsheet for entering MIRAGE-compliant liquid
chromatography experiment guidelines.

90

Chapter 3. Results

Figure 3.18: Updated GlycoPOST data submission form as of October 4, 2023. Users
can now submit data with liquid chromatography experimental information.

91

Chapter 3. Results

similar to UniCarb-DR only for unpublished data in GlycoPOST. The request to register the Gly-

coWorkbench files to MiniCarb-Viewer is issued when a researcher clicks the “Submit project” button

on the confirmation screen in GlycoPOST for a submission containing GlycoWorkbench files, as shown

in Figure 3.19. In GlycoPOST, private submissions may be revised, which may increase or decrease

the number of GlycoWorkbench files in the submission. To handle this properly, MiniCarb-Viewer

registers the GlycoWorkbench files separately to the database for each revision of each submission.

Researchers need to click the “Submit project” button on this same confirmation screen, even when

revising a submission, so that MiniCarb-Viewer can reflect the contents of every revision of each

submission.

Figure 3.19: Screenshot of GlycoPOST submission confirmation screen as of January
1, 2024. By clicking the “Submit project” button at the bottom of this screen, the
submission content is fixed. At the moment GlycoPOST receives this request, it will
send an asynchronous request to MiniCarb-Viewer to register the GlycoWorkbench files

contained in the submission.

Figure 3.20 shows the workflow of using MiniCarb-Viewer from the preview screen, which makes

a private submission in GlycoPOST available to reviewers only. First, when the reviewer opens the

92

Chapter 3. Results

preview screen, a list of the various files included in the submission will be displayed (Figure 3.20 (a)).

If it contains GlycoWorkbench format files (GWP files), the “MiniCarb-Viewer” button will appear

on the right hand side of the screen. By clicking this button, the identification results of the MS/MS

experiment included in the GWP file are displayed as a list, similar to UniCarb-DR (Figure 3.20 (b)).

By clicking the image of the glycan structure showing each identification result in the list, the chart

of the peak list included in the identification result and the annotation information for each peak are

displayed in detail (Figure 3.20 (c)).

3.2.4 Integration with GlyTouCan by obtaining GlyTouCan IDs from glycan struc-
ture strings in GWS format

In the GlycoWorkbench files that UniCarb-DR can recognize, the GlycoWorkbench sequence (GWS)

format is adopted as a glycan structure notation method. Since GlyTouCan does not support GWS

strings, there has been little progress in linking the glycan structures in the identification results

registered in UniCarb-DR with the glycan structures in GlyTouCan. However, now that GlyCosmos

has implemented the gws2wurcs API, which accepts GWS strings and returns GlyTouCan IDs, it is

possible to use this API to find the GlyTouCan ID corresponding to each registered glycan structure in

UniCarb-DR. In addition to UniCarb-DR, MiniCarb-Viewer also represents glycan structures in GWS

format, therefore we also worked on linking UniCarb-DR and MiniCarb-Viewer with GlyTouCan by

utilizing this API.

To accomplish this, we added JavaScript code to UniCarb-DR and MiniCarb-Viewer that runs in

the browser. This program will be executed after the web page is loaded by the web browser and passes

a GWS format glycan structure string to the GlyCosmos gws2wurcs API. Then, after the web browser

retrieves the result from the API, if the result from the API contains a valid GlyTouCan ID, a link

to the corresponding GlyTouCan entry is automatically displayed on the screen. Figure 3.21 shows a

conceptual diagram of the relationship among UniCarb-DR, MiniCarb-Viewer, and GlyTouCan.

93

Chapter 3. Results

Figure 3.20: Workflow of using MiniCarb-Viewer from the preview screen of Glyco-
POST.

94

Chapter 3. Results

Figure 3.21: Conceptual diagram showing the relationship between UniCarb-DR,
MiniCarb-Viewer and GlyTouCan. GlyTouCan IDs can now be obtained from the GWS
format glycan structures contained in the UniCarb-DR and MiniCarb-Viewer data. This

allows linking from these resources to the corresponding entries in GlyTouCan.

95

Chapter 4

Discussion

4.1 Knowledge integration between glycomics and glycoproteomics

catalyzed by GlyComb

With the development of GlyComb, the first data repository for glycoconjugate data including gly-

copeptide and glycoprotein data from glycoproteomics studies, we believe that glycobiology research

can be accelerated by combining knowledge from both glycomics and glycoproteomics domains. For in-

stance, in glycomics, a GlyTouCan ID has been assigned to each glycan structure as a unique identifier

through the development of the glycan structure repository GlyTouCan. This has enabled glycomics

researchers to precisely specify glycan structure information using the corresponding GlyTouCan IDs

in their publications. Furthermore, each glycan structure entry in GlyTouCan can be associated with a

publication related to that structure, making it possible to collect publications that contain references

to the glycan structure with a particular GlyTouCan ID. In addition, glycoscience portal sites, such as

GlyCosmos, integrate metadata such as the species in which the glycan structure was discovered, the

name of the motif it contains, and various external resources describing the same structure, for each

glycan structure registered in GlyTouCan. These results are available under the GlyCosmos Glycans

(https://glycosmos.org/glycans) data resource. Recently, the collaboration between GlyCosmos

and PubChem has also been enhanced (Cheng et al., 2023) largely due to these GlyTouCan identifiers.

Like GlyTouCan, GlyComb is a data repository that allows unique identifiers to be assigned to

each glycoconjugate entry, which we expect will enable the integration of knowledge linking glycomics

with proteomics and other omics data in the future. We have shown how this was possible through

investigating the entries registered from MS-Viewer and PRIDE. As a result, we found actually over-

lapping entries from both repositories, which was made possible by the GlyComb IDs assigned to

them. We investigated these GlyComb IDs further to see if they happened to be submitted by the

96

https://glycosmos.org/glycans

Chapter 4. Discussion

same user to both repositories, and we confirmed that while none of the duplicate entries originated

from the same submitters, the exact same glycopeptides were reported. Moreover, we can compare

the UniProt IDs for different entries. For example, the same UniProt ID is provided for the GlyComb

entry numbers GC0170AE and GC017098 shown in Table 3.3, where we can see that they have the

same peptide sequence “QQLQEQSAPPSKPDGQLQFR” and the same glycan modification on the

serine residue at position 11. However, GC0170AE has an additional glycan modification on the serine

residue at position 7. A similar relationship holds for the GC0170B3 and GC0173AC pair, which were

found in one project, PXD035445 in PRIDE, and in two projects, PPV000002, and PPV000046 in

MS-Viewer. These entries are all mucin O-glycan modifications, which are difficult to analyze. By

integrating such glycoproteomics data with accession numbers, the whole picture can be examined,

providing insight into the function of mucin O-glycans. As this work advances, we believe that the

integration of knowledge from multiple omics fields (glycomics, proteomics, and glycoproteomics) will

contribute to lowering the hurdle for multi-omics research in glycoscience.

What we consider to be the key to greatly improving the potential usefulness of GlyComb is

to maximize the use of Semantic Web technologies. In GlyComb, each published glycoconjugate

entry assigned a GlyComb ID is sequentially converted into a format called Resource Description

Framework (RDF) and stored in a database for Semantic Web technologies called a triplestore. This

allows researchers to retrieve a variety of information scattered across multiple different databases at

once, using a query language called SPARQL. For example, major biological pathway databases such

as Reactome (Gillespie et al., 2022) and WikiPathways (Martens et al., 2021) have already published

their pathway data in RDF. The pathway information in these databases could be combined with

the glycoconjugate information stored in GlyComb using the SPARQL query language to find the

corresponding GlyComb ID for each glycoconjugate entry in a pathway, enabling researchers to find

out from GlyComb which species and which chemical pathways a particular glycoconjugate entry of

interest appears in. Furthermore, it is expected to make it easier to obtain a comprehensive list of

glycoconjugate entries related to a specific disease.

Moreover, subsumption relationships are defined between multiple glycan structures in glycomics,

and SPARQL can be used to retrieve more specific glycan structures from glycan structures with

ambiguous linkage and monosaccharide information. Owing to this, the glycan composition infor-

mation contained in each glycoconjugate entry in GlyComb will provide insight into what glycan

structures are actually attached to the glycoconjugate molecule. In addition to glycan structures, it

may be possible to define such relationships between glycopeptide entries in GlyComb based on the

97

Chapter 4. Discussion

peptide sequence and attached glycan structures of each entry. In LC-MS/MS experiments, some of

the peptide sequences resulting from protease treatment may be a complete subpart of other peptide

sequences. In other cases, the peptide sequence may be exactly the same. However, only the attached

glycan structures may be different. By defining the relationships among these corresponding entries,

we may be able to discover new knowledge that has not been revealed before when integrating with

various information such as pathway data using SPARQL. For example, in the overlapping UniProt

IDs found in the common GlyComb entries in Table 3.3, we were able to find peptide sequences where

one subsumed the other. Using Semantic Web technologies, such relationships can be defined, to

integrate such knowledge into a whole. Consequently, it is expected that the use of SPARQL will

enable us to gain insight into glycoconjugates by integrating multiple omics data, and conversely, it

will enable access to glycoconjugate information from various omics fields, which will lead to a greater

understanding of biological processes in general.

At the time of writing, GlyComb does not support the input of quantitative abundance data for

glycopeptides and glycoproteins. However, by expanding GlyComb to accommodate such input data

in the future, and by collecting the identification results of glycoproteomics experiments further, it

is expected to be made possible to compare the distribution of each glycoprotein present in different

organs of each species. This will allow us to see differences in the tendency of protein glycosylation

in different organs that were not visible before and may lead to a better understanding of the effects

of glycosylation on protein function. This is an example of an analysis that could not have been

performed previously in the bioinformatics field without the powerful infrastructure developed in this

study, GlyComb.

4.2 From integration of glycomics data repositories to integration of

multi-omics knowledge

We have also strengthened the integration of the two complementary data repositories, GlycoPOST

and UniCarb-DR, from various perspectives. In particular, the data submission flow to these reposito-

ries has been unified, enabling users to upload identification results along with raw data to GlycoPOST,

which can then be automatically visualized in UniCarb-DR. We believe that this has greatly improved

the convenience for users. Furthermore, by enabling cross referencing of corresponding entries be-

tween GlycoPOST and UniCarb-DR, these data repositories no longer operate independently, but

rather function as one comprehensive data repository system in which the two data repositories work

98

Chapter 4. Discussion

in unison. In addition, it is now possible to link to GlyTouCan from UniCarb-DR and MiniCarb-

Viewer. These links are still unidirectional, and there is no link from GlyTouCan to UniCarb-DR or

GlycoPOST yet. However, it is expected that these data repositories, including GlyTouCan, will be

able to work consistently in the future, which will contribute to more user convenience, and that these

data repositories will be able to work in unison by collaborating with each other and function as an

extremely powerful information infrastructure in glycoscience research.

GlycoPOST and UniCarb-DR are extremely important data repositories to which glycomics re-

searchers around the world submit the results of their glycomics experiments. Now that this study

has enabled these data repositories to cooperate with each other while fulfilling their respective roles

of storing large amounts of data and visualizing and retrieving identification results, the next step is

to convert the data in these data repositories into RDF data to support the Semantic Web. This may

allow the integration of glycomics experimental data accumulated in GlycoPOST and UniCarb-DR

with knowledge from other omics areas by searching with the SPARQL language. For example, it

would be possible to use experimental data submitted according to the MIRAGE sample preparation

guidelines and the identification results in GlycoWorkbench format to search for proteins known to

bind the identified glycan structures in the exact same type of cells or organs as the sample used in

the experiment.

4.3 The value of reliable data repositories

In accumulating large amounts of data and extracting valuable information from it, a flawed program

in a data repository can slow down the progress of the entire life science field. However, scripting

languages such as Python, which bioinformaticians frequently use for its ease of use, are not effective

in making developers aware that the programs they write contain problems. This is a very big obstacle

in the small bioinformatics community, which cannot employ enough people and spend enough time

exhaustively testing the software they create before releasing it, as companies can. In this study,

to mitigate this problem a little, I utilized functional programming, a tool that the bioinformatics

community has not made much use of to date, and as a result, I succeeded in developing reliable data

repositories. This would have contributed to further data accumulation in the field of glycoscience.

In the future, the developed data repositories will be expanded so that they can be linked to each

other. It is considered important to not only accumulate data from multiple omics fields, but also

to link them to each other and create networks among them as a basis for promoting multi-omics

99

Chapter 4. Discussion

analysis. Therefore, since it is extremely important to extract and associate data correctly, utmost

care must be taken when extending an existing data repository so as not to accidentally break existing

functionality. In this study, I have written programs that allow type checkers to detect potential

problems in them before they are executed, rather than actually executing the programs whenever

possible, and this makes future extensions of these data repositories dramatically safer than they have

been in the past. Consequently, the data repositories developed in this study are expected to be useful

for data integration for future multi-omics analyses.

4.4 Future outlook

First of all, we plan to enable GlyComb to store glycolipid and glycoside information, which are

glycoconjugate information that GlyComb does not yet support. This will allow GlyComb to integrate

lipidomics and metabolomics information in the future, providing insight into how the presence or

absence of glycosylation in vivo affects the function of each molecule. Furthermore, I am planning

to strengthen the collaboration between GlyComb and existing data repositories such as GlyTouCan,

GlycoPOST, and UniCarb-DR in the glycosciences, and PRIDE, PubChem, LIPID MAPS (Sud et al.,

2007), etc. in other omics fields. In order to extract the maximum amount of information from the

results obtained from various studies, we plan to implement a partnership system into GlyComb. This

system would allow, for example, data submitted to GlycoPOST containing the identification results

of glycoconjugate data in an open file format, to be processed such that the relevant glycoconjugate

results could be extracted and automatically registered in GlyComb. This would allow users to

check the list of GlycoPOST entries in which a particular glycoconjugate molecule appears in the

identification results via GlyComb IDs, or to check the list of GlyComb entries containing a particular

glycan structure via GlyTouCan IDs. It is expected that GlyComb has the potential to unravel the

hidden functions of glycoconjugate molecules by serving as a hub for integrating data from various

omics fields, including glycomics, proteomics, and glycoproteomics.

In addition, the members of the international MIRAGE committee are currently discussing report-

ing guidelines not only for glycomics but also for glycoproteomics experiments. Accordingly, I plan

to make GlycoPOST capable of supporting the input of MIRAGE guideline information for glyco-

proteomics experiments in the future. This will allow GlycoPOST to accumulate not only glycomics

but also glycoproteomics experimental data. With this advancement, GlycoPOST and GlyComb are

expected to collaborate with each other even more strongly in the future.

100

Chapter 4. Discussion

With these further developments, the data repositories developed in this thesis are expected to serve

as a foundation for integrating knowledge from a very wide range of omics fields: glycomics, proteomics,

glycoproteomics, lipidomics, and metabolomics, as shown in Figure 4.1. These data repositories that

can accumulate information from multiple omics fields will be indispensable for future multi-omics

analysis.

Figure 4.1: Expected omics fields to be covered by the data repositories developed in
this thesis in the future. GlyComb currently contributes to the integration of data from
the glycoproteomics and proteomics fields as it can store glycopeptide and glycoprotein
entries that may contain UniProt ID data. It will further help to integrate knowledge in
the lipidomics and metabolomics fields by supporting the registration of glycolipid and
glycoside entries in the future. Furthermore, by supporting the registration of MIRAGE
guideline information for the reporting of glycoproteomics experiments, GlycoPOST will
also make a significant contribution to the accumulation of data in the field of glycopro-

teomics as well as glycomics.

101

Chapter 5

Conclusion

In glycoscience research, data obtained from various experiments, including mass spectrometry exper-

iments, are continuously accumulated every day. Glycoinformatics is an extremely important research

field due to the potential to extract the maximum amount of knowledge from such data. Further-

more, data repositories, the primary focus of this thesis, are the fundamental infrastructure for future

research in the field of glycoinformatics. By accumulating submissions from researchers around the

world, including even raw data from mass spectrometers, data repositories make it possible to re-

analyze large-scale experimental datasets using computers. GlycoPOST is an ideal data repository

for submitting such data, and now that the data submission flow is unified with UniCarb-DR, it is

possible to visualize the results of mass spectrometry experiments and search for entries using peak

list data obtained from those experiments. These two data repositories now form a comprehensive

system that can mutually take advantage of each other’s strengths.

In addition, these two data repositories are now able to represent glycan structures using GlyTou-

Can IDs, which has partially enhanced their collaboration with GlyTouCan, the international glycan

structure repository. This is another important aspect of data repositories: they can not only accu-

mulate submitted data but also form mutual links among them. This makes it possible, for example,

to obtain a GlyTouCan ID for a glycan structure contained in the results of an experiment submitted

to GlycoPOST, and then search GlyTouCan to find out in what literature the glycan structure has

been reported. In this way, forming links between entries submitted to the data repositories may lead

to new knowledge discovery when performing large-scale reanalysis of experimental data.

However, one of the missing pieces in the foundation of glycoscience research previously was the

existence of a data repository capable of storing glycoconjugate data. The development of GlyComb

has made it possible to more efficiently collect and share information on glycopeptides, glycoproteins,

and other glycoconjugates, which have not been accumulated before. This has even made it possible

102

Chapter 5. Conclusion

to compare glycopeptide and glycoprotein information obtained from glycoproteomics experiments

that have been submitted to multiple existing data repositories, such as PRIDE. GlyComb also uses

GlyTouCan IDs to denote glycan structures bound to glycoconjugate entries. Thus, in the future,

GlyTouCan IDs could be used to interlink GlycoPOST , UniCarb-DR, GlyTouCan, and GlyComb.

Moreover, new linkages of information will be formed in the future using GlyComb IDs, which are the

accession numbers of GlyComb. For example, it would be possible to represent each of the numerous

glycoconjugate entries in the biological reaction pathway by a GlyComb ID. By combining various

omics information with the glycoconjugate data stored in GlyComb using Semantic Web technologies,

it is expected that the influences of glycoproteins and glycolipids on various diseases, infection, and

developmental mechanisms with and without glycosylation will be further elucidated in the future.

However, extending existing data resources without unintentionally breaking existing functionality

can easily become more challenging than expected without thoughtful consideration. This would be

a major obstacle to promoting collaboration among multiple data repositories. This is exactly the

same problem that is occurring in the worldwide IT industry. In this study, I applied some of the

functional programming techniques that have been developed in the field of computer science as a

means of reducing this difficulty and developing data repositories stably and continuously, which has

been overlooked in bioinformatics field. This allowed us to increase as much as possible the number of

problems hidden in the program that the type checker could find before executing the program, and to

introduce a mechanism by which the developers of the data repositories could notice the problems early

and continue to enhance the functionality of the program efficiently. The data repository developed in

this study is considered to be highly reliable in the bioinformatics field, since the use of results from

the computer science research field has not been active in the bioinformatics field, which generally

mainly uses scripting languages such as Python. Therefore, these data repositories are considered to

be extremely useful and unique resources that can withstand use by researchers worldwide.

As a result, the development of these data repositories, which are the infrastructure for glycoinfor-

matics research, will contribute to the future advancement of glycoscience research. All of these data

repositories are linked directly from GlyCosmos, one of the knowledge bases in glycoscience research.

Although the data stored in the data repositories are not curated, such stored data will then be cu-

rated and annotated, and combined with knowledge in knowledge bases such as GlyCosmos. This

would allow the data repositories to contribute to new knowledge discovery.

103

Acknowledgements
First of all, I would like to acknowledge my supervisor, Prof. Kiyoko F. Aoki-Kinoshita, for her

numerous advices and guidance in carrying out this research project. I am also very grateful to my

numerous collaborators, including Masaaki Shiota (Soka University), Dr. Akihiro Fujita (Soka Uni-

versity), Dr. Issaku Yamada (The Noguchi Institute), Prof. Shujiro Okuda (Niigata University),

and Prof. Niclas Karlsson (Oslo Metropolitan University University, Norway). In addition, I would

like to acknowledge the insightful discussions and advice on GlyComb by GlyCosmos project mem-

bers, including Daisuke Shinmachi (National Institute of Advanced Industrial Science and Technology

(AIST)), Chiaki Nagai-Okatani (AIST), Atsushi Kuno (AIST), Shujiro Okuda, and Masaaki Matsub-

ara (The Noguchi Institute). Finally, I would like to thank all the members of the Kinoshita Lab and

my family for their support.

104

Bibliography

Aoki-Kinoshita, K. F., Lisacek, F., Mazumder, R., York, W. S., and Packer, N. H. “The GlySpace

Alliance: toward a collaborative global glycoinformatics community”. In: Glycobiology 30.2 (2020),

pp. 70–71.

Bagdonaite, I., Malaker, S. A., Polasky, D. A., Riley, N. M., Schjoldager, K., Vakhrushev, S. Y.,

Halim, A., Aoki-Kinoshita, K. F., Nesvizhskii, A. I., Bertozzi, C. R., Wandall, H. H., Parker, B. L.,

Thaysen-Andersen, M., and Scott, N. E. “Glycoproteomics”. In: Nature Reviews Methods Primers

2.1 (2022), p. 48.

Baker, P. R. and Chalkley, R. J. “MS-viewer: a web-based spectral viewer for proteomics results”. In:

Molecular & Cellular Proteomics 13.5 (2014), pp. 1392–1396.

Banin, E., Neuberger, Y., Altshuler, Y., Halevi, A., Inbar, O., Nir, D., and Dukler, A. “A novel linear

code® nomenclature for complex carbohydrates”. In: Trends in Glycoscience and Glycotechnology

14.77 (2002), pp. 127–137.

Bao, X., Kobayashi, M., Hatakeyama, S., Angata, K., Gullberg, D., Nakayama, J., Fukuda, M. N.,

and Fukuda, M. “Tumor suppressor function of laminin-binding α-dystroglycan requires a distinct

β3-N -acetylglucosaminyltransferase”. In: Proceedings of the National Academy of Sciences 106.29

(2009), pp. 12109–12114.

Beckett, D., Berners-Lee, T., Prud’hommeaux, E., and Carothers, G. “RDF 1.1 Turtle”. In: World

Wide Web Consortium (2014), pp. 18–31.

Bern, M., Kil, Y. J., and Becker, C. “Byonic: advanced peptide and protein identification software”.

In: Current protocols in bioinformatics 40.1 (2012), pp. 13–20.

Berners-Lee, T., Hendler, J., and Lassila, O. “The Semantic Web: A new form of Web content that

is meaningful to computers will unleash a revolution of new possibilities”. In: Linking the World’s

Information: Essays on Tim Berners-Lee’s Invention of the World Wide Web. 2023, pp. 91–103.

Bloch, J. Effective Java. Addison-Wesley Professional, 2008.

Bradshaw, S., Brazil, E., and Chodorow, K. MongoDB: the definitive guide: powerful and scalable data

storage. O’Reilly Media, 2019.

105

Bibliography

Bray, T. The JavaScript Object Notation (JSON) Data Interchange Format. Tech. rep. 2014.

Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., Stoeckert, C., Aach, J., An-

sorge, W., Ball, C. A., Causton, H. C., Gaasterland, T., Glenisson, P., Holstege, F. C., Kim,

I. F., Markowitz, V., Matese, J. C., Parkinson, H., Robinson, A., Sarkans, U., Schulze-Kremer,

S., Stewart, J., Taylor, R., Vilo, J., and Vingron, M. “Minimum information about a microarray

experiment (MIAME)—toward standards for microarray data”. In: Nature Genetics 29.4 (2001),

pp. 365–371.

Campbell, M. P., Abrahams, J. L., Rapp, E., Struwe, W. B., Costello, C. E., Novotny, M., Ranzinger,

R., York, W. S., Kolarich, D., Rudd, P. M., and Kettner, C. “The minimum information required for

a glycomics experiment (MIRAGE) project: LC guidelines”. In: Glycobiology 29.5 (2019), pp. 349–

354.

Carlson, J. Redis in action. Simon and Schuster, 2013.

Ceroni, A., Maass, K., Geyer, H., Geyer, R., Dell, A., and Haslam, S. M. “GlycoWorkbench: a tool

for the computer-assisted annotation of mass spectra of glycans”. In: Journal of proteome research

7.4 (2008), pp. 1650–1659.

Chen, Z., Yu, Q., Yu, Q., Johnson, J., Shipman, R., Zhong, X., Huang, J., Asthana, S., Carlsson, C.,

Okonkwo, O., and Li, L. “In-depth site-specific analysis of N-glycoproteome in human cerebrospinal

fluid and glycosylation landscape changes in Alzheimer’s disease”. In: Molecular & Cellular Pro-

teomics 20 (2021).

Cheng, T., Ono, T., Shiota, M., Yamada, I., Aoki-Kinoshita, K. F., and Bolton, E. E. “Bridging

glycoinformatics and cheminformatics: integration efforts between GlyCosmos and PubChem”. In:

Glycobiology 33.6 (2023), pp. 454–463.

Cherny, B. Programming TypeScript: making your JavaScript applications scale. O’Reilly Media, 2019.

Choi, M., Carver, J., Chiva, C., Tzouros, M., Huang, T., Tsai, T.-H., Pullman, B., Bernhardt, O. M.,

Hüttenhain, R., Teo, G. C., Perez-Riverol, Y., Muntel, J., Müller, M., Goetze, S., Pavlou, M.,

Verschueren, E., Wollscheid, B., Nesvizhskii, A. I., Reiter, L., Dunkley, T., Sabidó, E., Bandeira,

N., and Vitek, O. “MassIVE. quant: a community resource of quantitative mass spectrometry–

based proteomics datasets”. In: Nature methods 17.10 (2020), pp. 981–984.

Church, A. “An unsolvable problem of elementary number theory”. In: American Journal of Mathe-

matics 58 (1936), pp. 354––363.

— The Calculi of Lambda-Conversion. Princeton University Press, 1941.

106

Bibliography

Codd, E. F. “A relational model of data for large shared data banks”. In: Communications of the ACM

13.6 (1970), pp. 377–387.

Coelho, L. P., Alves, R., Monteiro, P., Huerta-Cepas, J., Freitas, A. T., and Bork, P. “NG-meta-profiler:

fast processing of metagenomes using NGLess, a domain-specific language”. In: Microbiome 7.1

(2019), pp. 1–10.

Damerell, D., Ceroni, A., Maass, K., Ranzinger, R., Dell, A., and Haslam, S. M. “The GlycanBuilder

and GlycoWorkbench glycoinformatics tools: updates and new developments”. In: Biological chem-

istry 393.11 (2012), pp. 1357–1362.

Darula, Z., Chalkley, R. J., Lynn, A., Baker, P. R., and Medzihradszky, K. F. “Improved identification

of O-linked glycopeptides from ETD data with optimized scoring for different charge states and

cleavage specificities”. In: Amino Acids 41 (2011), pp. 321–328.

Day, C. J., Tran, E. N., Semchenko, E. A., Tram, G., Hartley-Tassell, L. E., Ng, P. S., King, R. M.,

Ulanovsky, R., McAtamney, S., Apicella, M. A., Tiralongo, J., Morona, R., Korolik, V., and Jen-

nings, M. P. “Glycan: glycan interactions: High affinity biomolecular interactions that can mediate

binding of pathogenic bacteria to host cells”. In: Proceedings of the National Academy of Sciences

112.52 (2015), E7266–E7275.

Deutsch, E. W., Bandeira, N., Sharma, V., Perez-Riverol, Y., Carver, J. J., Kundu, D. J., García-

Seisdedos, D., Jarnuczak, A. F., Hewapathirana, S., Pullman, B. S., Wertz, J., Sun, Z., Kawano,

S., Okuda, S., Watanabe, Y., Hermjakob, H., MacLean, B., MacCoss, M. J., Zhu, Y., Ishihama, Y.,

and Vizcaíno, J. A. “The ProteomeXchange consortium in 2020: enabling ‘big data’ approaches in

proteomics”. In: Nucleic Acids Research 48.D1 (2020), pp. D1145–D1152.

Dijkstra, E. W. “Letters to the editor: go to statement considered harmful”. In: Communications of

the ACM 11.3 (1968), pp. 147–148.

Doeraene, S. Scala.js: Type-directed interoperability with dynamically typed languages. Tech. rep. 2013.

Douglas, K. and Douglas, S. PostgreSQL: a comprehensive guide to building, programming, and ad-

ministering PostgresSQL databases. SAMS publishing, 2003.

DuBois, P. MySQL. Addison-Wesley, 2013.

Fitzpatrick, B. “Distributed caching with memcached”. In: Linux journal 2004.124 (2004), p. 5.

Fujita, A., Aoki, N. P., Shinmachi, D., Matsubara, M., Tsuchiya, S., Shiota, M., Ono, T., Yamada,

I., and Aoki-Kinoshita, K. F. “The international glycan repository GlyTouCan version 3.0”. In:

Nucleic Acids Research 49.D1 (2021), pp. D1529–D1533.

107

Bibliography

Gillespie, M., Jassal, B., Stephan, R., Milacic, M., Rothfels, K., Senff-Ribeiro, A., Griss, J., Sevilla, C.,

Matthews, L., Gong, C., Deng, C., Varusai, T., Ragueneau, E., Haider, Y., May, B., Shamovsky,

V., Weiser, J., Brunson, T., Sanati, N., Beckman, L., Shao, X., Fabregat, A., Sidiropoulos, K.,

Murillo, J., Viteri, G., Cook, J., Shorser, S., Bader, G., Demir, E., Sander, C., Haw, R., Wu, G.,

Stein, L., Hermjakob, H., and D’Eustachio, P. “The reactome pathway knowledgebase 2022”. In:

Nucleic Acids Research 50.D1 (2022), pp. D687–D692.

Haak, L. L., Fenner, M., Paglione, L., Pentz, E., and Ratner, H. “ORCID: a system to uniquely identify

researchers”. In: Learned publishing 25.4 (2012), pp. 259–264.

Herget, S, Ranzinger, R, Maass, K, and Lieth, C.-W. “GlycoCT—a unifying sequence format for

carbohydrates”. In: Carbohydrate research 343.12 (2008), pp. 2162–2171.

Hogan, A. “SPARQL query language”. In: The Web of Data (2020), pp. 323–448.

Hudak, P. “Conception, evolution, and application of functional programming languages”. In: ACM

Comput. Surv. 21.3 (1989), pp. 359–411. issn: 0360-0300. doi: 10.1145/72551.72554. url:

https://doi.org/10.1145/72551.72554.

Hudak, P., Hughes, J., Peyton Jones, S., and Wadler, P. “A history of Haskell: being lazy with class”.

In: Proceedings of the Third ACM SIGPLAN Conference on History of Programming Languages.

HOPL III. San Diego, California: Association for Computing Machinery, 2007, pp. 12–1–12–55.

isbn: 9781595937667. doi: 10.1145/1238844.1238856. url: https://doi.org/10.1145/

1238844.1238856.

Jarnuczak, A. F. and Vizcaíno, J. A. “Using the PRIDE database and ProteomeXchange for submitting

and accessing public proteomics datasets”. In: Current protocols in bioinformatics 59.1 (2017),

pp. 13–31.

Kanehisa, M., Goto, S., Kawashima, S., Okuno, Y., and Hattori, M. “The KEGG resource for deci-

phering the genome”. In: Nucleic Acids Research 32.suppl_1 (2004), pp. D277–D280.

Katayama, T. and Kawashima, S. “SPARQList: Markdown-Based Highly Configurable REST API

Hosting Server for SPARQL.” In: SWAT4LS. 2017.

Kenler, E. and Razzoli, F. MariaDB Essentials. Packt Publishing Ltd, 2015.

Kim, S., Thiessen, P. A., Bolton, E. E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S.,

Shoemaker, B. A., Wang, J., Yu, B., Zhang, J., and Bryant, S. H. “PubChem Substance and

Compound databases”. In: Nucleic Acids Research 44.D1 (2016), pp. D1202–D1213.

Kleene, S. C. “λ-definability and recursiveness”. In: Duke Mathematical Journal 2.2 (1936), pp. 340–

353.

108

https://doi.org/10.1145/72551.72554
https://doi.org/10.1145/72551.72554
https://doi.org/10.1145/1238844.1238856
https://doi.org/10.1145/1238844.1238856
https://doi.org/10.1145/1238844.1238856

Bibliography

Kolarich, D., Rapp, E., Struwe, W. B., Haslam, S. M., Zaia, J., McBride, R., Agravat, S., Camp-

bell, M. P., Kato, M., Ranzinger, R., Kettner, C., and York, W. S. “The minimum information

required for a glycomics experiment (MIRAGE) project: improving the standards for reporting

mass-spectrometry-based glycoanalytic data”. In: Molecular & cellular proteomics 12.4 (2013),

pp. 991–995.

Lageveen-Kammeijer, G. S., Rapp, E., Chang, D., Rudd, P. M., Kettner, C., and Zaia, J. “The

minimum information required for a glycomics experiment (MIRAGE): reporting guidelines for

capillary electrophoresis”. In: Glycobiology 32.7 (2022), pp. 580–587.

Lee, L. Y., Moh, E. S., Parker, B. L., Bern, M., Packer, N. H., and Thaysen-Andersen, M. “Toward

automated N -glycopeptide identification in glycoproteomics”. In: Journal of proteome research

15.10 (2016), pp. 3904–3915.

Liu, Y., McBride, R., Stoll, M., Palma, A. S., Silva, L., Agravat, S., Aoki-Kinoshita, K. F., Campbell,

M. P., Costello, C. E., Dell, A., Haslam, S. M., Karlsson, N. G., Khoo, K.-H., Kolarich, D., Novotny,

M. V., Packer, N. H., Ranzinger, R., Rapp, E., Rudd, P. M., Struwe, W. B., Tiemeyer, M., Wells,

L., York, W. S., Zaia, J., Kettner, C., Paulson, J. C., Feizi, T., and Smith, D. F. “The minimum

information required for a glycomics experiment (MIRAGE) project: improving the standards

for reporting glycan microarray-based data”. In: Glycobiology 27.4 (Dec. 2016), pp. 280–284. issn:

0959-6658. doi: 10.1093/glycob/cww118. eprint: https://academic.oup.com/glycob/article-

pdf/27/4/280/10863110/cww118.pdf. url: https://doi.org/10.1093/glycob/cww118.

Loeliger, J. and McCullough, M. Version Control with Git: Powerful tools and techniques for collabo-

rative software development. ” O’Reilly Media, Inc.”, 2012.

Ma, J., Chen, T., Wu, S., Yang, C., Bai, M., Shu, K., Li, K., Zhang, G., Jin, Z., He, F., Hermjakob, H.,

and Zhu, Y. “iProX: an integrated proteome resource”. In: Nucleic Acids Research 47.D1 (2019),

pp. D1211–D1217.

MacQueen, D., Harper, R., and Reppy, J. “The history of Standard ML”. In: Proc. ACM Program.

Lang. 4.HOPL (2020). doi: 10.1145/3386336. url: https://doi.org/10.1145/3386336.

Manola, F., Miller, E., and McBride, B. “RDF primer”. In: W3C recommendation 10.1-107 (2004),

p. 6.

Mariethoz, J., Alocci, D., Gastaldello, A., Horlacher, O., Gasteiger, E., Rojas-Macias, M., Karlsson,

N. G., Packer, N. H., and Lisacek, F. “Glycomics@ ExPASy: bridging the gap”. In: Molecular &

Cellular Proteomics 17.11 (2018), pp. 2164–2176.

Marlow, S. et al. “Haskell 2010 language report”. In: (2010).

109

https://doi.org/10.1093/glycob/cww118
https://academic.oup.com/glycob/article-pdf/27/4/280/10863110/cww118.pdf
https://academic.oup.com/glycob/article-pdf/27/4/280/10863110/cww118.pdf
https://doi.org/10.1093/glycob/cww118
https://doi.org/10.1145/3386336
https://doi.org/10.1145/3386336

Bibliography

Martens, M., Ammar, A., Riutta, A., Waagmeester, A., Slenter, D., Hanspers, K., A. Miller, R.,

Digles, D., Lopes, E., Ehrhart, F., Dupuis, L. J., Winckers, L. A., Coort, S., Willighagen, E. L.,

Evelo, C. T., Pico, A. R., and Kutmon, M. “WikiPathways: connecting communities”. In: Nucleic

Acids Research 49.D1 (2021), pp. D613–D621.

Matsubara, M., Aoki-Kinoshita, K. F., Aoki, N. P., Yamada, I., and Narimatsu, H. “WURCS 2.0

update to encapsulate ambiguous carbohydrate structures”. In: Journal of chemical information

and modeling 57.4 (2017), pp. 632–637.

Maxwell, E., Tan, Y., Tan, Y., Hu, H., Benson, G., Aizikov, K., Conley, S., Staples, G. O., Slysz,

G. W., Smith, R. D., and Zaia, J. “GlycReSoft: A Software Package for Automated Recognition of

Glycans from LC/MS Data”. In: PLOS ONE 7.9 (Sept. 2012), pp. 1–11. doi: 10.1371/journal.

pone.0045474. url: https://doi.org/10.1371/journal.pone.0045474.

McCarthy, J. “Recursive functions of symbolic expressions and their computation by machine, part

I”. In: Communications of the ACM 3.4 (1960), pp. 184–195.

McCracken, D. D. and Reilly, E. D. “Backus-Naur form (BNF)”. In: Encyclopedia of Computer Science.

2003, pp. 129–131.

Merkel, D. “Docker: lightweight linux containers for consistent development and deployment”. In:

Linux J 239.2 (2014), p. 2.

Meyers, S. Effective modern C++: 42 specific ways to improve your use of C++ 11 and C++ 14.

”O’Reilly Media, Inc.”, 2014.

Michele, D. E., Barresi, R., Kanagawa, M., Saito, F., Cohn, R. D., Satz, J. S., Dollar, J., Nishino, I.,

Kelley, R. I., Somer, H., Straub, V., Mathews, K. D., Moore, S. A., and Campbell, K. P. “Post-

translational disruption of dystroglycan–ligand interactions in congenital muscular dystrophies”.

In: Nature 418.6896 (2002), pp. 417–421.

Milner, R. “Implementation and applications of Scott’s logic for computable functions”. In: ACM

sigplan notices 7.1 (1972), pp. 1–6.

Odersky, M., Spoon, L., and Venners, B. Programming in Scala. Artima Inc, 2008.

O’grady, A. GitLab Quick Start Guide: Migrate to GitLab for all your repository management solutions.

Packt Publishing Ltd, 2018.

Okuda, S., Watanabe, Y., Moriya, Y., Kawano, S., Yamamoto, T., Matsumoto, M., Takami, T.,

Kobayashi, D., Araki, N., Yoshizawa, A. C., Tabata, T., Sugiyama, N., Goto, S., and Ishihama, Y.

“jPOSTrepo: an international standard data repository for proteomes”. In: Nucleic Acids Research

45.D1 (2017), pp. D1107–D1111.

110

https://doi.org/10.1371/journal.pone.0045474
https://doi.org/10.1371/journal.pone.0045474
https://doi.org/10.1371/journal.pone.0045474

Bibliography

Perez-Riverol, Y., Bai, J., Bandla, C., García-Seisdedos, D., Hewapathirana, S., Kamatchinathan, S.,

Kundu, D., Prakash, A., Frericks-Zipper, A., Eisenacher, M., Walzer, M., Wang, S., Brazma, A.,

and Vizcaíno, J. “The PRIDE database resources in 2022: a hub for mass spectrometry-based

proteomics evidences”. In: Nucleic Acids Research 50.D1 (2022), pp. D543–D552.

Perkins, D. N., Pappin, D. J., Creasy, D. M., and Cottrell, J. S. “Probability-based protein identifica-

tion by searching sequence databases using mass spectrometry data”. In: ELECTROPHORESIS:

An International Journal 20.18 (1999), pp. 3551–3567.

Pierce, B. C. Types and Programming Languages. MIT press, 2002.

Ranzinger, R., Aoki-Kinoshita, K. F., Campbell, M. P., Kawano, S., Lütteke, T., Okuda, S., Shin-

machi, D., Shikanai, T., Sawaki, H., Toukach, P., Matsubara, M., Yamada, I., and Narimatsu, H.

“GlycoRDF: an ontology to standardize glycomics data in RDF”. In: Bioinformatics 31.6 (2015),

pp. 919–925.

Reese, W. “Nginx: the high-performance web server and reverse proxy”. In: Linux Journal 2008.173

(2008), p. 2.

Richard-Foy, J. Play framework essentials. Packt Publishing Ltd, 2014.

Roestenburg, R., Williams, R., and Bakker, R. Akka in action. Simon and Schuster, 2016.

Rohloff, K., Dean, M., Emmons, I., Ryder, D., and Sumner, J. “An evaluation of triple-store tech-

nologies for large data stores”. In: On the Move to Meaningful Internet Systems 2007: OTM 2007

Workshops: OTM Confederated International Workshops and Posters, AWeSOMe, CAMS, OTM

Academy Doctoral Consortium, MONET, OnToContent, ORM, PerSys, PPN, RDDS, SSWS, and

SWWS 2007, Vilamoura, Portugal, November 25-30, 2007, Proceedings, Part II. Springer. 2007,

pp. 1105–1114.

Rojas-Macias, M. A., Mariethoz, J., Andersson, P., Jin, C., Venkatakrishnan, V., Aoki, N. P., Shin-

machi, D., Ashwood, C., Madunic, K., Zhang, T., Miller, R. L., Horlacher, O., Struwe, W. B.,

Watanabe, Y., Okuda, S., Levander, F., Kolarich, D., Rudd, P. M., Wuhrer, M., Kettner, C.,

Packer, N. H., Aoki-Kinoshita, K. F., Lisacek, F., and Karlsson, N. G. “Towards a standardized

bioinformatics infrastructure for N -and O-glycomics”. In: Nature communications 10.1 (2019),

p. 3275.

Sharma, V., Eckels, J., Schilling, B., Ludwig, C., Jaffe, J. D., MacCoss, M. J., and MacLean, B.

“Panorama public: a public repository for quantitative data sets processed in skyline”. In: Molecular

& Cellular Proteomics 17.6 (2018), pp. 1239–1244.

111

Bibliography

Sinha, A., Hussain, A., Ignatchenko, V., Ignatchenko, A., Tang, K. H., Ho, V. W., Neel, B. G.,

Clarke, B., Bernardini, M. Q., Ailles, L., and Kislinger, T. “N-Glycoproteomics of patient-derived

xenografts: a strategy to discover tumor-associated proteins in high-grade serous ovarian cancer”.

In: Cell Systems 8.4 (2019), pp. 345–351.

Skehel, J. J. and Wiley, D. C. “Receptor binding and membrane fusion in virus entry: the influenza

hemagglutinin”. In: Annual review of biochemistry 69.1 (2000), pp. 531–569.

Struwe, W. B., Agravat, S., Aoki-Kinoshita, K. F., Campbell, M. P., Costello, C. E., Dell, A., Feizi, T.,

Haslam, S. M., Karlsson, N. G., Khoo, K.-H., Kolarich, D., Liu, Y., McBride, R., Novotny, M. V.,

Packer, N. H., Paulson, J. C., Rapp, E., Ranzinger, R., Rudd, P. M., Smith, D. F., Tiemeyer,

M., Wells, L., York, W. S., Zaia, J., and Kettner, C. “The minimum information required for a

glycomics experiment (MIRAGE) project: sample preparation guidelines for reliable reporting of

glycomics datasets”. In: Glycobiology 26.9 (2016), pp. 907–910.

Sud, M., Fahy, E., Cotter, D., Brown, A., Dennis, E. A., Glass, C. K., Merrill Alfred H., J., Murphy,

R. C., Raetz, C. R. H., Russell, D. W., and Subramaniam, S. “LMSD: LIPID MAPS structure

database”. In: Nucleic Acids Research 35.suppl_1 (2007), pp. D527–D532.

Taylor, C. F., Paton, N. W., Lilley, K. S., Binz, P.-A., Julian Jr, R. K., Jones, A. R., Zhu, W., Apweiler,

R., Aebersold, R., Deutsch, E. W., Dunn, M. J., Heck, A. J., Leitner, A., Macht, M., Mann, M.,

Martens, L., Neubert, T. A., Patterson, S. D., Ping, P., Seymour, S. L., Souda, P., Tsugita, A.,

Vandekerckhove, J., Vondriska, T. M., Whitelegge, J. P., Wilkins, M. R., Xenarios, I., Yates, J. R.,

and Hermjakob, H. “The minimum information about a proteomics experiment (MIAPE)”. In:

Nature biotechnology 25.8 (2007), pp. 887–893.

Thaysen-Andersen, M. and Packer, N. H. “Advances in LC–MS/MS-based glycoproteomics: Getting

closer to system-wide site-specific mapping of the N -and O-glycoproteome”. In: Biochimica et

Biophysica Acta (BBA)-Proteins and Proteomics 1844.9 (2014), pp. 1437–1452.

The UniProt Consortium. “UniProt: the universal protein knowledgebase in 2023”. In: Nucleic Acids

Research 51.D1 (2023), pp. D523–D531.

Tilkov, S. and Vinoski, S. “Node. js: Using JavaScript to build high-performance network programs”.

In: IEEE Internet Computing 14.6 (2010), pp. 80–83.

Tipton, K. F., Armstrong, R. N., Bakker, B. M., Bairoch, A., Cornish-Bowden, A., Halling, P. J.,

Hofmeyr, J.-H., Leyh, T. S., Kettner, C., Raushel, F. M., Rohwer, J., Schomburg, D., and Steinbeck,

C. “Standards for Reporting Enzyme Data: The STRENDA Consortium: What it aims to do and

why it should be helpful”. In: Perspectives in Science 1.1-6 (2014), pp. 131–137.

112

Bibliography

Turing, A. M. “Computability and λ-definability”. In: The Journal of Symbolic Logic 2.4 (1937),

pp. 153–163.

— “On computable numbers, with an application to the Entscheidungsproblem”. In: Proceedings of

the London Mathematical Society s2-42 (1936), pp. 230–265.

Tyanova, S., Temu, T., and Cox, J. “The MaxQuant computational platform for mass spectrometry-

based shotgun proteomics”. In: Nature protocols 11.12 (2016), pp. 2301–2319.

Urma, R.-G., Fusco, M., and Mycroft, A. Java 8 in Action: Lambdas, Streams, and functional-style

programming. Manning Publications Co., 2014.

Van Wijk, K. J., Leppert, T., Sun, Q., Boguraev, S. S., Sun, Z., Mendoza, L., and Deutsch, E. W.

“The Arabidopsis PeptideAtlas: harnessing worldwide proteomics data to create a comprehensive

community proteomics resource”. In: The Plant Cell 33.11 (2021), pp. 3421–3453.

Varki, A., Cummings, R. D., Aebi, M., Packer, N. H., Seeberger, P. H., Esko, J. D., Stanley, P.,

Hart, G., Darvill, A., Kinoshita, T., Prestegard, J. J., Schnaar, R. L., Freeze, H. H., Marth, J. D.,

Bertozzi, C. R., Etzler, M. E., Frank, M., Vliegenthart, J. F., Lütteke, T., Perez, S., Bolton, E.,

Rudd, P., Paulson, J., Kanehisa, M., Toukach, P., Aoki-Kinoshita, K. F., Dell, A., Narimatsu, H.,

York, W., Taniguchi, N., and Kornfeld, S. “Symbol Nomenclature for Graphical Representations

of Glycans”. In: Glycobiology 25.12 (2015), pp. 1323–1324.

Varki, A., Cummings, R. D., Esko, J. D., Stanley, P., Hart, G. W., Aebi, M., Mohnen, D., Kinoshita, T.,

Packer, N. H., Prestegard, J. H., Schnaar, R. L., and Seeberger, P. H. “Essentials of Glycobiology

[internet]”. In: (2022). url: https://pubmed.ncbi.nlm.nih.gov/35536922/.

Watanabe, Y., Aoki-Kinoshita, K. F., Ishihama, Y., and Okuda, S. “GlycoPOST realizes FAIR princi-

ples for glycomics mass spectrometry data”. In: Nucleic Acids Research 49.D1 (2021), pp. D1523–

D1528.

Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., Blomberg,

N., Boiten, J.-W., Silva Santos, L. B. da, Bourne, P. E., Bouwman, J., Brookes, A. J., Clark, T.,

Crosas, M., Dillo, I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R., Gonzalez-Beltran, A.,

Gray, A. J., Groth, P., Goble, C., Grethe, J. S., Heringa, J., Hoen, P. A. ’t, Hooft, R., Kuhn, T.,

Kok, R., Kok, J., Lusher, S. J., Martone, M. E., Mons, A., Packer, A. L., Persson, B., Rocca-

Serra, P., Roos, M., Schaik, R. van, Sansone, S.-A., Schultes, E., Sengstag, T., Slater, T., Strawn,

G., Swertz, M. A., Thompson, M., Lei, J. van der, Mulligen, E. van, Velterop, J., Waagmeester,

A., Wittenburg, P., Wolstencroft, K., Zhao, J., and Mons, B. “The FAIR Guiding Principles for

scientific data management and stewardship”. In: Scientific data 3.1 (2016), pp. 1–9.

113

https://pubmed.ncbi.nlm.nih.gov/35536922/

Bibliography

Yamada, I., Campbell, M. P., Edwards, N., Castro, L. J., Lisacek, F., Mariethoz, J., Ono, T.,

Ranzinger, R., Shinmachi, D., and Aoki-Kinoshita, K. F. “The glycoconjugate ontology (Glyco-

CoO) for standardizing the annotation of glycoconjugate data and its application”. In: Glycobiology

31.7 (2021), pp. 741–750.

Yamada, I., Shiota, M., Shinmachi, D., Ono, T., Tsuchiya, S., Hosoda, M., Fujita, A., Aoki, N. P.,

Watanabe, Y., Fujita, N., Angata, K., Kaji, H., Narimatsu, H., Okuda, S., and Aoki-Kinoshita,

K. F. “The GlyCosmos Portal: a unified and comprehensive web resource for the glycosciences”.

In: Nature Methods 17.7 (2020), pp. 649–650.

York, W. S., Agravat, S., Aoki-Kinoshita, K. F., McBride, R., Campbell, M. P., Costello, C. E.,

Dell, A., Feizi, T., Haslam, S. M., Karlsson, N., Khoo, K.-H., Kolarich, D., Liu, Y., Novotny, M.,

Packer, N. H., Paulson, J. C., Rapp, E., Ranzinger, R., Rudd, P. M., Smith, D. F., Struwe, W. B.,

Tiemeyer, M., Wells, L., Zaia, J., and Kettner, C. “MIRAGE: the minimum information required

for a glycomics experiment”. In: Glycobiology 24.5 (2014), pp. 402–406.

York, W. S., Mazumder, R., Ranzinger, R., Edwards, N., Kahsay, R., Aoki-Kinoshita, K. F., Campbell,

M. P., Cummings, R. D., Feizi, T., Martin, M., Natale, D. A., Packer, N. H., Woods, R. J., Agarwal,

G., Arpinar, S., Bhat, S., Blake, J., Castro, L. J. G., Fochtman, B., Gildersleeve, J., Goldman,

R., Holmes, X., Jain, V., Kulkarni, S., Mahadik, R., Mehta, A., Mousavi, R., Nakarakommula, S.,

Navelkar, R., Pattabiraman, N., Pierce, M. J., Ross, K., Vasudev, P., Vora, J., Williamson, T., and

Zhang, W. “GlyGen: Computational and Informatics Resources for Glycoscience”. In: Glycobiology

30.2 (2020), pp. 72–73.

Zammetti, F. Modern Full-Stack Development: Using TypeScript, React, Node. js, Webpack, and

Docker. Springer, 2020.

Zhang, Q., Ma, C., Chin, L.-S., and Li, L. “Integrative glycoproteomics reveals protein N-glycosylation

aberrations and glycoproteomic network alterations in Alzheimer’s disease”. In: Science Advances

6.40 (2020), eabc5802.

Zhang, W. and Edwards, N. J. “GNOme–Glycan Naming and Subsumption Ontology”. In: Proceedings

http://ceur-ws. org ISSN 1613 (2021), p. 0073.

114

List of Figures

1.1 Glycosidic bond between two monosaccharide molecules 5

1.2 Examples of N - and O-linked glycan structures . 6

1.3 SNFG monosaccharide symbols . 7

1.4 Example of glycan structures drawn using SNFG notation 8

1.5 The core structure of N -linked glycans, in which the aldehyde group of the reducing

terminal GlcNAc is reduced to alditol after the ring-opening 9

1.6 An example of subsumption relationships between glycan structures 11

1.7 User interface of GlycoWorkbench . 12

1.8 User interface of PRIDE data repository . 16

1.9 User interface of MS-Viewer Repository Browser . 17

1.10 Display screen of a glycan structure entry in GlyTouCan 19

1.11 Submission list screen of GlycoPOST . 21

1.12 Display screen of a glycan structure identification result registered in UniCarb-DR . . 22

2.1 Breakdown of database management systems (DBMSs) by database model as of De-

cember 2023 . 27

2.2 Example of the tables in the relational model . 27

2.3 Example of SQL query to retrieve information from tables 28

2.4 Conceptual diagram of the three-tier client-server architecture 30

2.5 Example of a system based on multiple containers . 31

2.6 Examples of triple and graph structure composed of a set of triples expressed in RDF 33

2.7 An example of RDF described in the Turtle format. 33

2.8 An example of a SPARQL query . 34

2.9 Results of an example SPARQL query . 35

2.10 Conceptual diagram of the entire GlyComb system composed of multiple Docker con-

tainers . 45

115

List of Figures

2.11 Example of a pop-up on the GlyComb user interface displaying an error message . . . 46

2.12 The flow of validation and RDFization of submitted data through batch processing . . 49

2.13 RDF schema of GlyComb . 50

2.14 Example of a SPARQL query against the GlyComb SPARQL endpoint and its search

results . 51

2.15 Actual table that stores column information used in HPLC experiments in the UniCarb-

DR database . 53

2.16 Conceptual diagram showing the overall picture of the unified new submission flow to

the two data repositories . 56

2.17 Conceptual diagram showing the collaboration between GlycoPOST containers and

MiniCarb-Viewer containers . 58

3.1 Conceptual diagram of glycopeptides illustrated using SNFG monosaccharide notation

symbols . 60

3.2 Examples of glycopeptide/glycoprotein entries to GlyComb 62

3.3 Welcome screen and login process to GlyComb using Google account 63

3.4 Registration screen for glycopeptide and glycoprotein entries to GlyComb 66

3.5 User profile screen and submission details screen . 67

3.6 The list screen and the individual entry detail screen for published glycopeptide entries 69

3.7 The list screen and the individual entry detail screen for published glycoprotein entries 70

3.8 Exact match search screen for entries registered in GlyComb 71

3.9 Example usage of PMI Byonic-derived summary spreadsheet converter 72

3.10 Help screen of GlyComb . 73

3.11 Workflow for registering and making glycopeptide entries publicly available in GlyComb 76

3.12 Data extraction workflow from summary worksheets generated by PMI-Byonic 82

3.13 Percentage of glycopeptide/glycoprotein entries registered in GlyComb categorized by

glycosylation class . 84

3.14 Venn diagrams showing overlapping GlyComb entries extracted from PRIDE repository

and MS-Viewer repository . 85

3.15 Cross-references between GlycoPOST and UniCarb-DR 87

3.16 Visualization screen of identification results obtained from GlycoPOST 88

116

List of Figures

3.17 The template Excel spreadsheet for entering MIRAGE-compliant liquid chromatogra-

phy experiment guidelines . 90

3.18 Updated GlycoPOST data submission form . 91

3.19 Screenshot of GlycoPOST submission confirmation screen 92

3.20 Workflow of using MiniCarb-Viewer from the preview screen of GlycoPOST 94

3.21 Conceptual diagram showing the relationship between UniCarb-DR, MiniCarb-Viewer

and GlyTouCan . 95

4.1 Expected omics fields to be covered by the data repositories developed in this thesis in

the future . 101

117

List of Tables

3.1 Error codes for errors that may occur during the login process 64

3.2 Error and warning codes for errors that may occur during the entry registration process 65

3.3 Breakdown of the 13 overlapping glycopeptide entries extracted from the PRIDE and

MS-viewer repositories . 86

118

List of Listings

2.1 Example of a function definition in the Python language 36

2.2 An example of a function definition in the Haskell language 37

2.3 Example of procedurally defined function in Python language 38

2.4 Example of a function defined in the Haskell language using higher-order functions . . 38

2.5 Example of data type definition in the Haskell language 40

2.6 Example of data type definition in the Scala language 42

2.7 Example program to get the number of published glycopeptide entries from GlyComb’s

API . 44

2.8 Example response from the API showing the number of published glycopeptide entries 46

119

Appendix A

Appendix A

A.1 Source code

The source code related to each data repository developed in this thesis was uploaded onto GitLab

Community Edition (O’grady, 2018) running on an on-premises server at the Kinoshita Lab (https:

//gitlab.glyco.info). The following sections include the URL(s) of the source code for each data

repository.

A.1.1 GlyComb

The major components constituting GitComb, including the user interface, the public and private

APIs running on the server, the database configuration files, and all utility software, are collectively

maintained at the following URL:

https://gitlab.glyco.info/glycosmos/glycombgroup

A.1.2 UniCarb-DR

All source code for UniCarb-DR, including the user interface, server-side logic, database configuration

files, etc., is maintained at the following URL:

https://gitlab.glyco.info/glycosmos/unicarb-app-mirage

A.1.3 GlycoPOST

The main source code for GlycoPOST, including the user interface, APIs running on the server, and

database configuration files, excluding the user login system, is maintained at the following URL:

https://gitlab.glyco.info/glycosmos/glycopost/glycopost

120

https://gitlab.glyco.info
https://gitlab.glyco.info
https://gitlab.glyco.info/glycosmos/glycombgroup
https://gitlab.glyco.info/glycosmos/unicarb-app-mirage
https://gitlab.glyco.info/glycosmos/glycopost/glycopost

Appendix A. Appendix A

The GlycoPOST user login system, including the user interface, APIs running on the server, and

database configuration files, is maintained at the following URL:

https://gitlab.glyco.info/glycosmos/glycopost/gpdr-user

In addition, the source code for the MiniCarb-Viewer component for visualizing GlycoWorkbench

files on GlycoPOST is maintained at the following URL:

https://gitlab.glyco.info/glycosmos/unicarb-dr/minicarb-viewer

121

https://gitlab.glyco.info/glycosmos/glycopost/gpdr-user
https://gitlab.glyco.info/glycosmos/unicarb-dr/minicarb-viewer

	Introduction
	Glycans and glycoconjugates
	Glycan structures
	Symbol Nomenclature For Glycans (SNFG) notation
	Glycan text notations
	Subsumption relationships among glycan structures

	Mass spectrometry as a primary experimental method in glycoscience research
	Standard reporting guidelines
	Data repositories in proteomics and glycomics
	PRoteomics IDEntifications database (PRIDE) in the ProteomeXchange Consortium
	MS-Viewer in Protein Prospector
	International glycan repository GlyTouCan
	Data repositories in glycomics
	GlycoPOST
	UniCarb-DR

	Purpose

	Methods
	Infrastructure for developing data repositories
	Relational databases and querying with SQL
	Three-tier client-server architecture
	Containerized virtualization technology
	Semantic Web technologies

	Applying functional programming techniques to the development of data repositories
	Advantages of functional programming
	Application of functional programming to this study

	The design of the GlyComb system
	Fundamental technologies used to build the GlyComb system
	Error checking of communication between the user interface and the API using functional programming techniques
	Batch processing and validation of submitted data
	RDF-ization of data registered in GlyComb

	System design to enable further collaboration between UniCarb-DR and GlycoPOST
	Re-designing the UniCarb-DR system to improve its reliability
	Design of unified data submission flow between UniCarb-DR and GlycoPOST
	Additional MIRAGE-LC guideline support for two data repositories
	Visualization of GlycoWorkbench files contained in projects in embargo submitted to GlycoPOST

	Results
	Development of a novel glycoconjugate data repository GlyComb
	Design of input data format for GlyComb
	Overview of the GlyComb user interface
	Welcome screen and user login process
	Registration screen
	User profile screen and submission details screen
	Entry list screen and entry details screen
	Search screen
	PMI Byonic-derived summary spreadsheet converter screen
	Help screen

	Workflow for submitting and publishing data to GlyComb
	Automatic extraction of glycopeptide and glycoprotein entries from summary worksheets generated by PMI-Byonic
	Registration of glycopeptide and glycoprotein entries extracted from the PRIDE and MS-Viewer repositories

	Strengthening the integration between UniCarb-DR and GlycoPOST
	Unifying the data submission flow and cross-referencing
	Addition of MIRAGE liquid chromatography guidelines support to GlycoPOST
	Visualization of GlycoWorkbench files during peer review period in GlycoPOST: MiniCarb-Viewer
	Integration with GlyTouCan by obtaining GlyTouCan IDs from glycan structure strings in GWS format

	Discussion
	Knowledge integration between glycomics and glycoproteomics catalyzed by GlyComb
	From integration of glycomics data repositories to integration of multi-omics knowledge
	The value of reliable data repositories
	Future outlook

	Conclusion
	Acknowledgements
	Bibliography
	List of Figures
	List of Tables
	List of Listings
	Appendix A
	Source code
	GlyComb
	UniCarb-DR
	GlycoPOST

